
Geometric Algorithms for Metric and Graph Learning

by

Neshat Mohammadi
M.Sc., from University of Illinois at Chicago, 2017

DISSERTATION

Submitted as partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Chicago, 2022

Chicago, Illinois

Defense Committee:
Prof. Lev Reyzin, Chair and Advisor
Prof. Anastasios Sidiropoulos, Advisor
Prof. Xinhua Zhang
Prof. Xiaorui Sun
Dr. Vahid Noroozi, NVIDIA

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 An overview and motivation . 3
1.1.1 Metric learning . 3
1.1.2 Stability . 4
1.1.3 Graph learning . 5
1.2 Our contributions . 5

2 PRELIMINARIES . 7
2.1 Preliminaries for Metric Learning 7
2.1.1 Well-known metric learning algorithms 9
2.1.2 Unsupervised vs weakly supervised metric learning 11
2.2 Preliminaries for stability . 12
2.3 Preliminaries for learning with queries 13

3 LEARNING LINES WITH ORDINAL CONSTRAINTS 16
3.1 Introduction . 16
3.1.1 Our contribution . 17
3.1.2 Related work . 18
3.1.3 Organization . 21
3.2 Warm up: An exact algorithm with no violations 21
3.3 The algorithm for the general case 22
3.3.1 Retractions . 23
3.3.2 The algorithm . 24
3.4 Analysis of the algorithm . 26
3.5 Bounding the number of brittle triples 37

4 SOLVING STABLE STEINER TREE INSTANCES 43
4.1 Introduction and previous work 43
4.2 Model and definitions . 44
4.3 Structural properties in general metrics 46
4.4 Euclidean Steiner trees . 53
4.5 Using approximation algorithms to solve stable instances 57

5 LEARNING GRAPHS WITH BIPARTITE EDGE COUNTING
QUERIES . 59
5.1 Introduction . 59
5.2 Previous work . 60

ii

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

5.3 Model and definitions . 62
5.4 Preliminary results . 63
5.5 A divide and conquer approach for learning graphs 66
5.5.1 Algorithm . 66
5.5.2 Proof of correctness . 66
5.6 Graph verification and learning 69
5.6.1 A visual example on learning a graph with BEC queries 77

CITED LITERATURE . 81

VITA . 87

iii

LIST OF FIGURES

FIGURE PAGE
1 Visualization of the intuition behind LMNN design. [1] 10
2 Weak Supervision using Label Model to train ML Model. [2] 11
3 An example of points t1, t2, t3, and t4 surrounding Steiner point s at

angles over θ ą 90 degrees. No more than 1 ´ 1
cosθ can fit, independent of

the dimension. 55
4 A visual example of how OC, EC and BEC queries work. 63
5 A visualization of all possible paths on n “ 4 vertices 78
6 Randomly portioning vertices into two sets A and B. 78
7 Running the BEC (A,B) and eliminating the solution with different

response than oracle. 79
8 Repeating the random partitioning, running BECpA,Bq and elimina-

tion steps. 79
9 Target path is found by running 3 BEC queries. 80

iv

LIST OF ABBREVIATIONS

UIC University of Illinois at Chicago

NP Non-deterministic Polynomial-time

LLOC Learning Lines with Ordinal Constraints

WLLOC Weighted instance of Learning Lines with Ordinal

Constraints

MQ Membership Queries

EQ Equivalence Counting Queries

EC Edge Counting Queries

BEC Bipartite Edge Counting Queries

LMNN Large-Margin Nearest Neighbors

v

ACKNOWLEDGMENTS

I want to express my gratitude to my advisors, Lev Reyzin and Anastasios (Tasos) Sidiropoulos

for their kindness and support throughout my Ph.D. I’m fortunate that I had the opportunity to

work with two of the brightest mind in TCS during my time at UIC.

Ph.D. is a Marathon that tests your endurance to the core. I want to thank my family and

friends for their endless support without whom I couldn’t get to the finish line. I also want to

thank my co-authors for being great collaborators and all the useful discussions that we had.

I’m so grateful for having my best friend Mona who supported me through highs and lows

and my dearest cousin Tara who hugged me with her words from miles away to motivate me to

keep going when I was about to give up.

This dissertation is dedicated to my sister Fatemeh, the joy of my life, my greatest supporter

and biggest critic who helped me to see my blind sides and to my parents for their immense love

and encouragement to pursue my dreams and for all the sacrifices that they made to pave my

way. I cannot put my gratitude and love for them into words.

NM

vi

SUMMARY

Graph and metric space representations are currently popular due to their multiple applica-

tions in modeling complex data sets from social networks to human genome sequences. In this

dissertation, we examine various problems on metrics and graphs through the lens of geometric

algorithms. The work in this dissertation can be categorized into three parts:

Metric learning: In a metric space representation, each element is considered a point, and the

similarity or dissimilarity between two objects is encoded by their pairwise distance. Our goal is

to find a unique mapping from the initial metric to the host metric. The problem of learning a

target underlying distance function can be reformulated as an optimization problem, where the

objective function captures the extent to which a solution satisfies the input constraints.

In particular, we explore the problem of learning lines with ordinal constraints and propose a

solution by leveraging the geometric properties of metric spaces.

Stability of metric data: Using Bilu-Linial stability of metrics is a relatively new perspective

that can expose interesting structural properties that can motivate a re-exploration of some of the

famous NP-hard problems. Bilu-Linial stability introduced a new point of view on complexity,

where instead of focusing on worst-case elements of a problem, we instead focus on particular

classes of inputs. We study the Steiner tree problem, one of the famous NP problems, by

assuming Bilu-Linial stability, we give strong geometric structural properties that need to be

satisfied by stable instances. Then by strengthening and using these geometric properties we

show that 1.59-stable instances of Euclidean Steiner trees are polynomial-time solvable.

vii

SUMMARY (Continued)

Graph learning and verification: In a graph learning problem, the goal is to learn or verify a

hidden graph or its properties by having query access to the graphs. We study various queries

(edge detection, edge counting), for both directed and undirected graphs but we focus mainly

on bipartite edge counting queries and on undirected graphs. We give a randomized algorithm

for learning graphs using Opm log nq bipartite edge counting queries as well as a randomized

constant-query graph verification algorithm.

viii

CHAPTER 1

INTRODUCTION

Rapid growth of technology and social media has created massive data sets that are difficult

to analyze or store efficiently. These issues shed light on the importance of using structured data

sets to design efficient algorithms. The growing demand on using graph and metric spaces on

modeling the big data highlighted the wide applications of graph and metric spaces in modeling

big data. Geometric methods offer various tools for the analysis of complex and convoluted

data sets. Some of the most famous examples of efficient algorithms on metric spaces are

nearest-neighbor search, clustering, and dimensionality reduction.

My research aims to tackle computational obstacles, especially in metric learning problems,

in order to burnish the theoretical foundations for designing computationally efficient algorithms

designed for real-world problems. The ultimate goal is to bridge the gap between theory and

applications to form a conceptual ground for less complex learning algorithms in practice,

especially on metric and graph data. My work can be split into three main categories: learning

metrics, data stability on metrics, and graph learning. This section provides a brief introduction

to each of these areas.

My research identifies and addresses computational obstacles to establish a theoretical

foundation to then design computationally efficient principled algorithms that can help to achieve

better predictive models for real- life problems, especially, in the medical context. The goal is

to bridge the gap between theoretical and applied computer science and use the integration of

1

2

theoretical and applied methods to form a conceptual ground for less complex learning algorithms

in practice to unravel the ground truth. In most of the medical studies, data sets consist of a set

of objects or patients’ information which contains some information that represents the similarity

or dissimilarity of certain pairs. For instance, the distribution pattern of a contagious disease and

it’s possible effect on society for epidemiology studies that can help to predict the distribution

and effects on the global scale, DNA sequences for detecting inheritance disease, and so on.

Metric spaces can be used as an authentic way to capture and demonstrate latent features in

data sets. In metric space representations, each element considered a point, and the similarity or

dissimilarity between two objects is encoded by their distance. To uniquely encodes the ground

truth, this framework enables us to find a distance function. This metric interpretation of data

sets has been promising in practice and has formed the foundation of algorithmic methods and

ideas, such as clustering, dimensional reduction, nearest-neighbor search, etc.

One important aspect within metric learning is on discovering and developing methods for

unraveling latent metric spaces that agree with a given set of observations. More precisely, the

problem of learning the distance function can be cast as an optimization problem, where the

objective function quantifies the extent to which the solution satisfies the input constraints.

Almost all of the metric learning methods that are currently employed in the real world suffer

from a lack of provable guarantees. So, the main goal of my research is to provide a theoretical

justification for the success of current practical methods. A shortage of theoretical guarantees

opens the door to heuristic solutions for solving problems. The primary issue with these heuristic

methods is that we don’t have any guarantee that these solutions would also work when applied

3

to different problems. Addressing the new problems in the era of big data, due to a limitation of

time and money, requires more efficient methods that trying all the available heuristics. This

sheds light on the importance of developing new algorithms for computing such a unique metric

representation of data sets with a guarantee for converging to the solution.

1.1 An overview and motivation

In this dissertation, we address some on the famous problems in the area of metric and graph

learning and further discuss what motivated us to approach these problems.

1.1.1 Metric learning

In a metric space representation, each element is considered a point, and the similarity or

dissimilarity between two objects is encoded by their distance. This framework tries to uniquely

encode the ground truth by finding a distance function. Such an interpretation of data sets has

been promising in practice and has based the foundation of algorithmic methods and ideas, such

as clustering, dimensionality reduction, and nearest-neighbor search.

One major focus of study within the field of metric learning is to discover and develop methods

for unraveling latent metric spaces that agree with a given set of observations. More precisely,

the problem of learning a target underlying distance function can be cast as an optimization

problem, where the objective function quantifies the extent to which a solution satisfies the input

constraints. Almost all of the metric learning methods that currently work in practice suffer

from a lack of provable guarantees.

The main goal of my research is, therefore, to provide a theoretical justification for the

success of the methods currently used in practice. My results on this line of research have been

4

published in SoCG 2019 [3] and APPROX 2020 [4] and in we preprint on arXiv [5]and “Learning

Lines with Ordinal Constraints” appears in chapter 3 of this dissertation.

1.1.2 Stability

Various types of errors (such as, missing values, wrong measurements and etc.) can occur

during the data collection process. These errors called noise and that noise can be seen as

a “perturbation” of the metric. Most of the time, especially while collecting real data, noise

encountering is unavoidable. In some sensitive data sets even a small amount of additive noise

can change the optimal solution. So what if we study an instance of the problem where the noise

doesn’t change the optimal solution? In other words what structural properties can be provided

by noise resilient instances of a problem?

This point of view was the initial motivation for a new line of research by Bilu and Linial

to study the perturbation resilience in metrics. Perturbation resilience, also called Bilu-Linial

stability, is one of the assumptions to help bypass the NP-hardness of optimizing various objective

functions to obtain polynomial-time algorithms.

It has been shown assuming a data set satisfies some notion of resilience, it starts to display

strong structural properties that admit otherwise NP-hard problems to become polynomial-time

solvable. Using Bilu-Linial stability and metric properties is a relatively new perspective that

can expose interesting structural properties that can motivate a re-exploration of some of the

famous NP-hard problems. Bilu-Linial stability inducted a new point of view on complexity,

where instead of focusing on the problem, we focus on the data. The results of my work on

5

stability on the metric Steiner tree has been published in CCCG 2022 [6] and can be found in

chapter 4 of this dissertation.

1.1.3 Graph learning

In a graph learning problem, a hidden graph G “ pV,Eq is known to belong to a given family

G of labeled graphs on the vertex set rns :“ 1, 2, . . . , n and we wish to identify G by some query

access to the graph. The goal is to revisit some of graph-learning problems via these queries.

One of the most common queries is Edge Counting (EC) queries where each query tells whether

a subset of rns induces an edge of G. The main motivation of this problem is its application in

DNA physical mapping. This is the main concentration of my current work and some of the

initial results along with my perspective for the future of my research had been discussed in

Section 6.

1.2 Our contributions

The main contribution on this dissertation is providing a new geometric insight to some of

the well known problems.

We start by presenting in chapter 3 an approximation algorithm for the dense case of of finding

a mapping f from a set of points into the real line problem, under ordinal triple constraints.

An ordinal constraint for a triple of points pu, v, wq asserts that |fpuq ´ fpvq| ă |fpuq ´ fpwq|.

Given an instance that admits a solution that satisfies p1 ´ εq-fraction of all constraints, our

algorithm computes a solution that satisfies p1 ´ Opε1{8qq-fraction of all constraints, in time

Opn7q ` p1{εqOp1{ε1{8qn. [4]

6

Later in this dissertation we study γ-stable instances the Steiner tree problem under Bilu-

Linial stability. We show strong geometric structural properties that need to be satisfied by

stable instances. Then we use these geometric properties to prove that 1.59-stable instances of

Euclidean Steiner trees are polynomial-time solvable. We also provide a connection between

certain approximation algorithms and Bilu-Linial stability for Steiner trees. [6]

Finally, we study the problem of learning and verifying hidden graphs by having query

access to the graphs to be learned, possibly from a restricted family. In this work, we focus on

undirected unweighted graphs, which can also be thought of as giving the shortest path metric

on the vertices in the graph (which can be considered to be the data points). This special case is

often referred to as the “topological” case, as we are most concerned with the topology of the

graph structure. Among our results, we show that there exists an efficient randomized algorithm

that can learn any graph with Opm log nq queries. We later give another, this time inefficient,

algorithm for learning any graphs that require Oplog |G|q queries.

CHAPTER 2

PRELIMINARIES

2.1 Preliminaries for Metric Learning

Metric representation of data has a wide range of applications because of its unique property

in preserving the underlying geometry of data. In metric representation the similarity of elements

is coded as the distance between them.

A metric space is a pair pX, pq , where X is a set and ρ : X ˆ X Ñ r0,8q is a metric,

satisfying symmetry, identity of indiscernibles and most importantly triangle inequality as it

presented in the following axioms: [7]

1. ρpx, yq “ ρpy, xq

2. ρpx, yq “ 0 Ø x “ y

3. ρpx, yq ` ρpy, zq ě ρpx, zq.

In metric learning, the goal is to find a mapping from the initial metric to a host metric

with respect to some constraints that preserve the geometry of the data. A main concern of the

metric learning field, in particular the problems that we study in this dissertation, is to tune

the distance function to a specific task with respect to some constraints. It has been shown

to be useful when used in conjunction with models that rely on the similarity of the data for

categorizing purposes such as nearest-neighbor methods and other similarity-based models.

7

8

Embedding a metric space into a geometrical space is a well known problem in computational

geometry.

Definition 2.1.1 (Metric embedding of a metric space [8]). A metric embedding of a metric

space M “ pX, ρq into a host space M “ pY, ρ1q is a mapping, such that f : X Ñ Y .

Definition 2.1.2 (Distortion of an embedding). [8] The distortion of an embedding f is defined

the minimum c, such that there exists r ą 0, with

ρpx, yq ď r ¨ ρ1pfpxq, fpyqq ď c ¨ ρpx, yq.

The distortion is a measure that indicates the extend to which an embedding preserves the geometry

of the initial metric space.

The above definition conveys the following properties,

‚ if the distortion c “ 1 then the mapping is an isometry;

‚ the distortion of the concatenation of two embeddings is equal to the product of their

respective distortions.

Now that we recall the basic definitions in metric learning literature we can move on to the

following important lemmas and theorems that motivated us to explore this direction an formed

the foundation of this work.

9

Theorem 2.1.3 (Johnson-Lindenstrauss flattening lemma). Given, X a set of an n-points in a

Euclidean space (i.e., X Ă l2), and let ϵ P p0, 1s be given. Then there exists a p1 ` ϵq-embedding

of X into lk2 , where k “ Opϵ´2 log nq. [7]

In his book, Matousek [7] points out that the Johnson-Lindenstrauss flattening theorem lets

us change any problem over a metric on n points to another problem by changing the metric from

l2 to lOplognq

2 , so long as we are willing to incur a small distortion in the distances. This means

that we can store only Opn log nq bits (instead of Opn2q) and still approximately reconstruct the

n2 pairwise distances.

Success in metric learning can be defined in various ways. For example, success can be defined

by minimizing the number of violated constraints or designing a low distortion embedding. The

main focus of this dissertation is on computing low-distortion metric embeddings for line metric

spaces which can be formulate as finding a mapping of maximum accuracy. Therefore, we define

the accuracy as follow:

Definition 2.1.4 (Accuracy in metric learning). Given a set of constraints we define the accuracy

of a mapping to be the fraction of all constraints that are satisfied.

For example, success can be defined minimizing the number of violated constraints or designing

a low distortion embedding. The main focus of this dissertation is on computing low-distortion

metric embeddings for line metric spaces.

2.1.1 Well-known metric learning algorithms

Large-Margin Nearest Neighbors (LMNN) [1] is one of the most famous algorithms in the

field of metric learning. The high-level intuition of the goal of LMNN is that given a new sample

10

of data it should share the same label as its nearest neighbors while being far from the data

points with different labels. The relative distance of having the same label as nearest neighbors

and different labels with far data point can be considered as a relative distance that induces

margins, therefore, it is called Large-Margin Nearest Neighbors. LMNN aims to minimize the

number of violated constraints with respect to the relative distance constraints. The following

figure provides a better visualization on the intuition behind LMNN:

Figure 1. Visualization of the intuition behind LMNN design. [1]

11

2.1.2 Unsupervised vs weakly supervised metric learning

Weakly supervision is a special case where noisier sources of supervision are used to generate

larger training sets faster rather than using the traditional methods to create training data (i.e.

labeling samples manually).

Figure 2. Weak Supervision using Label Model to train ML Model. [2]

In unsupervised metric learning we don’t use any notion of supervision for creating the

training data. The most famous example of these line of work is dimensionallity reduction. In

this work we mainly focus on the weakly supervised instances of metric learning problems. Here

we studied the weakly supervised ML with respect to comparative constraints. There are another

set of famous constraints known as contrastive constraints. In [3] authors study another instance

of this problem with respect to contrastive constraints.

12

2.2 Preliminaries for stability

Definition 2.2.1 (Bilu-Linial stability [9]1). Let P be a problem over a metric pX, ρq with a

unique optimal solution OPT. Let P 1 be a γ-perturbation of the problem where the metric is now

given by pX, ρ1q under the condition that,

@x1, x2 P ρpx1, x2q ď ρ1px1, x2q ď γρpx1, x2q

for γ ě 1 with solution OPT1. We say that P is γ-stable if OPT “ OPT1 for any γ-perturbation.

The main concern of computational complexity theory is to study worst-case of computational

problems. A problem is said to be NP-hard (non-deterministic polynomial-time) if every problem

in NP reduces to it in polynomial time. We do not expect there to be polynomial-time algorithms

for solving all instances of these problems. These problems are not only interesting from a

theoretical perspective but also because of their application in formulating certain real-world

tasks. In this notion of stability, we are not interested in all instances of these problems, but

only the stable ones, which sometimes correspond to those that we care about solving in reality.

The goal of this line of research is to study instances that have complexity lower than the

worst case, but are not trivial. [9]

1Later in this dissertation, we also use a different notion of stability in Definition 3.4.5. We note that
these two notions are distinct.

13

Proposition 2.2.2 ([9]). “Let γ ą 1. A weighted graph G graph with maximum cut pS, S̄) is

γ-stable (with respect to Max-Cut) if, for every vertex set T ‰ S, S̄,”

wpEpS, S̄qzEpT, T̄ qq ą γ ¨ wpEpT, T̄ qzEpS, S̄qq

The above preposition shows how γ-stable instances of graphs can be generated which provides a

better view of an interesting aspect of γ-stable instances which is its obvious scaleability. According

to Bilu-Linial [9] scaleability is implied if perturbation of all weights in a graph by a constant

factor should not affect its stability.

2.3 Preliminaries for learning with queries

The query learning of graphs has received ample recognition lately since it can be applied into

many different contexts. In particular, query learning can be used in biology and evolutionary

tree reconstruction, where the the genetic distance between two species can be measured with

the goal of placing all the species onto one tree. [10] [11]. In this section we provide a brief

overview of some of the most popular queries for learning graphs.

Learning with queries can be modeled as interaction between a teacher or an oracle and a

student or an active learner. In this model, the learner ask questions in order to learn a target

hypothesis c˚ by using the following queries that an an oracle or a teacher responds:

‚ Membership Queries (MQ): the student or active learner gives an example x, and the

teacher provides its label c˚pxq;

14

‚ Equivalence Queries (EQ): the learner proposes a hypothesis h and the teacher checks if

h is equal to the target concept; if not, teachers provides a counter-example x such that

c˚pxq ‰ hpxq.

Indeed there is a relationship between query learning and the standard PAC-learning

model [12].

Theorem 2.3.1. “Let C be a concept class that is efficiently exactly learnable with membership

and equivalence queries, then C is PAC-learnable using membership queries. ” [13]

Although, the main concentration of the work that is presented in this dissertation is on

learning undirected unwighted graphs via BEC queries, we give an overview on other popular

queries that inspired this work and can be useful to explore the future direction of this work.

Definition 2.3.2. (Edge detection query pEDq) Given a set of vertices V , the query EDpSq

checks if there is an edge between any two vertices in S Ď V . ED queries are well known for

their applications in genome sequencing and studied in [14–16].

Definition 2.3.3. (Edge counting query pECq) Given a set of vertices V , EC outputs the count of

edges in the sub-graph induced by S Ď V . This query has extensively been used in bio-informatics

and was studied in [17,18].

Definition 2.3.4. (Shortest path query pSPq) Given a graph G “ pV,Eq, the query SP pu, vq

outputs the length of the shortest path in G between two vertices; if no such a path exists, it

outputs 8. The main application of this query is in evolutionary tree literature. [10,19,20]

15

We also use the master theorem for computing the complexity of EdgeLearn algorithm. We

repeat the definition of master theorem as a reminder for our audience.

Theorem 2.3.5 (Master theorem [21]). Let a ą 0 be an integer, b ą 1 be a real number and c

be a positive real number and d a non-negative real number. Given a recurrence of the following

form

T pnq “

$

’

’

&

’

’

%

aT pnb q ` nc n ą 1

d n “ 1

then for n a power of b,

1. if logab ă c, T pnq “ θpncq

2. if logab “ c, T pnq “ θpnc log nq

3. if logab ą c, T pnq “ θpnlog
a
b q

CHAPTER 3

LEARNING LINES WITH ORDINAL CONSTRAINTS

This chapter is based upon the paper “Learning Lines with Ordinal Constraints” authored

by B. Fan, D. Ihara, N. Mohammadi, F. Sgherzi, A. Sidiropoulos, M. Valizadeh, published in

the International Conference on Approximation Algorithms for Combinatorial Optimization

Problems in 2020 (APPROX 2020). [4].

Some parts of this work have also appeared in Francesco Sgherzi’s M.S. thesis.

My main contribution to this work was proving the embedding is near optimal by giving an

upper bound for the number of brittle triples which is presented in section 3.5.

3.1 Introduction

Geometric methods provide several tools for the analysis of complicated data sets, such as

nearest-neighbor search, clustering, and dimensionality reduction. The key abstraction is to

encode a set of objects by mapping each object to a point in some metric space, such that the

distance between points quantifies the pairwise dissimilarity between the corresponding objects.

The success of this paradigm crucially depends on the metrical representation used to encode

the data. Motivated by this fact, metric learning aims at developing methods for discovering an

underlying metric space from proximity information (we refer the reader to [22,23] for a detailed

exposition). There are several different formulations of the metric learning problem that have

been considered in the literature. Here, we focus on the popular case of ordinal constraints.

16

17

In this case, the input consists of a set of points X “ rns, together with a set T of ordered

triples pu, v, wq of points, representing the fact that u is more similar to v than to w. The goal

is to find a mapping f : X Ñ Y , for some host metric space pY, ρq, such that for all pu, v, wq P T ,

we have

ρpfpuq, fpvqq ă ρpfpuq, fpwqq. (3.1)

In general, there might be no mapping f that satisfies all constraints of the form (Equation 3.1),

so we are interested in the algorithmic problem of computing a mapping that minimizes the

fraction of violated constraints. We focus on the case where the host space is the real line, so

the objective can be formulated as computing a mapping f : rns Ñ R, where for each pu, v, wq P

T we have the constraint

|fpuq ´ fpvq| ă |fpuq ´ fpwq|. (3.2)

We refer to this problem as Line Learning with Ordinal Constraints (LLOC).

3.1.1 Our contribution

We present an approximation algorithm for learning a line metric space under ordinal

constraints, for the case of dense instances. Here, the density condition means that all ordinal

information is given, i.e. for any distinct u, v, w P rns, we have either pu, v, wq P T , or pu,w, vq P T .

Our main result is summarized in the following.

18

Theorem 3.1.1. There exists an algorithm that given an instance of LLOC that admits a solution

satisfying p1´ εq-fraction of all constraints, outputs a solution that satisfies p1´Opε1{8qq-fraction

of all constraints, in time Opn7q ` p1{εqOp1{ε1{8qn.

Brief overview of our approach. The main idea used to obtain Theorem 3.1.1 is to first

compute an ordering that is close to the ordering of the points in the optimal solution. This is

done by “guessing” a point p˚ that lies within the few left-most points in an optimal solution, and

such that p˚ is not involved in many violated constraints. We show that the ordinal constraints

involving p˚ can be used to order the points by first solving an instance of the Minimum Feedback

Arc Set problem on a tournament, and then computing a topological ordering of the remaining

acyclic graph. We use this ordering to partition the points into “buckets”, and we show that

for almost all buckets, almost all their points must be mapped inside an interval that does not

contain many other points. This property allows us to define a smaller instance of the problem

by contracting each bucket into a single point. This new smaller instance can be solved exactly,

and its solution can be pulled back to the original problem.

3.1.2 Related work

Metric learning. Another popular formulation of the metric learning problem uses con-

trastive constraints. In this case, the input consists of a set of points X “ rns, together with sets

S,D Ď
`

X
2

˘

, where S contains pairs labeled as similar, and D contains pairs labeled as dissimilar.

The goal is to find a mapping f : X Ñ Y , for some host metric space pY, ρq, such that for all

tu, vu P S,

ρpfpuq, fpvqq ď ℓ,

19

and for all tu, vu P D,

ρpfpuq, fpvqq ě h,

for some given threshold values ℓ, h ą 0. This problem is easily seen to be a generalization of

Correlation Clustering. It has been studied for the case dense instances, when the host metric

space is either Euclidean or a tree [3]. The main result of [3] is a FPTAS for the case where

there exists a mapping that satisfies all constraints, that is allowed to violate the constraints

by a small multiplicative factor which is referred to as contrastive distortion. In contrast, in

the present work, we do not introduce any distortion, and we do not need to assume that there

exists a mapping satisfying all the constraints.

We also note that the case of arbitrary instances (i.e., not necessarily dense) under contrastive

constraints has been studied for the setting of learning Mahalanobis metric spaces (i.e., when X

is a set of points in d-dimensional Euclidean space, and f is required to be linear) [24]. This

version of the problem is related to the theory of LP-type problems.

Embedding into the line. The problem of computing a geometric representation of a data

set into the real line has been studied extensively in various forms. This is arguably the simplest

instance of dimensionality reduction, which is also a prototypical unsupervised metric learning

task. Various objectives have been studied, including multiplicative [25–30], additive [31], and

average [32,33] distortion. We refer the read to [34] for a detailed exposition. A related notion is

ordinal embeddings, where one seeks to obtain mappings that approximately preserve the relative

ordering of pairwise distances [35, 36]. We remark that a key difference between these works and

our result is that they seek to minimize the ordinal distortion, which is a multiplicative factor of

20

violation of the ordinal constraints, while we are interested in minimizing the number of violated

ordinal constraints (without introducing ordinal distortion).

Betweenness. In the Betweenness problem we are given some set X “ rns and a set T

of ordered triples pa, b, cq P rns3. The goal is to find a bijection g : rns Ñ rns such that for any

pa, b, cq P T , gpbq appears between gpaq and gpcq. This problem has been studied extensively

in the literature. It is known to be MAXSNP-hard [37] (see also [38]), and remains hard to

approximate even on dense instances [39]. The case of tournaments has been shown to admit a

PTAS [40], while the best approximation algorithm for general instances is the 1{3-approximation

obtained by taking a uniformly random ordering, assuming the Unique Games conjecture [41]

(see also [42]).

The Betweenness problem is conceptually similar to the Line Learning with Ordinal Con-

straints problem studied here. However, as we now explain, the two problems have some

important differences. A first difference is that the ordinal constraint (Equation 3.2) does not

imply any ordering constraint1. A second difference is that the solution space to the Line

Learning with Ordinal Constraints problem that we study is larger. In other words, the ordering

of the points is not always enough to recover a nearly-optimal constraint. For example, consider

the instance on X “ t0, 2, 4, . . . , 2k, 2k ` 1, . . . , 3ku, with all constraints pu, v, wq P X3, such

that |u´ v| ă |u´ w|. Clearly, setting f to be the identity results in a solution that satisfies all

1For example, the constraint pu, v, wq is satisfied by both solutions fpuq “ 1, fpvq “ 2, fpwq “ 3, and
fpuq “ 2, fpvq “ 1, fpwq “ 4, however the former solution implies the ordering fpuq ă fpvq ă fpwq,
while the latter implies fpvq ă fpuq ă fpwq

21

constraints. However, just the ordering of the points in f is not enough to obtain a good solution:

setting gpuiq “ i, where gpu1q ă gpu2q ă . . . ă gpunq results in a solution g that violates a

constant fraction of all constraints.

3.1.3 Organization

The rest of the paper is organized as follows. Section 3.2 presents, as a warm up, an exact

polynomial-time algorithm for the case where there exists a solution that satisfies all constraints.

Section 3.3 presents the algorithm for the general case. Section 3.4 presents the analysis. Section

3.5 gives the proof of a technical Lemma which is used in the proof of the main result.

3.2 Warm up: An exact algorithm with no violations

We now describe an exact polynomial-time algorithm for the case where there exists an

optimal solution that satisfies all constraints. This algorithm is significantly simpler than the

one used to prove our main result. However, it illustrates the main idea of using the constraints

involving some point p to deduce an ordering of all points, and then using this ordering to obtain

an embedding into the line. The algorithm is summarized in the following.

Theorem 3.2.1. Let ε˚ be the fraction of violated constraints, then there exists a polynomial-time

algorithm which given an instance prns, T q of the LLOC problem, either computes a mapping

f : rns Ñ R that satisfies all the constraints, or correctly decides that no such mapping exists.

Proof. Fix some optimal mapping f˚ : rns Ñ R, that satisfies all constraints in T . We guess

p “ arg min
xPrns

f˚pxq. For all i, j P rns, let di,j “ |f˚pxjq ´ f˚pxiq|. We first determine the

ordering of all the points on the real line, and then we compute the mapping using their distance

constraints and solving some LP.

22

Suppose that rns “ tx1, . . . , xnu, such that

f˚ppq “ f˚px1q ă f˚px2q ă . . . ă f˚pxnq.

Since ε˚ “ 0, it follows that for all i ă j P rns, we have d1,i ă d1,j , and p1, i, jq P T . Therefore,

for any q, q1 P rns, we can decide whether f˚pqq ă f˚pq1q or f˚pq1q ă f˚pqq based on whether

pp, q, q1q P T or pp, q1, qq P T . Therefore, we can compute the ordering x1, . . . , xn of rns by

running a sorting algorithm using pairwise comparisons.

We now compute a mapping using an LP. For any i ă j P t1, . . . , nu, we have |f˚pxiq ´

f˚pxjq| “
řj´1

t“i dt,t`1. Therefore for each pxi, xj , xkq P T , the constraint |f˚pxiq ´ f˚pxjq| ă

|f˚pxiq ´ f˚pxkq| can be written as
řj´1

t“i dt,t`1 ă
řk´1

t“i dt,t`1. Thus computing the desired

mapping f can be done by computing a feasible solution to the following LP:

di,j ě 0 for all i ă j P rns

j´1
ÿ

t“i

dt,t`1 ă

k´1
ÿ

t“i

dt,t`1 for all pxi, xj , xkq P T

This concludes the proof.

3.3 The algorithm for the general case

In this Section we present the algorithm for the general case of the problem. The algorithm

uses as a subroutine an exact algorithm for a generalized weighted version of the problem. This

23

exact algorithm is used on small instances that are constructed via a process which we refer to

as a retraction.

3.3.1 Retractions

We now define a weighted version of the metric learning problem, where each constraint

is associated with some weight, and the goal is to maximize the total weight of all satisfied

constraints. Formally, an input to the Weighted Line Learning with Ordinal Constraints

(WLLOC) problem is defined by a tuple prbs, T , wq, where b P N, and T are as before, and

w : T Ñ R is a weight function. The goal is to find a solution f : rbs Ñ r0, 1s that minimizes the

total weight of violated constraints.

Theorem 3.3.1. There exists an exact algorithm for the WLLOC problem with running time

Opn3nq.

Proof. We identify the space of possible solutions with r0, 1sn, by mapping each solution f :

rbs Ñ r0, 1s to the vector xf “ pfp1q, . . . , fpnqq P r0, 1sn. For any pi, j, kq P T , we have the

constraint

|fpiq ´ fpjq| ă |fpiq ´ fpkq|.

The feasible region for this constraint is thus defined as a union of certain cells in an arrangement

Api,j,kq of a constant number of open halfspaces in Rn. Let A be the arrangement obtained

as the union of all halfspaces for all pi, j, kq P T . It is known that any arrangement of a

halfspaces in Rb has complexity Opabq (see [43] and references therein), and thus A has complexity

Op|T |nq “ Opn3nq. By enumerating all the cells in this arrangement, we find a solution that

24

satisfies a set of constraints of maximum total weight, which results in an algorithm with running

time Opn3nq.

As mentioned earlier, the exact algorithm from Theorem 3.3.1 will be used as a subroutine

on smaller instances. The following Definition describes a process for mapping large unweighted

instances to smaller weighted ones.

Definition 3.3.2 (Retraction). Given an instance ϕ “ prns, T q of the LLOC problem, and

some partition B “ tB1, . . . , Bbu of rns, we define the B-retraction of ϕ to be the instance

ϕ1 “ prbs, T 1, wq of the WLLOC problem where for any pi, j, kq P T 1, we have

wppi, j, kqq “ |T X pBi ˆBk ˆBjq| .

3.3.2 The algorithm

The last ingredient we need is an approximation algorithm for the Minimum Feedback Arc

Set problem on tournaments, which is summarized in the following.

Theorem 3.3.3 (Kenyon-Mathieu & Schudy [44]). There exists a randomized algorithm for the

Minimum Feedback Arc Set problem on weighted tournaments. Given ϵ ą 0, it outputs a solution

with expected cost at most p1 ` ϵqOPT. The expected running time is Op1{εqn6 ` 2Õp1{εqn2 `

22
Õp1{εq

n.

We are now ready to describe the general algorithm. Let Tn denote the set of all ordered

triples of distinct elements in rns. Recall that the input consists of a set T Ď Tn, such that

25

for any set of distinct i, j, k P rns, we have that exactly one of the triples pi, j, kq and pi, k, jq is

contained in T .

The algorithm proceeds in the following steps:

Step 1: Exhaustively computing a left-most point. Iterate Steps 2–5 for all values

p P rns.

Step 2: Cycle removal. Construct a tournament Gppq “ prns, Appqq, where

Appq “ tpi, jq : pp, i, jq P T u.

Compute an Op1q-approximate minimum feedback arc set, F ppq Ă Appq, in Gppq, using the

algorithm in Theorem 3.3.3.

Step 3: Ordering. Compute a topological ordering zppq

1 , . . . , z
ppq
n of GppqzF ppq.

Step 4: Retraction. Let b “ Opε´1{8q. For any i P rbs, let

Bppq

i “

in{b
ď

j“pi´1qn{b`1

tz
ppq

j u.

Let ψppq be the Bppq-retraction of ϕppq.

Step 5: Extension. Using the algorithm from Theorem 3.3.1, we compute an optimal solution

gppq : rbs Ñ r0, 1s for the instance ψppq of WLLOC. We define f ppq : rns Ñ r0, 1s by setting

for any i P rns, f ppqpiq “ gppqpjq, where j P rbs such that i P B
ppq

j . The algorithm outputs

the solution f ppq.

26

Step 6: Return the best. Return the best solution found among f p1q, . . . , f pnq.

This completes the description of the algorithm.

3.4 Analysis of the algorithm

This Section presents the analysis of the algorithm, which is the proof of Theorem 3.1.1.

For the remainder of the analysis, let us fix some optimal solution fOPT : rns Ñ r0, 1s for the

instance prns, T q of the LLOC problem. Fix a numbering tx1, . . . , xnu “ rns, such that

fOPTpx1q ď fOPTpx2q ď . . . ď fOPTpxnq.

For any f : rns Ñ r0, 1s, for any i P rns, and for any α P r0, 1s, we say that i is α-good in f , if

at least α-fraction of the constraints of the form pi, j, kq P T are satisfied; i.e.:

|tpi, j, kq P T : |fpiq ´ fpjq| ă |fpiq ´ fpkq|u| ě α

ˆ

n´ 1

2

˙

.

We first argue that there exists a p1 ´ ε1{2q-good point that is close to the left-most point in

the optimal solution:

Lemma 3.4.1. There exists i˚ P r2ε1{2ns, such that xi˚ is p1 ´ ε1{2q-good in fOPT.

Proof. Let ξ be the total number of constraints violated by fOPT. We have ξ ď ε ¨ |T | “ εn
`

n´1
2

˘

.

Suppose that there exists no i P r2ε1{2ns such that xi is p1 ´ ε1{2q-good. Therefore every

i P r2ε1{2ns participates in at least ε1{2
`

n´1
2

˘

violated constraints of the form pi, j, kq, for some

27

j, k P rns. Thus the total number of violated constraints is at least ξ ě 2nε
`

n´1
2

˘

, which is a

contradiction, concluding the proof.

For the remainder of this section, fix some i˚ P r2ε1{2ns, such that xi˚ is p1 ´ ε1{2q-good, as

in Lemma 3.4.1. Let f 1 be the embedding obtained from fOPT by exchanging the images of x1

and xi˚ , that is for all i P rns,

f 1pxiq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

fOPTpxi˚q if i “ 1

fOPTpx1q if i “ i˚

fOPTpxiq otherwise

We next show that f 1 is near-optimal.

Lemma 3.4.2. The total number of violated constraints in f 1 is at most pε`Op1{nqqn
`

n´1
2

˘

.

Proof. Let T1 Ď T be the set of constraints that are violated in f 1 and in fOPT. Let T2 Ď T be

the set of constraints that are violated in f 1 but not in fOPT. We have |T1| ď εn
`

n´1
2

˘

. Since

fOPT and f 1 differ only on x1 and xi˚ , it follows that every constraint pi, j, kq P T2 must contain

at least one of 1 and i˚. There are at most 6n2 such constraints. Thus |T2| ď 6n2. We conclude

that the total number of constraints violated in f 1 is at most |T1| ` |T2| ď pε`Op1{nqqn
`

n´1
2

˘

,

which concludes the proof.

The next Lemma shows that xi˚ remains p1 ´Opε1{2qq-good in f 1.

Lemma 3.4.3. We have that xi˚ is p1 ´Opε1{2qq-good in f 1.

28

Proof. Let γ “ pxi˚ , j, kq P T , and suppose that γ is satisfied in fOPT. If

fOPTpxi˚q ď fOPTpjq ď fOPTpkq,

then, since f 1pjq “ fOPTpjq, and f 1pkq “ fOPTpkq, it follows that

f 1pxi˚q ď f 1pjq ď f 1pkq,

and thus γ is also satisfied in f 1.

Thus, the only possible constraints of the form pxi˚ , j, kq P T , that are not violated in fOPT,

but are violated in f 1, must satisfy either fOPTpjq ă fOPTpxi˚q, or fOPTpkq ă fOPTpxi˚q. In

other words, we must have tj, ku X tx1, . . . , xi˚´1u ‰ H. Therefore, there are at most 2ε1{2n2

such constraints. Since xi˚ is p1 ´ ε1{2q-good in fOPT, it follows that xi˚ is p1 ´Opε1{2qq-good

in f 1, which concludes the proof.

Let F 1 “ tpj, kq P Api˚q : pxi˚ , j, kq P T and f 1 violates pxi˚ , j, kqu. The next Lemma shows

F 1 is a valid feedback arc set for Gpi˚q.

Lemma 3.4.4. F 1 is a feedback arc set for Gpi˚q, with |F 1| ď pOpε1{2qq
`

n´1
2

˘

.

Proof. By Lemma 3.4.3, xi˚ is p1 ´ Opε1{2qq-good, and thus |F 1| ď pOpε1{2qq
`

n´1
2

˘

. Thus, it

suffices to show that F 1 is a feedback vertex set. For any pj, kq P Api˚qzF 1, we have that pxi˚ , j, kq

29

is satisfied in f 1. Since xi˚ is mapped to the left-most point in f 1, it follows that f 1pjq ă f 1pkq.

Thus,

xi˚ , x2, x3, . . . , xi˚´1, x1, xi˚`1, xi˚`2, . . . , xn

is a topological ordering of Gpi˚qzF 1, and thus F 1 is a feedback arc set, which concludes the

proof.

If the instance admits a solution with no violations, then it can be shown that the bucketing

Bpi˚q computed by the algorithm agrees with a partition of the optimal solution to contiguous

disjoint intervals. In the following, we show that, in the general case, the bucketing is “close” to

such a partition. First, we introduce a notion of “stability” which formalizes what it means for a

bucket to be close to an optimal interval.

Definition 3.4.5 (Stability). Let i P rbs. We say that i is stable if there exists some interval

I Ă R, such that
ˇ

ˇ

ˇ
I X f 1

´

B
pi˚q

i

¯ˇ

ˇ

ˇ
ě p1 ´ ε1{8q ¨ n{b,

and
ˇ

ˇ

ˇ
I X f 1

´

rnszB
pi˚q

i

¯ˇ

ˇ

ˇ
ď ε1{8 ¨ n{b,

We also say that i is I-stable. We say that i is unstable (I-unstable) if it is not stable (I-stable).

The following Lemma gives a characterization of unstable buckets.

30

Lemma 3.4.6. Suppose that i P rbs is unstable. Then there exist pairwise disjoint intervals

I1, I2, I3 Ă R, that appear in this order from left to right in the line, such that

ˇ

ˇ

ˇ
I1 X f 1

´

B
pi˚q

i

¯
ˇ

ˇ

ˇ
ě nε1{8{p2bq,

ˇ

ˇ

ˇ
I3 X f 1

´

B
pi˚q

i

¯ˇ

ˇ

ˇ
ě nε1{8{p2bq,

and
ˇ

ˇ

ˇ
I2 X f 1

´

rnszB
pi˚q

i

¯ˇ

ˇ

ˇ
ą ε1{8 ¨ n{b,

Proof. Let I1 Ă R be the minimal interval that contains the nε1{8{p2bq left-most points in

f 1pB
pi˚q

i q, and let I3 Ă R be the minimal interval that contains the nε1{8{p2bq right-most points

in f 1pB
pi˚q

i q. Let I2 Ă R be the maximal interval that is contained between I1 and I3. Since

ε1{8 ă 1, we have that I1 X I3 “ H, and therefore, all intervals I1, I2, I3 are well-defined and

pairwise disjoint. By construction, I1 and I3 each contains exactly nε1{8{p2bq points in f 1pB
pi˚q

i q.

Therefore, it remains to show that I2 contains more than ε1{8n{b points in f 1prnszB
pi˚q

i q. Suppose,

for the sake of contradiction, that I2 contains at most ε1{8n{b in f 1prnszB
pi˚q

i q. Then, I2 contains

exactly p1 ´ ε1{8qn{b points in f 1pB
pi˚q

i q, and at most ε1{8n{b points in f 1prnszB
pi˚q

i q, implying

that Bi is stable, which is a contradiction. This concludes the proof.

We next show that for each unstable bucket, the feedback arc set must contain many edges

incident to vertices in the bucket.

31

Lemma 3.4.7. Let i P rbs be unstable. Then, F pi˚q Y F 1 contains at least ε1{4n2{p2b2q arcs

having exactly one endpoint in B
pi˚q

i .

Proof. Let I1, I2, I3 Ă R be the intervals given by Lemma 3.4.6. Let v P rnszB
pi˚q

i , such that

f 1pvq P I2. Pick j P rbs, such that v P B
pi˚q

j . We consider two cases:

Case 1: Suppose that j ă i. Let u P B
pi˚q

i , such that f 1puq P I1. If pv, uq P Api˚q, then it

follows that f 1 violates pxi˚ , v, uq, and thus pv, uq P F 1. Otherwise, we have pu, vq P Api˚q. Since

u appears after v in the topological sort of Gpi˚qzF pi˚q, it follows that pu, vq P F pi˚q. Thus, in

either case, F pi˚q Y F 1 contains either pu, vq or pv, uq. Therefore, F pi˚q Y F 1 contains at least

nε1{8{p2bq arcs having u as an endpoint.

Case 2: Suppose that j ą i. This case is similar to Case 1, and is included for completeness.

Let u P B
pi˚q

i , such that f 1puq P I3. If pu, vq P Api˚q, then it follows that f 1 violates pxi˚ , u, vq, and

thus pu, vq P F 1. Otherwise, we have pv, uq P Api˚q. Since u appears before v in the topological

sort of Gpi˚qzF pi˚q, it follows that pv, uq P F pi˚q. Thus, in either case, F pi˚q Y F 1 contains either

pu, vq or pv, uq. Therefore, F pi˚q Y F 1 contains at least nε1{8{p2bq arcs having u as an endpoint.

We conclude that, in either case, for any u P B
pi˚q

i , F pi˚q Y F 1 contains at least nε1{8{p2bq

arcs having u as an endpoint. Summing over all u P B
pi˚q

i , we obtain that F pi˚q Y F 1 contains at

least ε1{4n2{p2b2q arcs having an endpoint in Bpi˚q

i . This concludes the proof.

Next, we bound the number of unstable buckets.

Lemma 3.4.8. Let J “ ti P rbs : i is unstableu, we have |J | ď Opε1{4q2b2.

32

Proof. By Lemma 3.4.3 we have that xi˚ is p1 ´ Opε1{2qq-good in f 1, and by Lemma 3.4.4 we

have that Gpi˚q admits a feedback arc set of size at most pOpε1{2qq
`

n´1
2

˘

. Thus, by Theorem

3.3.3, the algorithm computes some feedback arc set F pi˚q Ă Api˚q, with |F pi˚q| “ Opε1{2n2q. We

note that here we only use Theorem 3.3.3 to obtain a Op1q-approximation. By Lemma 3.4.7,

|J | ď |F pi˚q Y F 1|{pε1{4n2{p2b2qq

ď Opε1{4q2b2,

which concludes the proof.

For any stable i P rbs, let Ii Ă R be the interval that contains at least p1 ´ ε1{8qn{b points in

f 1pB
pi˚q

i q, and at most ε1{8n{b other points. Let also Ji Ă Ii be an open interval that contains all

but the ε1{8n{b leftmost points in f 1pB
pi˚q

i qXIi, and the ε1{8n{b rightmost points in f 1pB
pi˚q

i qXIi.

Thus, |Ji X f 1pB
pi˚q

i q| ě p1 ´ 3ε1{8qn{b. It follows that for any i ‰ j P rbs, such that both i and

j are stable, we have Ji X Jj “ H.

Intuitively, we intend to find a solution that satisfies a nearly-optimal fraction of constraints,

while ignoring all constraints that involve points that are mapped outside the intervals Ji, where

i P rbs is stable. To that end, we define a small set of points that the analysis can safely “ignore”:

XNoise “
ď

iPrbs:i stable

!

v P B
pi˚q

i : f 1pvq R Ji

)

.

Since |Ji X f 1pB
pi˚q

i q| ě p1 ´ 3ε1{8qn{b, it follows that

33

|XNoise| ď 3ε1{8n (3.3)

Let also, for any i P rbs,

B̄
pi˚q

i “ B
pi˚q

i zXNoise.

We identify a set of triples pi, j, kq P rbs3 for which, intuitively, it is difficult to satisfy at least

some significant fraction of all constraints with one point from each of the clusters Bpi˚q

i , Bpi˚q

j ,

and Bpi˚q

k . Formally, we say that some pi, j, kq P rbs3 is brittle if there exist u, u1 P Ji, v, v1 P Jj ,

and w,w1 P Jk, such that

|u´ v| ă |u´ w|,

and

|u1 ´ v1| ą |u1 ´ w1|.

Intuitively, the above property implies that if for all t P rbs, all points in B̄
pi˚q

t get mapped to

the same point pt P Jt, then there exist choices for the points tptut, such that some constraint in

B̄
pi˚q

i ˆ B̄
pi˚q

j ˆ B̄
pi˚q

k is violated; in other words, if a triple pi, j, kq is not brittle, then the choice

of the points pt does not affect the satisfiability of the constraints in B̄pi˚q

i ˆ B̄
pi˚q

j ˆ B̄
pi˚q

k .

We are now ready to show that the retraction computed by the algorithm admits a solution

of low total cost.

34

Lemma 3.4.9. The instance ψpi˚q of WLLOC constructed in Step 4 admits a solution that

satisfies constraints of total weight at least |T | ¨ p1 ´Opε1{8qq.

Proof. We define a mapping g : rbs Ñ r0, 1s, and g1 : rbs Ñ r0, 1s, as follows. For each i P rbs,

pick vi P Bpi˚q

i , arbitrarily, and set

g1piq “ f 1pviq.

For any j P rbs, we set

gpjq “ g1piq,

where i P rbs is the unique integer such that i P B
pi˚q

i . By the definition of the WLLOC instance

ψpi˚q, the total weight of the constraints violated by g1 equals the total number of constraints

violated by g. It therefore suffices to upper bound the number of constraints in T that are

violated by g.

We define a partition T “ T0 Y T1 Y T2 Y T3 Y T4 Y T5, where

T0 “ tpu, v, wq P T : f 1 violates pu, v, wqu,

T1 “ tpu, v, wq P T : at least two of u, v, w are in the same cluster in Bpi˚qu,

T2 “ tpu, v, wq P T : u P B
pi˚q

i , v P B
pi˚q

j , w P B
pi˚q

k , at least one of i, j, k is unstableu,

T3 “ tpu, v, wq P T : u P B
pi˚q

i , v P B
pi˚q

j , w P B
pi˚q

k , and pi, j, kq is brittleu,

T4 “ tpu, v, wq P T : tu, v, wu XXNoise ‰ Hu,

T5 “ T zpT0 Y T1 Y T2 Y T3 Y T4q.

35

By Lemma 3.4.2 we have

|T1| ď pε`Op1{nqqn

ˆ

n´ 1

2

˙

.

Since every cluster in Bpi˚q has n{b points, we have

|T1| ď 3n3{b2. (3.4)

In order to bound |T3| we need a bound on the number of brittle triples. This is done in Lemma

3.4.8, which appears in Section 3.5. We thus have

|T2| ď Opε1{4q2n3b. (3.5)

By Lemma 3.5.5 we have

|T3| ď n3{b. (3.6)

By (Equation 3.3) we have

|T4| ď Opε1{8qn3 (3.7)

36

Let pu, v, wq P T5. By the definition of T5, we have that u P B̄
pi˚q

i , v P B̄
pi˚q

j , and w P B̄
pi˚q

k ,

for some distinct i, j, k P rbs, such that pi, j, kq is not brittle, and f 1 satisfies pu, v, wq, that is

|f 1puq ´ f 1pvq| ă |f 1puq ´ f 1pwq|.

By the definition of a brittle triple we get

|gpuq ´ gpvq| ă |gpuq ´ gpwq|,

and thus g satisfies pu, v, wq. We obtain that g satisfies all constraints in T5. Thus, by

(Equation 3.4)–(Equation 3.7), the number of constraints violated by g is at most |T0|`. . .`|T4| ď

n3Opε1{8q, which concludes the proof.

We are now ready to prove our main result.

Proof of Theorem 3.1.1. By Lemma 3.4.9 we have that WLLOC instance ψpi˚q “ prbs, T 1, wq

constructed at Step 4 of the algorithm, admits a mapping g1 : rbs Ñ R, such that the total weight

of the constraints in T 1 violated by g1 is at most Opε1{8n3q. Therefore, in Step 5, using the exact

algorithm from Theorem 3.3.1, we compute a mapping g : rbs Ñ R, violating the same total

weight as g1. By the definition of retraction, it follows that the mapping f pi˚q computed in Step

5 violates at most Opε1{8n3q constraints in T , as required.

It remains to bound the running time. Step 2 uses the algorithm from Theorem 3.3.3

to obtain a Op1q-approximate minimum feedback arc set, and thus takes time Opn6q. Step

37

3 takes time Opnq and Step 4 takes time Opn2q. Step 5 runs the algorithm from Theorem

3.3.1 on an input of size b, and thus takes time Opb3bq ` Opnq. Step 6 requires computing

the number of violated constraints in each of the n solutions, and thus takes total time Opn4q.

Due to Step 1, the Steps 2–5 are repeated n times, and thus the total running time is at most

Opn7 ` b3bnq “ Opn7q ` p1{εqOp1{ε1{8qn, which concludes the proof.

3.5 Bounding the number of brittle triples

This Section is devoted to proving an upper bound on the number of brittle triples. We

begin by deriving a simple condition that is a consequence of brittleness.

Lemma 3.5.1. Let j ă i ă k P rbs. We have that if pi, j, kq is brittle, then there exist pi P Ji,

pj P Jj, pk P Jk, such that

pi ´ pj “ pk ´ pi.

Proof. If pi, j, kq is brittle, it is easy to see that Ji must be located between Jj and Jk; otherwise,

any representative point chosen in Ji must be closer to all the points in Jj than those in Jk, or

vice versa. By definition, there exist pi P Ji, p1
j P Jj , p1

k P Jk, such that

pi ´ p1
j ě p1

k ´ pi,

and p2
j P Jj , p2

k P Jk, such that

pi ´ p2
j ă p2

k ´ pi.

38

Without loss of generality, assume p1
j ă p2

j and p1
k ă p2

k, and define δ P r0, 1s. Comparing

dijpδq “ pi ´ pp1
j ` δpp2

j ´ p1
jqq and dikpδq “ pp1

k ` δpp2
k ´ p1

kqq ´ pi, we have dijp0q ´ dikp0q ě 0

and dijp1q ´ dikp1q ă 0. There exist δ1 P r0, 1s, s.t. dijpδ1q ´ dikpδ1q “ 0.

Define pj “ pp1
j ` δ1pp2

j ´ p1
jqq P Ji and pk “ pp1

k ` δ1pp2
k ´ p1

kqq P Jj , we have

pi ´ pj “ pk ´ pi,

which concludes the proof.

Lemma 3.5.2. Let i1, i2, i3, j1, j2, j3, k1, k2, k3 P R, with i1 ă i2 ă i3, j1 ă j2 ă j3, k1 ă k2 ă k3.

For any α, β, γ P t1, 2u, let Hα,β,γ be the axis-parallel parallelepiped defined by

Hα,β,γ :“ CHptpiα`α1 , jβ`β1 , kγ`γ1q : α1, β1, γ1 P t0, 1uuq.

Let h be any plane in R3. Then, there exist α˚, β˚, γ˚ P t0, 1u, such that h does not intersect the

interior of Hα˚,β˚,γ˚.

Proof. For any d ě 2, any d-dimensional halfspace containing the origin must also contain at

least one d-orthant. The assertion follows immediately from the case d “ 3.

Lemma 3.5.3. Let i, j, k P rbs, with j ` 1 ă i, and i` 1 ă k. Then, there exist i1, j1, k1 P t0, 1u

such that pi` i1, j ` j1, k ` k1q is not brittle.

39

Proof. Define the plane

h “ tpxI , xJ , xKq P R3 : xI ´ xJ “ xK ´ xIu.

By Lemma 3.5.1, we have that if pi ` i1, j ` j1, k ` k1q is brittle, then h must intersect the

hyperrectangle Ji`i1 ˆ Jj`j1 ˆ Jk`k1 . However, by Lemma 3.5.2, it follows that there exist

i1, j1, k1 P t0, 1u, such that h does not intersect Ji`i1 ˆJj`j1 ˆJk`k1 , and thus pi` i1, j`j1, k`k1q

is not brittle, which concludes the proof.

Lemma 3.5.4 (Brittle convexity). Let te1, e2, e3u be the standard orthonormal basis in R3. Let

v P rb´ 2s3, and let w P te1, e2, e3u, such that v and v ` 2w are both brittle. Then, v `w is also

brittle.

Proof. By Lemma 3.5.1, there exist pi P Ji, pj P Jj , pk P Jk, such that

pi ´ pj “ pk ´ pi. (3.8)

Let w “ pi1, j1, k1q. Similarly, there exist qi P Ji`2i1 , qj P Jj`2j1 , qk P Jk`2k1 , such that

qi ´ qj “ qk ´ qi. (3.9)

For any α P r0, 1s, let

z
pαq

i “ p1 ´ αqpi ` αqi,

40

z
pαq

j “ p1 ´ αqpj ` αqj ,

z
pαq

k “ p1 ´ αqpk ` αqk.

Let us assume that w “ e1. The cases w “ e2 and w “ e3 can be handled in a similar manner.

We have that for all α P r0, 1s, zpαq

j P Jj , and z
pαq

k P Jk. Moreover, zp0q

i P Ji, and z
p1q

i P Ji`2,

which implies that there exists some α˚ P r0, 1s, such that zpα˚q

i P Ji`1. We have

z
pα˚q

i ´ z
pα˚q

j “ p1 ´ α˚qpi ` α˚qi ´ p1 ´ α˚qpj ´ α˚qj

“ p1 ´ α˚qppi ´ pjq ` α˚pqi ´ qjq

“ p1 ´ α˚qppk ´ piq ` α˚pqk ´ qiq

“ p1 ´ α˚qpk ` α˚qk ´ p1 ´ α˚qpi ´ α˚qi

“ z
pα˚q

k ´ z
pα˚q

i ,

which by Lemma 3.5.1 implies that v ` w is brittle, and concludes the proof.

We are now ready to bound the number of brittle triples, which is the main result of this

Section.

Lemma 3.5.5. The number of brittle triples is at most Opb2q.

Proof. Let B Ď rbs3 be the set of all brittle triples, and let B1 “ rbs3zB. For any s P t0, 1u3, let

Us “ s ¨ b{2 ` rb{2s3,

41

and Bs “ B X Us. Since B “
Ť

sBs, and there are only 8 different values for s, it suffices to

show that for any s P t0, 1u3, |Bs| “ Opb2q. We shall prove this for the case s “ p0, 0, 0q. All

remaining cases can be handled in a similar manner.

For the remainder for the proof, let s “ p0, 0, 0q. By Lemma 3.5.3, it follows that for any

v P B3
s , there exists v1 P B1, with v1 ´ v P t0, 1u3. This implies that there exists u P B, and

u1 P B1, with u ´ v P t0, 1u3, u1 ´ v P t0, 1u3, and u1 ´ u P te1, e2, e3u, where te1, e2, e3u is the

standard orthonormal basis in R3. Let t “ u1 ´ u. By Lemma 3.5.4, it follows by induction that

for any i P t1, . . . , b{2u, the triple u` i ¨ t is brittle. Let

Rv “

b{2
ď

i“1

tu` c ¨ iu.

Thus Rv Ď B1. Note that, since s “ p0, 0, 0q, we have

|Rv| ě b{2. (3.10)

For any j P t1, 2, 3u, we say that v is type-j, if t “ ej .

Let

Bs,j “ tv P Bs : v is type-ju.

Let j˚ P t1, 2, 3u, such that |Bs,j˚ | ě |Bs|{3.

By the above construction, it follows that for any v, w P Bs,j˚ , with }v ´ w}8 ě 2, we have

Rv X Rw “ H. We greedily construct some C Ď Bs,j˚ as follows. We start with C :“ H, and

42

D :“ Bs,j˚ . While D ‰ H, we pick any v P D, and we set C :“ CY tvu, and D :“ Dzball8pv, 1q,

where ball8pv, rq denotes the ℓ8-ball of radius r centered at v. For every v added to C, we delete

at most 9 elements from D, and thus

|C| ě |Bs,j˚ |{9 ě |Bs|{27.

Since for any v, w P C, we have }v ´ w}8, it follows that Rv X Rw “ H. Combining with

(Equation 3.10), we get

b3 ě |B1| ě

ˇ

ˇ

ˇ

ˇ

ˇ

ď

vPC

Rv

ˇ

ˇ

ˇ

ˇ

ˇ

“
ÿ

vPC

|Rv| ě |C| ¨ b{2 ě |Bs| ¨ b{54,

and thus |Bs| ď 54b2, which concludes the proof.

CHAPTER 4

SOLVING STABLE STEINER TREE INSTANCES

This chapter is based upon the paper “On Geometry of Stable Steiner Tree Instances” authored

by J. Freitag, N. Mohammadi, A. Potukuchi, L. Reyzin, published in the Canadian Conference

in Computational Geometry in 2022 (CCCG 2022). [6]

My main contribution to this work was to the development of structural properties that

appear in Sections 4.3 and 4.4.

4.1 Introduction and previous work

In this work, we initiate the study of Steiner tree instances that are stable to multiplicative

perturbations to the distances in the underlying metric. Our analysis lies in the Bilu-Linial

stability [45] setting, which provides a way to study tractable instances of NP-hard problems.

Instances that are γ-stable in the Bilu-Linial model have the property that the structure

of the optimal solution is not only unique, but also does not change even when the underlying

distances among the input points are perturbed by a multiplicative factor γ ą 1. In their

original paper, Bilu and Linial analyzed MAX-CUT clustering, and since their seminal work,

other problems have been analyzed including center-based clustering [46–48], multi-way cut

problems [49], and metric TSP [50].1

1Bilu-Linial stability is one among other notions of data stability studied in the literature [51, 52].
This is in contrast to notions of algorithmic stability, which focus on properties algorithms as opposed to
data, see e.g. [53–57].

43

44

Here, we look at the metric Steiner tree problemand also the more restricted Euclidean

version. For general metrics, the Steiner tree problem is known to be APX-hard in the worst

case [58]. For the Euclidean metric, a PTAS is known [59].

In this paper we begin by providing strong geometric structural properties that need to

be satisfied by stable instances. These point to the existence of algorithms for non-trivial

families. We then make use of, and strengthen, these geometric properties to show that 1.59-

stable instances of Euclidean Steiner trees are polynomial-time solvable. Finally, we discuss the

connections between certain approximation algorithms and Bilu-Linial stability for Steiner trees.

4.2 Model and definitions

In this section, we recall the relevant definitions. Fist we define the Steiner tree problem,

which is among Karp’s 21 original NP-hard problems [60]. It has various applications including

in network design, circuit layouts, and phylogenetic tree reconstruction.

Definition 4.2.1 (the Steiner tree problem). Consider an undirected graph G “ pV,Eq with

edge weights we P R`
0 for every edge e P E, and a set T Ď V of terminals. A Steiner tree S is a

tree in the graph G that spans all terminal vertices T and may contain some of the non-terminals

(also called Steiner points). The goal is to find such a tree of lowest weight, which we call OPT,

OPT “ argmin
S

ÿ

ePS

we.

45

We can assume without loss of generality1 that the vertices are points in a metric space and

the weights of the edges are given by the distance function – when the input is in the form of a

metric, we call this the metric Steiner tree problem. Our results use properties of metric

spaces, but move freely between the metric space and graph representations of the problem.

When the metric is Euclidean, this is called the Euclidean Steiner tree problem.

Now we move on to defining Bilu-Linial stability for the Steiner tree problem on metrics.

Definition 4.2.2 (Bilu-Linial γ-stabile instances). Let I “ pG,wq be an instance of a metric

Steiner tree problem and γ ą 1. I is γ-stable if for any function w1 : V ˆ V Ñ R`
0 such that

@u, v P V ,

wuv ď w1
uv ď γwuv,

the optimal Steiner tree OPT1 under w1 is equal to the optimal Steiner tree OPT under w.

We note that the perturbations can be such that instances originally satisfying the metric or

Euclidean properties no longer have to satisfy these properties after perturbation. We also note

that due to the triangle inequality, no instances have stability 2 or greater in the metric setting.

Notation: For a graph G, wG
ab is the weight of edge ab in G. We abbreviate wab “ wG

ab and

w1
ab “ wG1

ab . Let OPT Ď EpGq denote the minimum weight Steiner tree of G, let wpOPTq “

wGpOPTq denote the weight of the Steiner tree.

1For any graph with distances specified on edges, a metric can be formed by taking the vertices to be
points and considering the shortest path distances in the graph between pairs of vertices. Solving (or
approximating) the Steiner tree problem on a metric formed in this matter solves (or approximates) the
problem on the original graph. See Vazirani [61] for further discussion of this issue.

46

4.3 Structural properties in general metrics

In this section, we work in the context of a general metric space, and we develop interesting

restrictions on the types of problems with γ-stable solutions, for various values of γ.

The techniques of this section do not give, in complete generality, an efficient algorithm for

finding the optimal Steiner tree for any value of γ less than 2, a problem we leave open. However,

when more information about the metric space is available, one can use the structural results

here to give restrictions on the arrangements of Steiner points which does yield a definitive

solution. In particular,

1. In Section 4.4, we use Lemma 4.3.1 to give an algorithm for the Euclidean metric when

γ ą 22{3.

2. More generally, in the case that no two Steiner points are adjacent in the optimal solution,

Lemma 4.3.8 together with the other results of the section can be used to give an efficient

and very simple algorithm to find the minimal weight Steiner tree. Other more general

situations can be efficiently handled via only slightly more elaborate arguments - e.g. if

one has a bound on the length of the longest path of Steiner points in the optimal solution.

Lemma 4.3.1. The degree of any Steiner point in the optimal solution is greater than 2
2´γ .

Proof. Consider a Steiner node s in the optimal solution, that is connected to pm ‰ nq other

points, a1, ..., am. Let w “
řm

i“1
wsai
m , and let wsa1 and wsam be such that wsa1 ` wsam ě 2w.

Let G1 be obtained by perturbing each edge sai by a factor of γ. Let

T1 :“ pOPTztsa1, . . . , samuq Y ta1a2, . . . , am´1amu.

47

Clearly, T1 is also a Steiner tree. Triangle inequality gives us waiai`1 ď wsai `wsai`1
. So, we

have

w1pT1q ď w1pOPTq ´

m
ÿ

i“1

γwsai

`

m´1
ÿ

i“1

`

wsai ` wsai`1

˘

“ w1pOPTq ´

m
ÿ

i“1

γwsai `

m´1
ÿ

i“2

2wsai

` wsa1 ` wsam .

Using the fact that w1pT1q ą w1pOPTq, we have

m
ÿ

i“1

γwsai ă

m´1
ÿ

i“2

2wsai ` wsa1 ` wsam

or

γ ¨ wm ă p2m´ 2qw.

Rearranging, we have

2

2 ´ γ
ă m.

48

Now we state some additional structural properties of optimal Steiner trees in γ-stable

instances. These are not used in Section 4.4. Nevertheless, we hope that they are of independent

interest.

Proposition 4.3.2. If a, b P V pOPTq are nearest neighbors in the graph, then the edge ab is in

the optimal solution.

Lemma 4.3.3. Suppose ab, bc P OPT, then

1. wac ą γ ¨ maxtwab, wbcu.

2. 2
γ ¨ wac ą wab ` wbc.

3. pγ ´ 1q ¨ wab ă wbc, pγ ´ 1q ¨ wbc ă wab.

Proof. We handle the three parts in turn:

1. Assume w.l.o.g. wab ě wbc. Suppose that wac ď γ ¨ maxtwab, wbcu, let G1 be obtained by

perturbing ab by a factor of γ. Then pOPTztabuq Y tacu is also a Steiner tree in G1 of

weight w1pOPTq contradicting stability. This completes the proof of 1.

2. The proof of 2. follows from 1. and the fact that maxtwab, wbcu ě
wab`wbc

2 .

3. Let G1 be obtained by perturbing bc by a factor of γ. Then T1 :“ OPTztbcu Y tacu is also

a Steiner tree of weight

w1pT1q “ wpOPTq ´ wbc ` wac ď wpOPTq ` wab. (4.1)

49

On the other hand, stability gives us that

w1pT1q ą w1pOPTq “ wpOPTq ` pγ ´ 1qwbc. (4.2)

Putting (Equation 4.1) and (Equation 4.2) together gives us that pγ ´ 1q ¨ wbc ď wab.

Repeating the same argument but swapping bc for ab gives us pγ ´ 1q ¨ wab ď wbc.

Lemma 4.3.4. Let H be a subgraph of OPT with at least one edge. Let ab P H. Fix any vertex

c P V pOPTqzV pHq satisfying wca ď γpγ ´ 1q ¨ wab; then we have ca P OPT.

Proof. If ca R OPT, then adding the edge ac to OPT produces a cycle which includes edge ac.

Suppose that the cycle also includes ab. Let G1 be obtained by perturbing ab by a factor of γ.

Then pOPTztabuq Y tacu is a Steiner tree of weight at most w1pOPTq, contradicting stability.

If the cycle does not include ab, it includes some edge other than ac which has an endpoint

at a. This edge, call it ad, is in OPT. By Lemma 4.3.3, wad ą pγ ´ 1qwba. Let G1 be obtained

by perturbing ad by a factor of γ. We have w1
ad ą γpγ ´ 1qwba ě wac. Then pOPTztaduq Y tacu

is a Steiner tree of weight less than w1pOPTq, again contradicting stability.

Lemma 4.3.5. Let γ ą 1`
?
5

2 . Let ab P H, a subgraph of OPT. Suppose that c is a vertex with

wca ě γ ¨ wab, then ca R OPT.

50

Proof. Let γ1 “ wca
wab

. Note that γ1 ě γ is some real number larger than 1`
?
5

2 . If ac P OPT, then

by part 1. of Lemma 4.3.3, we must have

wbc

wac
ą γ.

On the other hand,

wbc

wac
ď

wab ` wac

wac

ď
wab ` γ1wab

γ1wab

ď
1 ` γ1

γ1
.

We now have a contradiction as long as 1`γ1

γ1 ă γ. The function fpxq “ 1`x
x is decreasing for

x ą 0 and fpxq ă x for any x ě 1`
?
5

2 . So, we have that

1 ` γ1

γ1
ă

1 ` γ

γ
ă γ

as desired.

Proposition 4.3.6. Let H be a subgraph of OPT with at least one edge. Suppose that ab P H

and suppose that c P V pOPTqzV pHq with wbc ă γpγ ´ 1qwab. Then we must have wbc ă
wab
γ´1

and wab ă
wbc
γ´1 .

51

Proof. By Lemma 4.3.4, we must have that bc P OPT. Therefore, property 3. of Lemma 4.3.3

gives us the desired inequalities.

When γpγ ´ 1q2 ą 1 Proposition 4.3.6 strengthens the bounds of Lemma 4.3.4. This holds,

for instance, when γ ą 1.755. In this case, we obtain:

Proposition 4.3.7. Assume that γpγ ´ 1q2 ą 1. Assume that H is a subgraph of OPT with at

least one edge. Let ab P H. Fix any vertex c P V pOPTqzV pHq. Then we have wca ă 1
γ´1 ¨ wab if

and only if ca P OPT.

Proof. By Lemma 4.3.4 and the assumption that γpγ ´ 1q ą 1
γ´1 , we must have that ac P OPT.

If wca ě 1
γ´1 ¨ wab, we can not have edge ac in OPT by Lemma 4.3.3 part 3.

Let B “ tb1, . . . , bmu be vertices (either terminal or Steiner points). For a vertex a, we

denote by T pa,Bq the tree on vertex set a,B in which a is connected to each element of B. Let

the average weight of T pa,Bq be

řm
i“1wabi

m
.

Suppose that H is a subgraph of OPT. We call T pa,Bq a terminal component fan relative

to H if a is a Steiner point and B are all terminals or vertices in distinct connected components

of H each with at least two vertices. We call the collection of components of H together with

the terminals not in H the terminal components of H.

52

Lemma 4.3.8. Let γ ą 1.755 and suppose that H is a subgraph of OPT and in the optimal

solution, no two Steiner points are adjacent. Suppose that T pa,Bq with B “ tb1, . . . , bmu is a

terminal component fan such that:

‚ The average weight of T pa,Bq is less than all edges not in H which connect two terminal

components of H,

‚ the average weight of T pa,Bq is minimal among all terminal component fans, and

‚ the weights of the edges of T pa,Bq are all within a factor of 1
γ´1 of each other.

Then T pa,Bq is a subgraph of OPT.

Proof. Suppose that the fan T pa,Bq is not in OPT. Specifically, if there are k ă m edges

of T pa,Bq which are not in OPT, then there are at least k edges of OPTzH such that in

OPT Y T pa,Bq we may remove these k edges and still have a Steiner tree.1 Moreover, since no

two Steiner points are adjacent, these edges are either

‚ terminal to terminal edges, or

‚ part of a terminal component fan.

In the first case, the terminal to terminal edges have weight at least
řm

i“1 wabi
m . In this case

perturb this edge by a factor of γ, and swap it with one edge of the terminal component fan

T pa,Bq. Since the weights of edges of T are within a factor of 1
γ´1 of each other and their

1In the case that k “ m, there may be only m ´ 1 such edges, as a may not be in OPT, but the
argument works identically in that case.

53

average weight is
řm

i“1 wabi
m , this swap decreases the weight of the resulting Steiner tree after the

perturbation.

Similarly in the case that one of the k edges is in another terminal component fan, T1, the

average weight of edges in that fan is at least
řm

i“1 wabi
m , and applying part 3. of Lemma 4.3.3, the

minimal weight edge in T1 is at least pγ´1q¨

řm
i“1 wabi

m . Now, perturb such an edge by a factor of γ to

make the weight at least

γ ¨ pγ ´ 1q ¨

řm
i“1 wabi

m , which is larger than the weight of the largest weight edge of T pa,Bq,

which is a most 1
γ´1 ¨

řm
i“1 wabi

m because γ ą 1.755.

Performing any of these k swaps yields a lower weight Steiner tree than OPT under the

above perturbations, contradicting γ-stability.

4.4 Euclidean Steiner trees

In this section, we consider the restriction of the Steiner tree problem to the Euclidean metric.

Definition 4.4.1 (angle). Let a1, a2, b be points on a Euclidean metric. Then we call =a1ba2

the angle between a1, a2 at b.

Under the assumption of γ-stability the minimum angle between two terminal points at their

common Steiner neighbor can be bounded from below as a function of γ.

Lemma 4.4.2. For a γ-stable instance of a Euclidean Steiner tree, the angle between two terminal

points at their common Steiner neighbor in the tree should be greater than 2 sin´1pγ{2q.

Proof. Let’s assume, for a γ-stable instance of Steiner tree, the angle between two terminal

points a1, and a2 at a Steiner point b is θ. Without loss of generality, let wa1b “: w ě wa2b .

54

Clearly wa1a2 ą γw, since otherwise, perturbing edge a1b by a factor of γ allows one to replace

a1b by a1a2 in a minimal Steiner tree, contradicting stability. Let us use α to denote the angle

=a1a2b. Clearly, α ě π{2 ´ θ{2. Thus by the sine rule, we have

γw

sin θ
ă
wa1a2

sin θ
“

w

sinα
ď

w

sinpπ{2 ´ θ{2q
.

Rearranging, we have

γ ă
sin θ

sinpπ{2 ´ θ{2q

“
2 sinpθ{2q cospθ{2q

cospθ{2q

“ 2 sinpθ{2q

as desired.

Thus we immediately get the following Corollary.

Corollary 4.4.3. For a γ-stable instances of Steiner tree where γ ą
?
2, the angle between two

terminal points at their common neighbor in the optimal Steiner tree is greater than π{2.

We say that a matrix M P Rdˆd is positive semi-definite if for every v P Rd, it holds that

vTRv ě 0.

Lemma 4.4.4. If there are N points in Rd such that the angle between every pair with respect

to a point u is at least θ ą pπ{2q, then N ď 1 ´ 1
cos θ .

55

Figure 3. An example of points t1, t2, t3, and t4 surrounding Steiner point s at angles over

θ ą 90 degrees. No more than 1 ´ 1
cosθ can fit, independent of the dimension.

Proof. Let θ ą π{2 and let v1, . . . , vN P Rd be unit vectors in Rd such that xvi, vjy ď cos θ.

Consider the matrix V whose columns are the vi’s. By construction V TV is positive semi-definite.

Indeed, for any u P Rd, we have uT pV TV qu “ xV u, V uy ě 0.

If N ´ 1 ą ´1
cos θ , then the sum of every row is negative. This is because each diagonal entry

of V TV is 1, and every non-diagonal entry is at most cos θ. So we have that 1T pV TV q1 ă 0

where 1 “ p1, 1, . . . , 1q. This contradicts the positive semidefiniteness of V TV . So it must be the

case that N ď 1 ´ 1
cos θ .

56

Corollary 4.4.5. For γ ą
?
2 the degree of a Steiner node in the optimal solution is at most

γ2

γ2´2
.

Proof. Consider any two neighbors u,w of a given vertex v, and assume that =uvw “ θ. From

Lemma 4.4.2 we have

γ ă 2 sinpθ{2q.

So

γ2 ă 4 sin2pθ{2q

and so γ2{2 ă 2 sin2pθ{2q or 1 ´ γ2{2 ą 1 ´ 2 sin2pθ{2q. Since cospθq “ 1 ´ 2 sin2pθ{2q, we have

cospθq ă 1 ´ γ2{2

or

θ ą cos´1p1 ´ γ2{2q.

Since the angle between any two neighbors of v is at least cos´1p1 ´ γ2{2q, Lemma 4.4.4

gives us that there are at most 1 ´ 2
2´γ2 “

γ2

γ2´2
of them.

Corollary 4.4.6. When γ ą 1.59, the optimal Steiner tree for a γ-stable instance does not have

Steiner nodes.

Proof. This happens when the min degree imposed by stability is larger than the max degree

imposed by the packing bound. By Lemma 4.3.1 and Corollary 4.4.5, this happens when we

57

have the following:

γ2

γ2 ´ 2
ď

2

2 ´ γ

By solving the above equation for γ we get γ ě 22{3, which is bounded from above by 1.59.

This geometric property implies that for 1.59-stable instances, Steiner points will not be

used in the optimal solution. Hence, an MST algorithm on just the terminal points will give the

answer in polynomial time.

Finally, we point to the existence of Gilbert and Pollak’s the Steiner ratio conjecture [62],

which states that in the Euclidean plane, there always exists an MST within a cost of 2{
?
3 of

the minimum Steiner tree, and the behavior of this ratio for higher dimensions is yet unknown.

Assuming this conjecture, in certain cases it may imply some limitations on the stability of

Euclidean instances, especially in low dimensions, using the idea that even if the Steiner tree

distances are “blown up” by more than the Steiner ratio, one could instead use the MST instead

and get a cheaper solution. Unfortunately, because the MST may overlap with the Steiner tree,

we cannot give a concrete statement.

4.5 Using approximation algorithms to solve stable instances

In this section we give a general argument about how strong approximation algorithms for

Steiner tree problems give stability guarantees. We note that it is known that an FPTAS for

the Steiner tree would imply P=NP [58], so there is no hope to use the result below in the

general metric case. But if at some future point an FPTAS for the Euclidean variant of the

Steiner tree problem is developed (currently, only a PTAS is known to exist [59]), then this

58

would immediately imply the existence of polynomial-time algorithms for stable instances for

any constant γ ą 1.

Theorem 4.5.1. An FPTAS for the Steiner tree problem gives a polynomial time algorithm for

optimally solving any γ-stable Steiner tree problem in time polypn, pγ ´ 1q´1q. In particular, this

gives a polynomial-time algorithm for any constant γ ą 1.

Proof. Assume we are given an FPTAS for the Steiner tree problem. This means that we have an

algorithm that runs in time polypn, 1{ϵq on instances of size n to give p1`ϵq-approximations to the

optimum Steiner tree. Now consider a γ-stable instance for constant γ ą 1. We run our FPTAS

on that instance with ϵ “
γ´1
2n to get a Steiner tree S1 with weight within OPTp1 ` pγ ´ 1q{2nq.

We now claim that every edge in the optimal solution whose weight is at least OPT
n must be

in S1. Suppose it isn’t – then we could perturb such an edge by γ and increase the weight of

the optimal solution to OPTp1 ` pγ ´ 1q{nq without increasing the weight of S1, and S1 would

become cheaper than OPT, thereby violating γ-stability.

By the fractional pigeonhole principle, the most expensive edge of the FPTAS satisfies the

desired property above and is therefore in OPT. Hence, we can contract this edge into a new

vertex and get a new instance with n´ 1 vertices at γ-stability. We can continue this process,

getting one new edge of the optimal in each iteration, until we have a constant-size problem that

we can brute-force.

We note that the above technique could be used to convert even slightly weaker (than FPTAS)

approximation algorithms to nontrivial stability guarantees. Lemma 4.4.4.

CHAPTER 5

LEARNING GRAPHS WITH BIPARTITE EDGE COUNTING QUERIES

5.1 Introduction

Graph learning has been extensively used in the last few decades in many scientific fields,

especially, in bio-informatics [17] and has received much attention lately due to its wide application

in modeling complex data sets as graph problems and solving them efficiently via graph theory

techniques [63,64]. For example, human genome sequencing [14–16,65] or protein synthesis can

efficiently be modeled by the graph and various problems such as protein mutations or genetics

disease can be formulated as a graph problem. In this chapter, first, we consider the problem

of learning a hidden graph G “ pV,Eq with BEC queries. Then we study the same learning

problem by leveraging a graph verification result that we provide.

The goal in a verification problem is to verify the hidden graph G via query access to G. It is

a lesser-known problem in compare to graph learning. One example of the application of graph

verification can be performing a sanity check on the result of graph learning. Imagine we had

some errors in learning expensive social networks or brain connectome network, before moving to

the next step of the project, we must make become certain that we correctly learned the targeted

graph. Therefore, we need to ask, can we verify we learned the targeted graph efficiently or do

we need to repeat the learning step before moving forward? This question naturally arises in the

real world setting where the nature of the real work data sets is often noisy.

59

60

The main focus of this work is on introducing and using BEC queries on undirected unweighted

graphs. In addition, we show how BEC queries can be stimulated with other queries such as EC

and OC queries.

5.2 Previous work

For the graph verification problem, Beerliova et al. [66] study the problem of verifying and

finding networks via distance queries and show, unless P = NP, there is no Oplog nq-competitive

algorithm.

Our work is mostly inspired by Reyzin and Srivastava’s work on learning and verifying graphs

by focusing on EC queries [67]. They give an algorithm for learning graph partitions using

Opn log nq EC queries. They also introduce the problem of verifying graphs properties by using

EC queries and provide a randomized algorithm with error ϵ for graph verification problem using

O
`

log 1
ϵ

˘

EC queries.

Angluin and Chen [16] give an algorithm that can learn any arbitrary graph with Oplog nq

adaptive ED queries by repeatedly dividing the graph into independent subgraphs, and eliminating

new connections between subgraphs from previously discivered edges via ED queries, and uses

a version of binary search to find new edges within each subgraph. Angluin and Chen later

generalize their results for learning arbitrary graphs via ED queries to hypergraphs in [15] by

using fundamentally different techniques. One of their main results is giving an algorithm that

finds an arbitrary edge in a hypergraph of dimension r using only Opr log nq edge-detecting

queries and then improve the round complexity to Oplogm` rq using only Oplogm log nq more

61

queries. Angluin and Chen’s work was carried on in [14,65,68] for learning geometrically restricted

families of graphs, such as stars, cliques, and matchings.

As it has been mentioned in the previous section, we mainly focus on learning undirected

graphs but there are other versions of graph learning problem on directed graphs. Wang and

Honorio [69] study the problem of learning bounded-degree directed trees by using path queries

and give a randomized algorithm for learning directed trees of n nodes with node degree at

most d, by asking at most Opdn log2 nq path queries. Their result motivated Janardhanan and

Reyzin [70] to study the problem of learning a directed graph by using path queries and give

bounds for learning graphs with n vertices and k strongly connected components and bounded

degree directed trees where they give an algorithms for learning “almost-trees” – directed trees.

Although we didn’t study the directed version of this problem here but the mentioned paper can

be considered as an inspiration for the future exploration of this work.

In addition to learning different graph families, researchers often explored using different

queries. Bipartite Independent Set (BIS) queries were introduced by Beame et al. [71] and

inspired Addanki et al. [72] to consider the problem of learning the count of edges in a graph

G “ pV,Eq where |V | “ n by BIS query access to G. Beame et al.’s [71] introduction of BIS

queries motivated us to consider BEC queries that can be described an EC-type generalization

of BIS queries.

In this work we extend the results of Reyzin and Srivastava in [67] for learning and verifying

graphs via EC to BEC queries that we consider here.

62

Both the learning and verification tasks can be related to the field of Property Testing, where

the goal is to test small parts of the adjacency matrix of a graph to determine a global property

of the graph. Goldrich and Goldwassar did a thorough survey on Property Testing in [73].

5.3 Model and definitions

The problem of graph learning involves the learner being given a set of vertices V in a hidden

graph G “ pV,Eq. The learner’s goal is to discover the set of edges.

Definition 5.3.1 (Edge Counting Queries pECq). Given a subset A of vertices A Ď V , ECpAq

returns the number of edges both of whose endpoints lie in A.

One of many known results is Reyzin and Srivavasta’s [67] general results for learning graphs.

It employs binary search and motivates some of our algorithms.

Lemma 5.3.2 (EC for Learning Graphs). It is sufficient to use Opm log nq EC queries to learn

a hidden graph on n vertices. [67]

Now we are ready to define the query types we used in this work.

Definition 5.3.3 (Bipartite Independent Set Queries BISpA,Bq). Given two disjoint subsets

A,B Ď V , BICpA,Bq returns 1 if there is at least an edge with one endpoint in A and one in B

or 0 if there is no edge between A and B.

Definition 5.3.4 (Bipartite Edge Counting Queries pBECpA,Bqq). Given two disjoint subsets

A,B Ď V , BECpA,Bq returns the number of edges that have one endpoint in A and one in B.

63

Figure 4. A visual example of how OC, EC and BEC queries work.

Definition 5.3.5 (Outgoing Counting Queries (OC)). Given a subset A of vertices A Ď V ,

OCpAq returns the number of edges with one endpoint in A and the other end point in Ā.

In the next section we show how to simulate these queries via the other queries.

5.4 Preliminary results

Lemma 5.4.1 (EC and OC). Let A Ď V be chosen such that each vi P V will be included in A

with probability 1{2, independently of each other vi. Then,

ErOCpAqs “
1

2
ECpV q, (5.1)

where the expectation is taken over the randomness in the choice of the query.

Proof. Let ei,j P E. The probability that vi P A and vj P Ā is 1{4 because each vertex ends up

in A or Ā with probability 1{2 independently. Similarly the probability that vj P A and vi P Ā

64

is also 1{4. Since these are mutually exclusive events we have the probability of that edge being

detected as 1{4 ` 1{4 “ 1{2. Let 1pe,Aq be the indicator variable that takes value 1 when e has

one endpoint in A and one in Ā, and hence for all e P E, Er1pe,Aqs “ 1
2 .

ErOCpAqs “Er
ÿ

ePE

1pe,Aqs

“
ÿ

ePE

Er1pe,Aqs

“
ÿ

ePE

1{2 “
1

2
|E|

“
1

2
ECpV q.

Lemma 5.4.2 (Simulation of BEC with OC). A BEC query can be simulated by 3 OC queries.

Proof. We will perform the following queries: OCpAq, OCpBq, OC(A Y B), We can write the

results as a function of the sets defined above.

OCpAq “ |Aout| ` |AB|

OCpBq “ |Bout| ` |AB|

OCpAYBq “ |Aout| ` |Bout|

(5.2)

65

Where |AB| is the number of edges with one endpoint in A and the other in B, and |Aout|,

|Bout| are, respectively, the numbers of edges with one end point in A (B, resp.) and the other

end point in ĀzB (B̄zA, resp.).

We now examine the quantity,

OCpAq ` OCpBqq ´ pOCpAYBqq

2
“

|Aout| ` |AB| ` |Bout| ` |AB| ´ |Aout| ´ |Bout|

2

“BECpA,Bq

“|AB|.

Lemma 5.4.3 (Simulation of EC with BEC). We can simulate one EC query with Opnq BEC

queries.

We proceed with the proof by using the divide and conquer.

Proof. We start by dividing the vertex set V of graph G into two equal size partition V1 and V2

where |V1| “ n{2 and |V2| “ n{2. Now we can claim the count of the edges can be computed as

bellow:

|E| “ |EpV1q| ` |EpB2q| ` |Ecrossing| (5.3)

66

We can find the number of crossing edges by running a BEC query on V1 and V2. To find

the count of edges on each partition we continue the recursion on each side until there is a single

vertex left in each partition and the only thing that left to count is crossing.

T pnq “ 2T pn{2q ` 2 (5.4)

By master theorem we have T pnq “ θpnlog
2
2q “ θpcnq.

Based on [67], we know that we can learn any arbitrary graph with |E| log n EC queries. From

lemma 5.4.1 we know that we can simulate an EC query with Opnq BEC queries so n |E| log n

BEC queries are sufficient to learn any graph. If the graph is sparse this result is better than n2.

Corollary 5.4.4 (of 5.4.2 and 5.4.1). We can simulate one EC query with Opnq OC queries.

5.5 A divide and conquer approach for learning graphs

In this section we will introduce an algorithm that learns any hidden graph G “ pV,Eq with

Opm log nq BEC queries efficiently in the size of an input.

5.5.1 Algorithm

As you can see in the above algorithm, the bottleneck is to find and learn the crossing edges.

Therefore, we provide CrossLearn where we learn the crossing by binary searching.

5.5.2 Proof of correctness

Theorem 5.5.1. Given a graph G “ pV,Eq, with |V | “ n and |E| “ m, EdgeLearn learns its

edges using Opm log nq BEC queries in expectation and in time polynomial in m and n.

67

Algorithm 1 EdgeLearn(S), An algorithm for learning the edges in S Ď V using BEC queries.
Require: S Ď V

if |S| = 1 or |S| “ 0 then
return pS,Hq

end

Divide S uniformly at random into Sl and Sr with |Sl| “ tn{2u and |Sr| “ rn{2s

El “ EdgeLearnpSlq

Er “ EdgeLearnpSrq

El,r “ CrossLearnpSl, Srq

ES “ El Y Er Y El,r output pS,ESq

Proof. We start by partitioning the n nodes u.a.r into two sets. EdgeLearn recursively learns the

edges by partitioning the vertices and calling CrossLearn to learn the crossing edges. CrossLearn

itself is a recursive algorithm that uses binary search to learn the cross edges, and the probability

of each edge ending up within a given partition is
`n

2
2

˘

{n « 1
4 and being the probability of an

edge being crossing partitions is pn2 qpn2 q{
`

n
2

˘

« 1
2 . In expectation, half of the edges crossing

the partition and a quarter end up in each partition. Also the size of each partition is n{2 in

expectation.

Let T pn,mq be the expected number of queries used by EdgeLearn. We can write the

recursion as follows:

T pn,mq “ 2T
´n

2
,
m

4

¯

` fpm,nq, (5.5)

68

Algorithm 2 CrossLearn(S1, S2) Learns all cross edges between disjoint sets S1 and S2 using

BEC queries.

Require: S1 Y S2 “ V if |S1| “ |S2| “ 1, v1 P S1 and v2 P S2 then

if BECpv1, v2q “ 1 then
return E “ te1,2u

end

else
return H

end

end

Split S1 Ñ

ˇ

ˇ

ˇ
S

1

1

ˇ

ˇ

ˇ
“

X

S1
2

\

,
ˇ

ˇS”
1

ˇ

ˇ “
P

S1
2

T

Split S2 Ñ

ˇ

ˇ

ˇ
S

1

2

ˇ

ˇ

ˇ
“

X

S2
2

\

,
ˇ

ˇS”
2

ˇ

ˇ “
P

S2
2

T

if BECpS
1

1, S
1

2q ‰ 0 then

E1 “ CrossLearnpS
1

1, S
1

2q

end

if BECpS
1

1, S
2

2q ‰ 0 then

E2 “ CrossLearnpS
1

1, S
2

2q

end

if BECpS
2

1 , S
1

2q ‰ 0 then

E3 “ CrossLearnpS”
1 , S

1

2q

end

if BECpS
2

1 , S
2

2q ‰ 0 then

E4 “ CrossLearnpS
2

1 , S
2

2q

end

return E “ E1 Y E2 Y E3 Y E4

69

where fpm,nq is the query complexity of CrossLearn. To analyze the quantity fpm,nq we

observe that CrossLearn takes Opm log nq queries to learn the crossing edges. therefore we have

T pn,mq “ 2T
´n

2
,
m

4

¯

`O
´m

2
log n

¯

(5.6)

By substitution for 2T
`

n
2 ,

m
4

˘

we can get:

logn
ÿ

i“0

2i
m

22i
log

n

2i
“

logn
ÿ

i“0

m

2i
log

n

2i

ď

logn
ÿ

i“0

m

2i
log n

ď m log n
8
ÿ

i“0

1

2i

ď m log n.

(5.7)

Corollary 5.5.2. Any tree can be learned using Opn log nq BEC queries in expectation and in

polynomial time.

5.6 Graph verification and learning

In this section, we give a lemma that says that a random BEC query is able to distinguish

two graphs with probability at least 1{4. This can be viewed as a graph verification result [74]

in the following sense: imagine a graph G is presented to a verifier that needs to decide whether

this graph is equal to the target graph known to a BEC oracle. A random query can be given to

the oracle and then compared to the same query simulated on the graph to be verified. If (and

70

only if) the graphs are different, this difference will be exposed with probability ě 1{4, and this

detection probability can be boosted to any success probability 1 ´ ϵ by repeating a random

query Oplogp1{ϵqq times. 1 We use this verification idea to come up with a learning algorithm as

explained below.

Lemma 5.6.1. Let G1 “ pV,E1q and G2 “ pV,E2q be graphs such that E1 ‰ E2. Let U Ă V be

a uniformly random subset of vertices in V . Then,

PrrBECG1pU, V ´ Uq ‰ BECG2pU, V ´ Uqs ě 1{4

Proof. Let G△ be the symmetric difference of G1 and G2, in particular G△ “ pV,E1△V2q.

The graph G either has an odd degree vertex v or all the vertices have even degrees. We

proceed with this proof by bounding the probability of failure both in the presence of the odd

degree vertex v and in the absence of it.

The failure event in both cases is defined when BEC cannot distinguish between G1 and G2

which happens when BECG1pU, V ´ Uq “ BECG2pU, V ´ Uq.

Let Np.q be the neighborhood of a vertex. Let a be |NG1pvq| and b be |NG2pvq|. Therefore,

the degree of v is defined |NG△pvq| “ a` b.

Case 1: An odd degree vertex v exists.

1Reyzin and Srivastava [67] gave a similar graph verification result to the one we present in Lemma 5.6.1
for EC queries.

71

We start by partitioning vertex set V uniformly at random into two sets U and V ´U and we

fix an ordering in this assignment such v is assigned to its partition last. Our analysis examines

what happens right before v is assigned to U or not.

We first define some quantities before v is assigned. Let us call x “ BECG1zG2
pU´v, V ´U´vq

and y “ BECG2zG1
pU ´ v, V ´ U ´ vq.

We have:

‚ Event 1: v P U . Then call BEC G1zG2
pU, V ´Uq “ a1 `x and BEC G2zG1

pU, V ´Uq “ b1 `y.

‚ Event 2: v R U . Then call BEC G1pU, V ´Uq “ a2 `x “ a´a1 `x and BEC G2pU, V ´Uq “

b2 ` y “ b´ b1 ` y.

Then, one of the following two things can happen:

1. x “ y

The failure events are 1) x`a1 “ y`b1, which is equivalent to a1 “ b1 and 2) x`a2 “ y`b2,

which is equivalent to a2 “ b2, but they cannot happen at the same time. If a1 “ b1 and

b2 “ a2 Ñ a´ a1 “ b´ b1 happen at the same time, by adding up these two equations we

will have a “ b that contradicts our initial assumption that the vertex has an odd degree.

2. x ‰ y

Same line of reasoning as the previous case can be applied here. The failure events are

x ` a1 “ y ` b1 or x ` a2 “ y ` b2 but these two cases cannot happen at the same

time. If they happen at the same time then by adding these two equations we will have

72

2x ` a1 ` a2 “ 2y ` b1 ` b2 Ñ 2x ` a “ 2x1 ` b Ñ a ´ b “ 2px ` yq. This contradicts v

having odd degree, i.e. a` b being odd.

Therefore, in the presence of the odd degree vertex, with probability at least 1{2 (which is

ě 1{4) we can distinguish G1 and G2.

Case 2: All vertices in the symmetric difference graph have even degrees.

Consider two adjacent vertices u, v. We again consider the analysis when all but u and v are

assigned to their respective partitions.

BECG1{G2
pU ´ tu, vu, V ´ U ´ tu, vuq “ x and BECG2{G1

pU ´ tu, vu, V ´ U ´ tu, vuq “ y

and call K “ x` y.

Before moving to the proof we need to define some notation:

Definition 5.6.2. Let a cut be a partition pA,Bq of the vertex set V and let EpA,Bq be the set

of edges with one endpoint in A and the other in B.

After partitioning u and v they either end up in a similar partition or a different partition.

For u and v are in the same partition we have:

‚ If v P U and u P U then we define a1
s

1 and b1
s to be the number of additional edges added

to the cut such that:

|EG1{G2
pU ` tu, vu, V ´ Uq| “ x` a1

s

1Note that s stands for u and v ending up in the same partition.

73

and

|EG2{G1
pU, V ´ U ` tu, vuq| “ y ` b1

s

.

‚ If v R U and u R U then we define a2
s and b2

s to be the number of additional edges added

to the cut such that:

|EG1{G2
pU, V ´ U ` tu, vuq| “ x` a2

s

and

|EG2{G1
pU, V ´ U ` tu, vuq| “ y ` b2

s

Vertices u and v end up in different partitions:

‚ If v P U and u R U then we define a1
d

1 and b1
d to be the number of additional edges added

to the cut such that:

|EG1{G2
pU ` tvu, V ´ U ` tuuq| “ x` a1

d

and

|EG2{G1
pU ` tvu, V ´ U ` tuuq| “ y ` b1

d

.

1Note that d stands for u and v ending up in the different partition.

74

‚ If v R U and u P U then we define a2
d and b2

d to be the number of additional edges added

to the cut such that:

|EG1{G2
pU ` tuu, V ´ U ` tvuq| “ x` a2

d

and

|EG2{G1
pU ` tuu, V ´ U ` tvuq| “ y ` b2

d

.

Regardless of the values of x and y we can define the failure events, i.e. that the answers to

the BEC query end up the same for both graphs, for the 4 cases, each of which happen with

probability 1{4, where u and v can be assigned, as follows:

x` a1
s “ y ` b1

s (5.8)

x` a2
s “ y ` b2

s

x` a1
d “ y ` b1

d (5.9)

x` a2
d “ y ` b2

d

75

Before adding the last two vertices, either BEC detected similar counts for both G1 and G2 or

BEC detected different counts for G1 and G2:

1. x “ y

Now we can rewrite the equation for similar and dissimilar case and we get a “ b for similar

and a “ b ` 1 for dissimilar case. We reach to contradiction since these two equation

cannot hold at the same time. Hence, with probability ě 1{4 we can detect G1 from G2.

2. x ‰ y

We can rewrite Equation 5.8 and Equation 5.9 by adding the formulas that we have for

similar case and the dissimilar case. Then, we get 2px ´ yq “ b ´ a for similar case and

2px´ yq “ b´ a` 1 for dissimilar case. This implies if b´ a is even then b´ a` 1 cannot

be even so these two events cannot happen at the same time. Therefore, we conclude with

probability 1/4 the random BEC query produces different answer for G1 and G2.

Theorem 5.6.3. Let G be a set of graphs. We can learn over G using Oplogp|G|qq BEC queries

in expectation.

Proof. Let Gt be the set of uneliminated graphs at step t, and let G0 “ G. At each time step t

we ask a random BEC query. By linearity of expectation, we can eliminate at least ě 1{4 of

the incorrect solutions (i.e. |Gt| ´ 1 of the possible graphs) in expectation each iteration t using

Lemma 5.6.1 by iterating over all un-eliminated graphs and removing those that are inconsistent

76

with the current query. Therefore, we can learn the target using log4{3p|G|q “ Oplog |G|q

queries.

Note this has improved query complexity over 5.5.1 at a (severe) cost to running time. In

particular, the running time is Θp|G|q, which is inefficient for exponential families.

Corollary 5.6.4. We can learn any tree on n nodes using Opn log nq BEC queries.

Proof. By Cayley’s theorem we know that for every integer n ą 0, the number of trees on n

labeled vertices is nn´2. Getting the logarithm of logpnn´2q “ Opn log nq.

The above bound matches the query bound that we obtain for EdgeLearn in the case of trees,

but it is not efficient because it would have to enumerate through all of the nn´2 trees.

Corollary 5.6.5. We can learn any star on n nodes using Oplog nq BEC queries.

Proof. Only n different stars can exist on n nodes since each node can be center once and then

the rest should be leaves. Therefore, we Oplog nq BEC queries are sufficient for learning stars.

From this corollary we can conclude that there exists an efficient algorithm for learning any

given star with Oplog nq queries. This algorithm runs in polynomial time because the class of

stars contains only n elements and can be efficiently enumerated.

Corollary 5.6.6. We can learn any graph on n nodes using Opn2q BEC queries.

Proof. There are 2n
2 graphs on n nodes so getting the logarithm of that we get n2.

77

This result provides an improved query complexity in comparison to the query complexity

of n2 log n that we would obtain by using EdgeLearn for dense graphs, but it matches query

complexity of brute force of querying once per edge, and it’s significantly worse in terms of

running time.

Our method, however, does sometimes get an advantage in query usage (though not running

time) over EdgeLearn and brute-force search, as illustrated by the following corollary.

Corollary 5.6.7. Let G be a family of cliques minus a path. We can learn over this family by

using Opn log nq BEC queries.

Proof. We have n!
2 undirected path on n vertices. If we have a clique that doesn’t have one of

these n!
2 we can learn it in Oplogpn!qq “ Opn log nq

As we mentioned before, although this algorithm, unlike EdgeLearn, is not efficient in terms of

running time, it is better in terms of query complexity. The main application of this result could

be when queries are very expensive (e.g. running human phase of pharmaceutical experiments)

but computational resources are plenty (e.g. access to parallel computing).

5.6.1 A visual example on learning a graph with BEC queries

In this section we provide a visual example on learning a target path on n “ 4 vertices with

BEC query. There are 4!
2 “ 12 possible solutions for 4 nodes.

78

Figure 5. A visualization of all possible paths on n “ 4 vertices

Figure 6. Randomly portioning vertices into two sets A and B.

79

Figure 7. Running the BEC (A,B) and eliminating the solution with different response than

oracle.

Figure 8. Repeating the random partitioning, running BECpA,Bq and elimination steps.

80

Figure 9. Target path is found by running 3 BEC queries.

CITED LITERATURE

1. Weinberger, K. Q. and Saul, L. K.: Distance metric learning for large margin nearest
neighbor classification. Journal of machine learning research , 10(2), 2009.

2. Weakly supervised. https://snorkel.ai/weak-supervision. Accessed: 2022-7-5.

3. Ihara, D., Mohammadi, N., and Sidiropoulos, A.: Algorithms for metric learning via con-
trastive embeddings. In 35th International Symposium on Computational Geometry
(SoCG 2019) . Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

4. Fan, B., Centurion, D. I., Mohammadi, N., Sgherzi, F., Sidiropoulos, A., and Valizadeh, M.:
Learning lines with ordinal constraints. arXiv preprint arXiv:2004.13202 , 2020.

5. Ihara, D., Mohammadi, N., and Sidiropoulos, A.: Learning mahalanobis metric spaces via
geometric approximation algorithms. 2019.

6. Freitag, J., Mohammadi, N., Potukuchi, A., and Reyzin, L.: On the geometry of stable
steiner tree instances. arXiv preprint arXiv:2109.13457 , 2021.

7. Matousek, J.: Lectures on discrete geometry , volume 212. Springer Science & Business
Media, 2013.

8. Sidiropoulos, A.: Computational metric embeddings. Doctoral dissertation, Massachusetts
Institute of Technology, 2008.

9. Bilu, Y. and Linial, N.: Are stable instances easy? Combinatorics, Probability and Computing
, 21(5):643–660, 2012.

10. Hein, J. J.: An optimal algorithm to reconstruct trees from additive distance data. Bulletin
of mathematical biology , 51(5):597–603, 1989.

11. Barton, N. H.: The role of hybridization in evolution. Molecular ecology , 10(3):551–568,
2001.

12. Valiant, L. G.: A theory of the learnable. Communications of the ACM , 27(11):1134–1142,
1984.

81

https://snorkel.ai/weak-supervision

82

13. Mohri, M., Rostamizadeh, A., and Talwalkar, A.: Foundations of machine learning . MIT
press, 2018.

14. Alon, N., Beigel, R., Kasif, S., Rudich, S., and Sudakov, B.: Learning a hidden matching.
SIAM Journal on Computing , 33(2):487–501, 2004.

15. Angluin, D., Chen, J., and Warmuth, M.: Learning a hidden hypergraph. Journal of
Machine Learning Research , 7(10), 2006.

16. Angluin, D. and Chen, J.: Learning a hidden graph using o (logn) queries per edge. Journal
of Computer and System Sciences , 74(4):546–556, 2008.

17. Bouvel, M., Grebinski, V., and Kucherov, G.: Combinatorial search on graphs motivated by
bioinformatics applications: A brief survey. In International Workshop on Graph-
Theoretic Concepts in Computer Science , pages 16–27. Springer, 2005.

18. Grebinski, V. and Kucherov, G.: Optimal reconstruction of graphs under the additive model.
Algorithmica , 28(1):104–124, 2000.

19. King, V., Zhang, L., and Zhou, Y.: On the complexity of distance-based evolutionary tree. In
Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms ,
page 444. SIAM, 2003.

20. Reyzin, L. and Srivastava, N.: On the longest path algorithm for reconstructing trees from
distance matrices. Information processing letters , 101(3):98–100, 2007.

21. Aho, A. V. and Hopcroft, J. E.: The design and analysis of computer algorithms . Pearson
Education India, 1974.

22. Shakhnarovich, G.: Learning task-specific similarity. Doctoral dissertation, Massachusetts
Institute of Technology, 2005.

23. Kulis, B. et al.: Metric learning: A survey. Foundations and Trends® in Machine Learning
, 5(4):287–364, 2013.

24. Ihara, D., Mohammadi, N., Sgherzi, F., and Sidiropoulos, A.: Robust mahalanobis metric
learning via geometric approximation algorithms. CoRR , abs/1905.09989, 2019.

83

25. Nayyeri, A. and Raichel, B.: Reality distortion: Exact and approximate algorithms for
embedding into the line. In Foundations of Computer Science (FOCS), 2015 IEEE
56th Annual Symposium on , pages 729–747. IEEE, 2015.

26. Nayyeri, A. and Raichel, B.: A treehouse with custom windows: Minimum distortion
embeddings into bounded treewidth graphs. In Proceedings of the Twenty-Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona,
Spain, Hotel Porta Fira, January 16-19 , ed. P. N. Klein, pages 724–736. SIAM,
2017.

27. Bǎdoiu, M., Chuzhoy, J., Indyk, P., and Sidiropoulos, A.: Low-distortion embeddings
of general metrics into the line. In Proceedings of the thirty-seventh annual ACM
symposium on Theory of computing , pages 225–233. ACM, 2005.

28. Badoiu, M., Dhamdhere, K., Gupta, A., Rabinovich, Y., Räcke, H., Ravi, R., and Sidiropoulos,
A.: Approximation algorithms for low-distortion embeddings into low-dimensional
spaces. In SODA , volume 5, pages 119–128. Citeseer, 2005.

29. Carpenter, T., Fomin, F. V., Lokshtanov, D., Saurabh, S., and Sidiropoulos, A.: Al-
gorithms for low-distortion embeddings into arbitrary 1-dimensional spaces. In
34th International Symposium on Computational Geometry (SoCG 2018) . Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

30. Fellows, M. R., Fomin, F. V., Lokshtanov, D., Losievskaja, E., Rosamond, F. A., and
Saurabh, S.: Distortion is fixed parameter tractable. In International Colloquium on
Automata, Languages, and Programming , pages 463–474. Springer, 2009.

31. Badoiu, M.: Approximation algorithm for embedding metrics into a two-dimensional space. In
Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms ,
pages 434–443. Society for Industrial and Applied Mathematics, 2003.

32. Dhamdhere, K., Gupta, A., and Ravi, R.: Approximation algorithms for minimizing average
distortion. Theory Comput. Syst. , 39(1):93–111, 2006.

33. Rabinovich, Y.: On average distortion of embedding metrics into the line and into l1. In
Proceedings of the thirty-fifth annual ACM symposium on Theory of computing ,
pages 456–462, 2003.

84

34. Indyk, P., Matoušek, J., and Sidiropoulos, A.: Low-distortion embeddings of finite metric
spaces. In Handbook of Discrete and Computational Geometry, Second Edition. , eds.
J. E. Goodman, J. O’Rourke, and C. D. Toth. Chapman and Hall/CRC, 2017.

35. Alon, N., Bădoiu, M., Demaine, E. D., Farach-Colton, M., Hajiaghayi, M., and Sidiropoulos,
A.: Ordinal embeddings of minimum relaxation: general properties, trees, and
ultrametrics. ACM Transactions on Algorithms (TALG) , 4(4):1–21, 2008.

36. Bădoiu, M., Demaine, E. D., Hajiaghayi, M., Sidiropoulos, A., and Zadimoghaddam, M.:
Ordinal embedding: Approximation algorithms and dimensionality reduction. In
Approximation, Randomization and Combinatorial Optimization. Algorithms and
Techniques , pages 21–34. Springer, 2008.

37. Chor, B. and Sudan, M.: A geometric approach to betweenness. SIAM Journal on Discrete
Mathematics , 11(4):511–523, 1998.

38. Opatrny, J.: Total ordering problem. SIAM Journal on Computing , 8(1):111–114, 1979.

39. Ailon, N. and Alon, N.: Hardness of fully dense problems. Information and Computation ,
205(8):1117–1129, 2007.

40. Karpinski, M. and Schudy, W.: Approximation schemes for the betweenness problem in
tournaments and related ranking problems. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques , pages 277–288. Springer,
2011.

41. Charikar, M., Guruswami, V., and Manokaran, R.: Every permutation csp of arity 3 is
approximation resistant. In 2009 24th Annual IEEE Conference on Computational
Complexity , pages 62–73. IEEE, 2009.

42. Makarychev, Y.: Simple linear time approximation algorithm for betweenness. Operations
research letters , 40(6):450–452, 2012.

43. Toth, C. D., O’Rourke, J., and Goodman, J. E.: Handbook of discrete and computational
geometry . Chapman and Hall/CRC, 2017.

44. Kenyon-Mathieu, C. and Schudy, W.: How to rank with few errors. In Proceedings of the
thirty-ninth annual ACM symposium on Theory of computing , pages 95–103, 2007.

85

45. Bilu, Y. and Linial, N.: Are stable instances easy? Comb. Probab. Comput. , 21(5):643–660,
2012.

46. Awasthi, P., Blum, A., and Sheffet, O.: Center-based clustering under perturbation stability.
Inf. Process. Lett. , 112(1-2):49–54, 2012.

47. Balcan, M. and Liang, Y.: Clustering under perturbation resilience. SIAM J. Comput. ,
45(1):102–155, 2016.

48. Ben-David, S. and Reyzin, L.: Data stability in clustering: A closer look. Theor. Comput.
Sci. , 558:51–61, 2014.

49. Makarychev, K., Makarychev, Y., and Vijayaraghavan, A.: Bilu-linial stable instances of
max cut and minimum multiway cut. In Proceedings of the Twenty-Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon,
USA, January 5-7, 2014 , ed. C. Chekuri, pages 890–906. SIAM, 2014.

50. Mihalák, M., Schöngens, M., Srámek, R., and Widmayer, P.: On the complexity of the
metric TSP under stability considerations. In SOFSEM 2011: Theory and Practice
of Computer Science - 37th Conference on Current Trends in Theory and Practice of
Computer Science, Nový Smokovec, Slovakia, January 22-28, 2011. Proceedings , eds.
I. Cerná, T. Gyimóthy, J. Hromkovic, K. G. Jeffery, R. Královic, M. Vukolic, and S.
Wolf, volume 6543 of Lecture Notes in Computer Science , pages 382–393. Springer,
2011.

51. Ackerman, M. and Ben-David, S.: Clusterability: A theoretical study. In Proceedings of the
Twelfth International Conference on Artificial Intelligence and Statistics, AISTATS
2009, Clearwater Beach, Florida, USA, April 16-18, 2009 , eds. D. A. V. Dyk and
M. Welling, volume 5 of JMLR Proceedings , pages 1–8. JMLR.org, 2009.

52. Balcan, M., Blum, A., and Gupta, A.: Approximate clustering without the approximation. In
Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2009, New York, NY, USA, January 4-6, 2009 , ed. C. Mathieu, pages
1068–1077. SIAM, 2009.

53. Alabdulmohsin, I. M.: Algorithmic stability and uniform generalization. In Advances in
Neural Information Processing Systems 28: Annual Conference on Neural Information
Processing Systems 2015, December 7-12, 2015, Montreal, Quebec, Canada , eds. C.
Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, pages 19–27, 2015.

86

54. Ben-David, S., von Luxburg, U., and Pál, D.: A sober look at clustering stability. In Learning
Theory, 19th Annual Conference on Learning Theory, COLT 2006, Pittsburgh, PA,
USA, June 22-25, 2006, Proceedings , eds. G. Lugosi and H. U. Simon, volume 4005
of Lecture Notes in Computer Science , pages 5–19. Springer, 2006.

55. Fan, B., Ihara, D., Mohammadi, N., Sgherzi, F., Sidiropoulos, A., and Valizadeh, M.:
Learning lines with ordinal constraints. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2020)
. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

56. Liu, T., Lugosi, G., Neu, G., and Tao, D.: Algorithmic stability and hypothesis complexity.
In Proceedings of the 34th International Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017 , eds. D. Precup and Y. W. Teh,
volume 70 of Proceedings of Machine Learning Research , pages 2159–2167. PMLR,
2017.

57. Meulemans, W., Speckmann, B., Verbeek, K., and Wulms, J.: A framework for algorithm
stability and its application to kinetic euclidean msts. In LATIN 2018: Theoretical
Informatics - 13th Latin American Symposium, Buenos Aires, Argentina, April 16-19,
2018, Proceedings , eds. M. A. Bender, M. Farach-Colton, and M. A. Mosteiro, volume
10807 of Lecture Notes in Computer Science , pages 805–819. Springer, 2018.

58. Chlebík, M. and Chlebíková, J.: The steiner tree problem on graphs: Inapproximability
results. Theor. Comput. Sci. , 406(3):207–214, 2008.

59. Arora, S.: Polynomial time approximation schemes for euclidean traveling salesman and
other geometric problems. J. ACM , 45(5):753–782, 1998.

60. Karp, R. M.: Reducibility among Combinatorial Problems , pages 85–103. Boston, MA,
Springer US, 1972.

61. Vazirani, V. V.: Approximation Algorithms . Berlin, Heidelberg, Springer-Verlag, 2001.

62. Gilbert, E. N. and Pollak, H. O.: Steiner minimal trees. SIAM Journal on Applied
Mathematics , 16(1):1–29, 1968.

63. Regier, T., Khetarpal, N., and Majid, A.: Inferring semantic maps. Linguistic Typology ,
17(1):89–105, 2013.

64. Malt, B. C. and Majid, A.: How thought is mapped into words. Wiley Interdisciplinary
Reviews: Cognitive Science , 4(6):583–597, 2013.

65. Alon, N. and Asodi, V.: Learning a hidden subgraph. SIAM Journal on Discrete Mathematics
, 18(4):697–712, 2005.

66. Beerliova, Z., Eberhard, F., Erlebach, T., Hall, A., Hoffmann, M., Mihal’ak, M., and
Ram, L. S.: Network discovery and verification. IEEE Journal on selected areas in
communications , 24(12):2168–2181, 2006.

67. Reyzin, L. and Srivastava, N.: Learning and verifying graphs using queries with a focus on
edge counting. In International Conference on Algorithmic Learning Theory , pages
285–297. Springer, 2007.

68. Grebinski, V. and Kucherov, G.: Reconstructing a hamiltonian cycle by querying the graph:
Application to dna physical mapping. Discrete Applied Mathematics , 88(1-3):147–165,
1998.

69. Wang, Z. and Honorio, J.: Reconstructing a bounded-degree directed tree using path
queries. In 2019 57th Annual Allerton Conference on Communication, Control, and
Computing (Allerton) , pages 506–513. IEEE, 2019.

70. Janardhanan, M. V. and Reyzin, L.: On learning a hidden directed graph with path queries,
2020.

71. Beame, P., Har-Peled, S., Ramamoorthy, S. N., Rashtchian, C., and Sinha, M.: Edge
estimation with independent set oracles. ACM Transactions on Algorithms (TALG)
, 16(4):1–27, 2020.

72. Addanki, R., McGregor, A., and Musco, C.: Non-adaptive edge counting and sampling via
bipartite independent set queries. arXiv preprint arXiv:2207.02817 , 2022.

73. Goldreich, O., Goldwasser, S., and Ron, D.: Property testing and its connection to learning
and approximation. Journal of the ACM (JACM) , 45(4):653–750, 1998.

74. Reyzin, L.: Active learning of interaction networks . Yale University, 2009.

87

88

VITA

NAME: Neshat Mohammadi

EDUCATION: Ph.D., Computer Science, University of Illinois at Chicago,

Chicago, Illinois, 2022.

M.Sc., Electrical and Computer Engineering, University of Illi-

nois at Chicago, Chicago, Illinois, 2017.

B.Sc., Electrical Engineering, Electronics, Shahid Beheshti Uni-

versity, Tehran, Iran, 2009.

ACADEMIC EX-

PERIENCE:

Research Assistant, Department of Computer Science, University

of Illinois at Chicago.

Teaching Assistant, Department of Computer Science, University

of Illinois at Chicago:

‚ CS 401: Computer Algorithm I, Spring: 2020, 2022 and Fall:

2020, 2021, 2022.

‚ CS 107: Introduction to Computer Programming, Fall 2017.

	to1 Introduction
	 An overview and motivation
	 Metric learning
	 Stability
	 Graph learning

	 Our contributions

	to2 Preliminaries
	 Preliminaries for Metric Learning
	 Well-known metric learning algorithms
	 Unsupervised vs weakly supervised metric learning

	 Preliminaries for stability
	 Preliminaries for learning with queries

	to3 Learning Lines with Ordinal Constraints
	 Introduction
	 Our contribution
	 Related work
	 Organization

	 Warm up: An exact algorithm with no violations
	 The algorithm for the general case
	 Retractions
	 The algorithm

	 Analysis of the algorithm
	 Bounding the number of brittle triples

	to4 Solving Stable Steiner Tree Instances
	 Introduction and previous work
	 Model and definitions
	 Structural properties in general metrics
	 Euclidean Steiner trees
	 Using approximation algorithms to solve stable instances

	to5 Learning Graphs with Bipartite Edge Counting Queries
	 Introduction
	 Previous work
	 Model and definitions
	 Preliminary results
	 A divide and conquer approach for learning graphs
	 Algorithm
	 Proof of correctness

	 Graph verification and learning
	 A visual example on learning a graph with BEC queries

	to CITED LITERATURE
	to VITA

