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Abstract. This paper examines the computational and sample com-
plexity of answering k-wise statistical queries, which were introduced
by Felman and Ghazi [9] as a generalization to the standard statistical
query model of Kearns [11]. In particular, our paper studies two sam-
ple reuse schemes: (1) reusing independent “pseudo-samples” for adap-
tive queries and (2) reusing dependent k-wise samples for non-adaptive
queries. Comparing to a baseline non-reuse strategy, we show that the
first reuse method offers a trade-off between k, the arity of the query, and
M , the total number of queries to be answered. We also show that the
second reuse method performs no worse than the baseline, and possibly
better, from the perspective of variance reduction.

Keywords: Statistical query learning · Sample reuse · Differential
privacy

1 Introduction

In this paper we study the sample complexity of answering M different k-wise
statistical queries. k-wise statistical queries are a generalization of the statistical
query model introduced by Kearns [11] and widely studied thereafter [3,4]. While
unary statistical queries look at the expectation of a function q : X → {0, 1}
from one data point onto a binary range, k-wise queries q : Xk → {0, 1} use
samples of size k ≥ 1. The importance of being able to answer k-wise queries for
larger values of k is illustrated by Felman and Ghazi [9], who showed that as k
increases, strictly more problems can be solved using k-wise queries.

Known methods for answering statistical queries (SQs) include strategies
ranging from straightforward sampling methods to more involved approaches
involving principled sample reuse from the perspective of adaptive data analy-
sis [5]. In this paper we analyze these varying approaches for the more general
k-wise case and find a trade-off in which method is the best depending on the
relative values of k, the arity of the query, and M , the total number of queries
to be answered. We also give a different view for a known strategy for sample
reuse, and show that it performs no worse than the original non-reuse strategy,
and possibly better.
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There are two natural ways to improve beyond the straightforward sampling
approach: (1) reuse independent pseudo-samples for adaptive queries and (2)
reuse dependent k-wise samples for non-adaptive queries. In the first method,
each pseudo-sample is composed by drawing k i.i.d points from the sample
domain, so pseudo-samples are mutually independent and identically distributed
according to the product distribution. Intuitively, the first method reuses the
same set of i.i.d. pseudo-samples among all queries, while the second method
draws a new set of points for each query and takes all possible size k subsets to
create dependent k-wise samples. It is worth noting that we are only concerned
with the case of adaptive queries for method (1), since results for non-adaptive
queries are already given by VC theory.

In the remaining parts of the paper, we shall provide rigorous statements
of definitions and useful technical tools in Preliminaries, introduce the naive
sampling approach in Baseline simulation of an SQ oracle, and then discuss
results of the two sample reuse methods in the last two sections.

2 Preliminaries

We first give the definition of a k-wise SQ oracle.

Definition 1 (Feldman and Ghazi [9]). Let D be a distribution over a domain
X and τ > 0. A k-wise statistical query oracle STAT(k)

D (φ, τ) is an oracle that
given as input any query function φ : Xk → {0, 1} and a value τ , returns some
value v such that |v − Ex∼Dk [φ(x)]| ≤ τ .

The goal of statistical query learning, as originally defined by Kearns [11], is
to learn a target class of functions efficiently, achieving PAC guarantees while
using the SQ oracle instead of labeled examples. In this case, to efficiently SQ-
learn a function class, one wants to make a polynomial number of calls to the
STAT(k)

D oracle, using tolerances τ such that 1
τ is polynomially bounded away

from 0, and using query functions φ evaluable in polynomial time. For detailed
definitions and more about the SQ model, see Reyzin [12].

Next, we are interested in the sensitivity of query functions that are fed to
the SQ oracle. The #1-sensitivity of a query measures the magnitude by which
perturbing a single data point can change the query output in the worst case.
It is an important parameter in determining the algorithm’s required accuracy
when answering queries.
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Definition 2 (Dwork and Roth [7]). The #1-sensitivity of a function f :
N|X| → R is

∆f = max
x,y∈N|X|

‖x−y‖1=1

‖f(x) − f(y)‖1

= max
x,y∈N|X|

‖x−y‖1=1

|X|∑

i=1

|f(xi) − f(yi)|.

One main technique we use to study reusing pseudo-samples among adaptive
queries is the Transfer Theorem developed in Bassily et al. [2]. The theorem
says a differentially private learner that is accurate with respect to its samples
generalizes to the population from which the samples were drawn. Bassily et
al. [2] uses the term “max-KL stability” to refer to the differential privacy model
of Dwork et al. [6], emphasizing it as one of the various notions of stability in
machine learning. We state the definition of a differentially private learner and
the Transfer Theorem as follows.

Definition 3 (Dwork and Roth [7]). A randomized algorithm M with
domain N|X | is (ε, δ)-differentially private if for all S ⊆ Range(M) and for
all x, y ∈ N|X | such that ‖x − y‖1 ≤ 1:

P[M(x) ∈ S] ≤ exp(ε)Pr[M(y) ∈ S] + δ,

where the probability space is over the randomness of M.

Before introducing the Transfer Theorem (Lemma 1), let us define what it
means for an algorithm to be accurate with respect to a collection of samples
and with respect to a population.

Definition 4 (Bassily et al. [2]). A mechanism M is (α,β)-accurate with
respect to samples of size n from X for M adaptively chosen queries from Φ, if
for every adversary A, which gives output (a1, · · · , aM ),

P



max
j∈[M ]

∣∣∣aj − 1
n

∑

i∈[n]

φj(xi)
∣∣∣ ≤ α



 ≥ 1 − β.

A mechanism M is (α,β)-accurate with respect to the population for M adap-
tively chosen queries from Φ given n samples x ∈ X , if for every adversary A,
which gives output (a1, · · · , aM ),

P
[
max
j∈[M ]

∣∣∣aj − Eφj(x)
∣∣∣ ≤ α

]
≥ 1 − β.

Now we are ready to state the Transfer Theorem.
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Lemma 1 (Transfer Theorem, by Bassily et al. [2]). Let Φ be a family of
∆-sensitive queries on Xk. Assume that for some α,β ∈ (0, 0.1), an algorithm
A is

1. (ε′ = α/64∆n, δ′ = αβ/32∆n)-max-KL stable for M adaptively chosen
queries from Φ and

2. (α′ = α/8, β′ = αβ/16∆n)-accurate with respect to its n samples from Xk

for M adaptively chosen queries from Φ.

Then A is (α,β)-accurate with respect to the population for M adaptively chosen
queries from Φ given n samples from Xk.

One can achieve the privacy requirement (via max-KL stability) in the Trans-
fer Theorem through the Laplace mechanism. Recall that ∆f denotes the #1-
sensitivity of function f . Recall that the Laplace Distribution centered at 0 with
scale parameter b has probability density function

Lap(b) =
1
2b

exp
(

− |x|
b

)
.

Definition 5 (Dwork and Roth [7]). Given any function f : N|X | → Rk, the
Laplace mechanism is defined as:

ML(x, f(·), ε) = f(x) + (Y1, · · · , Yk),

where Yi are i.i.d. random variables drawn from the Laplace Distribution of scale
parameter ∆f/ε, denoted as Lap(∆f/ε).

Let A be an algorithm that calculates the average of a function φ : Xk →
{0, 1} over n samples. Suppose φ has #1-sensitivity ∆. After computing the true
average value a, the Laplace mechanism outputs v = a+ y where y ∼ Lap(∆/ε)
is drawn from the Laplace distribution with scale parameter ∆/ε.

Lemma 2 (Dwork and Roth [7]). For any function f : N|X | → Rk, the
Laplace mechanism guarantees (ε, 0)-differential privacy.

It is easy to come up with a high probability bound on the amount of noise
added by the Laplace mechanism.

Lemma 3 (Dwork and Roth [7]). Let f : N|X | → Rk. Let the output of the
Laplace mechanism be y = ML(x, f(·), ε). Then ∀δ ∈ (0, 1]:

P
[
‖f(x) − y‖∞ ≥ ln

(
k

δ

)
·
(

∆f

ε

)]
≤ δ.
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3 Baseline Simulation of an SQ Oracle

In this section we discuss the sample complexity of learning with k-wise SQs
without sample reuse. An algorithm simulates a k-wise SQ oracle by taking
empirical averages. This simulation is extended from the one given by Kearns [11]
for unary SQ oracles. In the k-wise case, to each query function φi the learner
feeds it a fresh batch of ñ i.i.d. pseudo-samples Si = {x1, · · · ,xñ}, where each
pseudo-sample xj = (xj1 , · · ·xjk) consists of k sample points. Then the learner
computes the empirical average of φi(x) over the set of pseudo-sample Si. With
high probability, the empirical average will fall within the amount of tolerance
allowed by the SQ oracle from the true expectation of φi, thanks to concentra-
tion inequalities. Proposition 1 provides the quantitative result of this baseline
approach.

Proposition 1. Suppose there exists an SQ learner that makes M k-wise statis-
tical queries of tolerance τ to learn over a class C, then there exists a simulation
algorithm, which does not reuse any samples, for which a set of i.i.d. samples of
size

n = O

(
k
M

τ2
log

(
M

δ

))

is sufficient to PAC learn C with error bounded by ε and probability of failure
bounded by δ.

Proof. We take the specified number of samples and partition them into

ñ =
n

Mk
= O

(
1
τ2

log
(
M

δ

))

i.i.d. pseudo-samples for each query function φi. The Hoeffding bound guarantees
that the empirical average over ñ pseudo-samples falls within ±τ from E[φi(x)]
with probability ≥ 1 − δ

M . Then apply the union bound and we obtain that
with probability ≥ 1 − δ, the empirical average falls within ±τ from the true
expectation for all queries. Hence we have successfully simulated the k-wise SQ
learner with high probability, fulfilling the PAC requirements. *+

4 Independent Pseudo-Samples for Adaptive Queries

In this section we discuss the reuse of independent pseudo-samples for adaptive
queries. Suppose there exists a k-wise SQ learner that efficiently SQ-learns a
function class by asking M adaptive k-wise queries φ1, · · · ,φM . Similar to the
baseline case, our algorithm (Algorithm 1) simulates a k-wise SQ oracle through
taking empirical averages. However, what is different from the baseline case is
that Algorithm 1 partitions the set of n samples x ∼ D into ñ = n/k parts to
create ñ i.i.d. pseudo-samples x = (x1, · · · , xk) ∼ Dk. It then reuses the same
set of pseudo-samples among all queries when taking their empirical averages.
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Now we state our main sample complexity result. Theorem 1 provides the
optimal sample complexity for an algorithm that reuses the same set of inde-
pendent pseudo-samples while answering adaptive queries.

Theorem 1. Suppose there exists an SQ learner that makes M k-wise statistical
queries of tolerance τ to learn a class C, then there exists a simulation algorithm,
which reuses independent pseudo-samples among the M queries, for which a set
of i.i.d. samples of size

n = O

(
k2

√
M

τ2
log

(
max

{
M,

k

τ

}
1
δ

))

= O

(
k2

√
M

τ2
log

(Mk

τδ

))

is sufficient to PAC-learn C with error bounded by ε and probability of failure
bounded by δ.

Comparing Theorem 1 to the naive bound in Proposition 1, we observe an
interesting trade-off between the arity of the query k, and the total number of
queries M . The trade-off suggests that only when a learner uses a large amount
of short queries (k <

√
M) is it worth to reuse pseudo-samples.

It is worth noting that Algorithm 1 is specific to k-wise statistical queries
and it differs from approaches that work for low-sensitivity queries in general.
In addition to having low sensitivity, statistical queries and their k-wise gener-
alizations have the additional property that they can be evaluated on k points
at a time, and are therefore amenable to sampling techniques, which can pro-
duce potential speedups (see Fish, Reyzin, and Rubinstein [10]). This allows us
to evaluate our queries on pseudo-samples, each of which consists of k sample
points.

Algorithm 1. Reusing Independent Pseudo-samples for Adaptive Queries
Inputs. Sample points x ∈ X and k-wise Statistical Queries φ1, · · · ,φM , where φi :
Xk → {0, 1} for all i ∈ [M ].
Outputs. v ∈ RM .

1: Draw O
(

k2√
M

τ2 log(Mk
τδ )

)
i.i.d. sample points x ∼ D. Create ñ = n

k copies of i.i.d.
pseudo-samples xj = (xj1 , · · · , xjk ) ∼ Dk, where j = 1, · · · , ñ.

2: for i = 1, · · · ,M do
3: for j = 1, · · · , ñ do
4: aij ← φi(xj)
5: end for
6: Draw Laplace noise y ∼ Lap

(
128k2√

M
τn

)
.

7: vi ←
(

1
ñ

∑ñ
j=1 aij

)
+ y

8: end for
9: v ← (v1, · · · , vM )
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The sample complexity achieved by Algorithm 1 is no worse than the bound
Õ

(√
M

τ2

)
known for general low-sensitivity queries in Bassily et al. [2]. Their

approach for general low-sensitivity queries takes time poly(n, log |X|) per oracle
call, whereas our Algorithm 1 runs in poly(k, log |X|) time per call to the ora-
cle (assuming polynomial-time evaluability of the respective queries). This can
potentially create a dramatic improvement in running time, since the straightfor-
ward non-sampling approach for exactly evaluating a k-wise query on a sample
of n points would be to evaluate it on all k-point subsets, which is indeed poly-
nomial in n but exponential in k. In fact, we go on to analyze that particular
approach towards the end of the paper.

In the remaining parts of this section, we first discuss a couple technical tools
used to prove Theorem 1 and then we give the proof itself.

4.1 Privacy Composition

To ensure that the simulation generalizes to the sample distribution, we apply
Lemma 1 (Transfer Theorem), which demands the algorithm be differentially
private. The algorithm composes multiple query functions, so in order to achieve
the required level of privacy overall, we need to use results on privacy composition
to figure out what level of privacy is required for each individual query.

There are two well-known bounds on the privacy of query composition: sim-
ple composition and advanced composition. Simple composition provides the
elementary bound that, when a learner uses independent queries, its privacy
equals to the sum of privacy of all queries. Advanced composition deals with
the more complicated situation, one where the learner poses adaptive queries
to the same database repeatedly. We shall see that under appropriate choice
of parameters, advanced composition offers tighter privacy bound than simple
composition (by a factor of

√
M). The exact statements of the two composition

results are provided by Lemma 4 and Lemma 5.

Lemma 4 (Simple Composition, as presented in Dwork and Roth [7]).
Let Ai : Xk → {0, 1} be an (εi, δi)-differentially private algorithm for i =
1, · · · ,M . Then A = (A1, · · · ,AM ) is

(∑M
i=1 εi,

∑M
i=1 δi

)
-differentially private.

Lemma 5 (Advanced Composition, by Dwork, Rothblum, and Vad-
han [8]). For all ε, δ, δ′ ≥ 0, the class of (ε, δ)-deferentially private mechanisms
satisfies (ε′,Mδ+ δ′)-differential privacy under M -fold adaptive composition for

ε′ = ε
√
2M ln(1/δ′) +Mε(eε − 1).

Observe that

ε′ ≤ ε
√

2M ln(1/δ′) +Mε2 = O
(
ε
√

M ln(1/δ′)
)

when ε is small. By choosing δ′ small, say δ′ = 1/e, it can be shown that the
M -fold adaptive composition satisfies (ε

√
M, δM) - differential privacy [2].
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Theorem 1 uses advanced composition of privacy. It is important to mention
that advanced composition is necessary when analyzing pseudo-sample reuse.
Since the algorithm uses adaptive queries, it needs to be strict when budgeting
the privacy level for each query. Otherwise, an excess amount of Laplace noise
would need to be added, which will overturn the effect of sample reuse. As shown
in Theorem 2, if the algorithm composed privacy of the queries as if they were
independent, the resulting sample complexity is actually worse than the baseline
bound.

Theorem 2. Under the setting of Theorem 1, except that suppose the simulation
algorithm treats the M queries as if they were independent and calculates their
overall privacy through simple composition, a set of i.i.d. samples of size

n = O

(
k2M

τ2
log

(
max

{
M,

k

τ

}
1
δ

))

= O

(
k2M

τ2
log

(Mk

τδ

))

is sufficient to PAC learn C with error bounded by ε and probability of failure
bounded by δ.

We omit the proof for Theorem 2 since it closely resembles that of Theorem
1, with the only difference being the privacy composition calculations.

4.2 Laplace Mechanism

Now that we know to use advanced composition, let us consider how to achieve
the desired level of privacy for each query function. As suggested by Lemma 2, we
adopt Laplace mechanism, the standard technique that offers privacy guarantee
for algorithms.

For each φi, Algorithm 1 outputs vi = ai + y, where ai is the empirical
average of φi over a large set of pseudo-samples and y is a small Laplace noise
parameter. There are two key considerations when choosing the parameters.
First, the sample set needs to be large enough so that the empirical average is
close to the true expectation with high probability. Second, the Laplace noise
needs to be small enough so that it does not steer the empirical average away
from the expected average too far, but in the meantime still large enough to
maintain privacy.

Using Lemma 2, we choose y ∼ Lap(∆ · 128k
τ ), which preserves ( τ

128k , 0)-
differential privacy for each query, surpassing the requirement of the Transfer
Theorem (Lemma 1). Here ∆ is the #1-sensitivity of the empirical average of φ
over all pseudo-samples. In an attempt to simplify the writing, we abuse notation
and use ∆φ to represent the aforementioned #1-sensitivity.

Proposition 2. The #1-sensitivity of the empirical average of φ : Xk → {0, 1}
is ∆φ ≤ k

n .
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Proof. Among all pseudo-samples xi ∈ S and x′
i ∈ S′ where i = 1, · · · , ñ,

exactly one pair is different xj -= x′
j . Then |φ(xi)−φ(x′

i)| = 0 for all i -= j, while
|φ(xj) − φ(x′

j)| ≤ 1. Therefore,

∆φ = max
S,S′⊆Xk

s.t. ‖S−S′‖1=1

∥∥∥∥∥
1
ñ

ñ∑

i=1

(
φ(xi) − φ(x′

i)
)∥∥∥∥∥

1

,

which can trivially be bounded as ∆φ ≤ 1/ñ = k/n. *+

Proof of Theorem 1

Given an efficient k-wise SQ learner that learns C approximately correct (to an
error ε), the empirical average simulation wishes to mimic the learner’s query
outputs with high probability. In the language of the Transfer Theorem (Lemma
1), that is to say the simulator needs to be (τ, δ)-accurate with respect to the
population. We prove Theorem 1 using the Transfer Theorem.

Proof (Proof of Theorem 1). Given the total allowed error of τ , we allocate τ/2
to the empirical average and τ/2 to the added Laplace noise. We first analyze the
empirical average. To achieve (τ/2, δ)-accuracy with respect to the population
for M adaptively chosen queries, the Transfer Theorem demands

(i) the simulation is
(

τ
128k ,

τδ
64k

)
-differentially private for M adaptive queries,

(ii) the simulation is
(

τ
16 ,

τδ
32k

)
-accurate with respect to n samples for M adap-

tive queries.

To satisfy (i), we adopt advanced composition. According to Lemma 5, each
of the M queries needs to be

(
τ

128k
√
M
, τδ
64kM

)
-differentially private to obtain

the composed privacy stated in (i). We know each query has #1-sensitivity k/n
through Lemma 2. Then following the standard technique stated in Lemma 2,
we add Laplace noise of scale 128k2√

M
τn to each query average, which achieves(

τ
128k

√
M
, 0

)
-differential privacy, surpassing the needed amount. Lemma 3 ver-

ifies that the added Laplace noise is bounded above by 128k2√
M

τn log 2M
δ with

probability ≥ 1 − δ
2M . In order to restrict the amount of Laplace noise within

τ/2 with high probability, we ask that

128k2
√
M

τn
log

2M
δ

≤ τ

2
,

which implies

n = O

(
k2

√
M

τ2
log

M

δ

)
(1)

is sufficient. Now let us consider (ii). It suffices to show that for all queries φi,
the simulator’s output ai satisfies

P
[
|errx(φi, ai)| ≤ τ

16

]
≥ 1 − τδ

32k
.
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We know that

ai =
1
ñ

ñ∑

j=1

φi(xj) + Lap

(
128k

√
M

τ ñ

)
,

so for all i,

|errx(φi, ai)| = |ai − φi(x)|

=

∣∣∣∣∣∣
ai − 1

ñ

ñ∑

j=1

φi(xj)

∣∣∣∣∣∣

= Lap

(
128k

√
M

τ ñ

)
.

According to Lemma 3, it is easy to verify that with probability ≥ 1 − τδ
32k ,

the Laplace noise of scale 128k
√
M

τ ñ is O(k
2√

M
τn log k

τδ ). To satisfy (ii), we ask that
128k2√

M
τn log 32k

τδ ≤ τ
16 , which implies

n = O

(
k2

√
M

τ2
log

k

τδ

)
(2)

is sufficient. Combining inequalities (1) and (2), we get

n =O

(
max

{
k2

√
M

τ2
log

M

δ
,
k2

√
M

τ2
log

k

τδ

})

= O

(
k2

√
M

τ2
log

(
max

{
M,

k

τ

}
1
δ

))

= O

(
k2

√
M

τ2
log

(Mk

τδ

))
,

which completes the proof. *+

5 Dependent k-wise Samples for Non-adaptive Queries

Now we examine the second reuse method. Algorithm 2 draws n i.i.d. sample
points x ∼ X and partitions them into M equal parts, S1, · · · , SM , to be used
by M queries. Denote the size of each part as |Si| = n̂, so the total number
of samples is n = Mn̂. For each query, the algorithm calculates its empirical
average over

(n̂
k

)
k-wise samples, which are generated by taking all size k subsets

of Si.
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Algorithm 2. Dependent k-wise Samples for Non-adaptive Queries
Inputs. Sample points x ∈ X and k-wise Statistical Queries φi : X

k → {0, 1}, where
i = 1, · · · ,M .
Outputs. v = (v1, · · · , vM ) ∈ RM .
1: Draw n i.i.d. sample points x ∼ D and partition them into M equal parts

S1, · · · , SM , where |Si| = n̂.
2: for i = 1, · · · ,M do
3: Take all size k subsets of Si to create k-wise samples xj = (xj1 , · · · , xjk), where

j = 1, · · · ,
(
n̂
k

)
.

4: Compute the empirical average of φi

vi ← 1

(n̂k)

∑(n̂k)
j=1 φi(xj).

5: end for
6: v ← (v1, · · · , vM ).

In contrast to creating independent pseudo-samples, Algorithm 2 uses all k-
subsets of the provided sample set, yielding additional k-wise samples, although
it fails to maintain their independence since each point contributes to (k − 1)
samples.

We can analyze these dependent k-wise samples from the perspective of a
hypergraph. In the language of hypergraphs, we can think of each sample point
as a vertex and each k-wise sample as a k-hyperedge. The learner is given Kk

n, a
complete hypergraph on n vertices, whose hyperedges contain k vertices (assum-
ing k divides n). The learner uses k-hyperedges as inputs to the queries. Notice
that the hyperedges are not independent with each other. Fortunately, we can
bypass the hyperedge dependency through Baranyai’s Theorem.

Theorem 3 (Baranyai [1]). Every Kk
n hypergraph decomposes into a disjoint

collection of 1-factors.

Recall that a 1-factor is a set of hyperedges that touch each vertex in Kk
n

exactly once. Intuitively, we can think of a 1-factor as a perfect matching. With
the guarantee of decomposition given by Baranyai’s Theorem, we are able to
interpret the collection of dependent hyperedges as a set of perfect matchings.
Although these matchings are dependent on one another, they each contain
independent hyperedges within themselves. Figure 1 gives an example of when
n = 6 and k = 2. As shown by Fig. 1, K2

6 can be decomposed into a disjoint
union of 1-factors, each of which consists of three mutually independent edges.

How well do dependent k-wise samples perform when we use them to estimate
the expected value through empirical average? In each 1-factor, the independent
hyperedges act like pseudo-samples introduced in Algorithm 1. Accordingly, in
Theorem 4 we provide accuracy bounds of dependent k-wise samples by com-
paring its variance to that of independent pseudo-samples.

To set up Theorem 4, let φ : Xk → {0, 1} be a k-wise statistical query, S
be a set of samples x ∼ D, and suppose |S| = n, where k divides n. Let Yp, Ya

be random variables that represent the empirical average of φ under the two
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Fig. 1. An illustration of a decomposition of K2
6 into five disjoint perfect matchings

sampling schemes respectively: creating n/k independent pseudo-samples and
taking all

(n
k

)
k-subsets of S. The expected value of Yp and Ya both equal to

E(φ).

Theorem 4. The variance of Yp and Ya satisfy

1(n−1
k−1

)Var(Yp) ≤ Var(Ya) ≤ Var(Yp).

Proof. We first study the upper bound. Construct a complete hypergraph Kk
n

with the given n sample points. With guarantee from Baranyai’s theorem, we can
decompose Kk

n into 1-factors G1, · · · , Gm, where m =
(n−1
k−1

)
. Each Gi contains

n/k i.i.d. hyperedges of length k. The vertices in these i.i.d. hyperedges form
i.i.d. pseudo-samples used in Algorithm 1. Let YGi be a random variable that
represents the empirical average of φ over pseudo-samples in Gi. By previous
analysis, we know for all i = 1, · · · ,

(n−1
k−1

)
,

Var(Yp) = Var(YGi).

Observe that taking an empirical average over all
(n
k

)
hyperedges in Kk

n is equiv-
alent to taking an average of all the empirical averages over G1, · · · , Gm. There-
fore,

Var(Ya) = Var

(
1
m

m∑

i=1

YGi

)
.

Since YGi are i.i.d. random variables, we can denote Var(YGi) = σ2 for all i =
1, · · · ,m. Then we can prove the upper bound

Var(Ya) = Var

(
1
m

m∑

i=1

YGi

)

=
1
m2




∑

i

Var(YGi) +
∑

i*=j

Cov(YGi , YGj )





≤ 1
m2

(
mσ2 + (m2 − m)

√
σ2σ2

)

= σ2.
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The inequality uses the well-known fact that for any two random variables
Xi,Xj ,

Cov(Xi,Xj) ≤
√

Var(Xi)Var(Xj).

The lower bound follows similar reasoning.

Var(Ya) =
1
m2




∑

i

Var(YGi) +
∑

i*=j

Cov(YGi , YGj )





≥ 1
m2

m∑

i

σ2

=
σ2

m
.

This completes the proof. *+

Therefore, we find that while Algorithm 2 may take longer to run than base-
line sampling (due to its exponential dependence on k), the variance in its esti-
mates will never be worse, which should lead to an improved (or at least not
degraded) sample complexity.

Our analysis in Algorithm 2 corresponds to exact evaluation of k-wise sta-
tistical queries. If we added, e.g. Laplace noise, to add stability to Algorithm 2,
this would be closer to the approach of Bassily et al. [2] for adaptive data reuse.
As it turns out, we can achieve the same bound of Õ(k

2√
M

τ2 ) in Algorithm 1 but
at lower computational cost. This gives an improvement over the work of Bassily
et al. [2] for the case of k-wise statistical queries. Their approach, however, is
more general.
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