
Combinatorial Methods for Learning and Information Theory

by

Thomas Jacob Maranzatto
B.A., New College of Florida, 2020

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Mathematics

in the Graduate College of the
University of Illinois at Chicago, 2024

Chicago, Illinois

Defense Committee:
Prof. Lev Reyzin, Chair and Advisor
Prof. Gyorgy Turan
Prof. Dhruv Mubayi
Prof. Jan Verschelde
Prof. Will Perkins, The Georgia Institute of Technology

Copyright by

Thomas Jacob Maranzatto

2024

To Mom and Dad.

iii

ACKNOWLEDGMENT

I’ve been fortunate to have many people support me academically and socially in my pursuit

of this thesis. First, I’d like to thank my advisor Lev Reyzin for his support the past 4 years.

His role in shaping the way I think about mathematics and research is profound, and I couldn’t

have completed this thesis without his guidance. I’d also like to thank Marcus Michelen for

taking time to introduce me to fascinating problems and building my probabilistic intuition.

Special thanks to my committee, Will Perkins, Gyuri Turan, Dhruv Mubayi, and Jan Verschelde,

with whom I’ve enjoyed great topics courses, independent studies, and discussions.

I have many of my peers to thank. Sayok Chakravarty for great discussions and combinatorial

insights in our office, and Karline Dubin for sleepless study sessions and being a great research

partner - both are dear friends. The graduate department wouldn’t be the same without my

good friend Nick Christo’s organizational prowess and humor. I have to thank Sam Wallace,

Trevor Teolis, and Anish Chedalavada for introducing me to rock climbing, which has greatly

improved my well being. I have very fond memories of our time in Utah and drive to the east

coast. I’d also like to thank Sam Dodds, Jenny Vaccaro, Amy Pompillo, Clay Mizgerd, and

Katie Kruzan for being great friends.

I’m lucky to have Jacob, Jacob, Harrison, and Joe as very close friends outside of the

mathematics department. Talking and joking with them are the high points in my week. Our

trips across the country are some of my favorite times.

iv

ACKNOWLEDGMENT (Continued)

My siblings, Hanna and Tyler, have pushed me to be my best in every aspect, and I hope to

be a model for them. My Mom Teresa always supported us three: none of us would be where we

are without her sacrifices. My dad José taught me how to do good, honest work from a young

age, and has more grit than anyone I know.

Finally, I’d like to thank my Fiancé Diana, for supporting me since New College. I can’t put

into words what her relationship means to me; I love her dearly.

TJM

v

CONTRIBUTIONS OF AUTHORS

• Chapter 2 represents the paper Age of Gossip in Random and Bipartite Networks by

Thomas Maranzatto (1). The content in section 2.7 was done after the submission of the

paper, jointly with Marcus Michelen.

• Chapter 3 represents the paper Tree Trace Reconstruction - Reductions to String Trace

Reconstruction by Thomas Maranzatto (2). The results in sections 3.3.2 through 3.4.3

appeared in my undergraduate thesis, and are included as motivation and background.

• Chapter 4 represents the paper A Unified Analysis of Dynamic Interactive Learning by

Xing Gao, Thomas Maranzatto, and Lev Reyzin (3). Xing Gao contributed Sections 4.3

and 4.4, and proved Lemma 11. I contributed 4.3.1 and 4.3.2. The remaining results

including introduction, formulation of definitions, background, literature review, algorithms

and theorems were done jointly with the coauthors.

• Chapter 5 represents joint work with Karoline Dubin, Marcus Michelen, and Lev Reyzin.

All content including introduction, formulation of definitions, theorems, and algorithms

were done jointly with the coauthors.

vi

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 Introduction . 1
1.2 Notation . 2
1.2.1 Data Structures . 2
1.2.2 Glossary of Graph Notation . 3
1.2.3 Asymptotic Notation . 5
1.3 Background . 5

2 AGE OF INFORMATION IN GOSSIPING NETWORKS 10
2.1 Introduction . 10
2.2 System Model and Background 11
2.2.1 Version Age of Information . 11
2.2.2 Random Graphs . 12
2.3 Notation and Summary of Results 13
2.4 Bipartite graphs . 16
2.5 Random Regular Graphs . 21
2.6 Erdős-Reyni Random Graphs . 23
2.7 General Bound on Version Age 28
2.7.1 Lower Bound . 28
2.7.2 Upper Bound . 30
2.7.3 The Upper Bound is tight: ∆-regular tree 32
2.7.4 Application of Theorem 4 to Open Problems 34
2.8 Remarks . 35
2.9 Monotonicity of vAoI . 36
2.10 Proof of Lemma 3 . 38

3 STRING AND TREE RECONSTRUCTION 40
3.1 Introduction . 40
3.1.1 String Trace Reconstruction . 40
3.1.2 Tree Trace Reconstruction . 41
3.2 Related Work . 43
3.3 Tree Reconstruction Lower Bounds 44
3.3.1 Recovering Unknown Tree Topologies 44
3.3.2 Left-Propagation . 47
3.4 Tree Reconstruction Upper Bounds 49
3.4.1 Labelled Trees with known Topology 49
3.4.2 Trees with Large Degree . 50

vii

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

3.4.3 Trees with Leaf Labels . 51
3.5 Combinatorics of String Reconstruction 52
3.5.1 Infinite Strings . 53
3.5.2 Fixed Length Traces . 56

4 DYNAMIC INTERACTIVE LEARNING 60
4.1 Introduction . 60
4.2 Preliminaries . 61
4.2.1 Static model . 61
4.2.2 Dynamic model . 63
4.2.2.1 Shifting target . 64
4.2.2.2 Drifting target . 65
4.3 A unified model . 66
4.3.1 Shortest path . 71
4.3.2 m-Neighborhood . 72
4.4 Query complexity lower bound 73
4.5 Efficient algorithm for low diameter graphs 75
4.5.1 Cliques: graphs with diameter 1 76
4.5.2 Stars: graphs with diameter 2 . 78
4.5.3 Graphs with diameter o(log n) 80
4.5.4 Paths: graphs with diameter n 84
4.6 Acknowledgements . 85
4.7 Proof of Lemma 11 . 85
4.8 Quasi-stars: graphs with diameter d 87

5 LEARNING AUTOMATA FROM RANDOM WALKS 89
5.1 Introduction . 89
5.2 Notation and Problem Statement 91
5.2.1 Problem Statement . 91
5.3 Learning with large transition probabilities 93
5.4 Learning with Small Transition Probabilities: Random DFA . 96
5.4.1 Identifying 0-Cycles . 97
5.4.2 Learning Random DFA in Stages 102
5.4.2.1 Stage 1 . 106
5.4.2.2 Stage 2 and Beyond . 109

CITED LITERATURE . 111

viii

LIST OF FIGURES

FIGURE PAGE
1 The generic picture before (left) and after (right) node w is removed

from tree R in the TED model. The subtrees 3 and 4 are inserted as
children of 1 when w is removed. 42

2 Example configuration of a leaf node a and the leaves nearest it. The
survival of a is dependent on the nodes in its 2-neighborhood. 46

3 Trees Pn and Rn described above . 47
4 The Markov chain under consideration. 56

ix

SUMMARY

Combinatorial structures are ubiquitous in Computer Science - graphs, trees, strings, and

automata are all used in various subfields as modeling tools and objects of study in their own

right. Networks can represent connections between wireless routers, or relations between data

in a server. Trees are a natural way of encoding data at a high level, and strings are the

low-level equivalent stored in physical memory. Automata are a natural definition of limited

computational devices.

This thesis is concerned with these structures in a learning-theoretic setting. We will study

four notions of learning. In Chapter 2, we analyze a message passing protocol over graphs,

where nodes in the graph are attempting to track the data leaving a source. In this setting, the

data at the source is the learned quantity. In chapter 3, we study the sample complexity of

recovering arbitrary strings and trees passed through a lossy channel. Here, the the original

string/tree is the object to be learned. In chapter 4 we study a search game on a graph, where

one player moves a token between vertices, and the other must learn the location of this token

using limited feedback. Finally, in Chapter 5 we consider a learning protocol over deterministic

finite automata, where the learner is given access only to bits generated from a random walk on

the automata, and must learn the structure from these bits.

x

CHAPTER 1

INTRODUCTION

1.1 Introduction

Given access to some noisy source of data, it is a ubiquitous problem in the natural sciences,

statistics, and machine learning to produce a model that describes the source. This thesis is

concerned with the general theme of reconstruction and recovery problems when the source

is a combinatorial structure. Defined informally and broadly, given a combinatorial structure

A (e.g. strings, trees, graphs...) and some property P of that structure, our goal is to either

approximately or exactly produce P given noisy access to A. This informal definition applies to

a host of real-world problems. For instance MRI scanners take 2-dimensional pictures of the

body, and an algorithm then has to stitch these together to form a 3-D object. Another example

is designing DNA sequencing algorithms that output a gene given many noisy fragments of that

gene. A third is observing traffic patterns and producing a schedule for buses or ride-sharing

services. The access to A is highly problem dependent as seen by these examples. Some cases of

access to A could for instance be a time-stamped packet, a random sub-structure, an edge in a

graph, or even just a single bit of information. In fact, these last four examples parallel the four

chapters of this thesis.

Chapter 2 focuses on a simple distributed algorithm for a network of users tracking a

time-varying source; the users wish to recover the source at any time by some communication

1

2

protocol. An application to this is tracking a repository on GitHub where updates are made

at a rate much faster than users can access, and share information with each other on their

knowledge of the repository. Chapter 3 considers the sample complexity for recovering binary

strings and trees when randomly chosen sub-strings or sub-graphs are the only data provided

to the algorithm. This has immediate applications to the DNA sequencing problem referenced

above. Chapter 4 concerns a search problem on graphs where an algorithm attempts to locate a

moving target node by querying vertices - the only feedback given to the algorithm is an edge

on the shortest path from the query to the target. This is an abstract model for recommender

systems, and this chapter gives upper and lower bounds for the number of queries needed to

‘recommend’ the right service or product. Finally, chapter 5 discusses a problem for learning

deterministic finite automata (a type of directed graph) given only local information of the

graph from a random walk. This has applications to robotics and environment learning.

Each of these chapters is self contained, and the purpose of the rest of this section is to set

up notation, review background, and discuss some related work.

1.2 Notation

1.2.1 Data Structures

Throughout we will be dealing primarily with the structures graphs, trees, and strings. A

graph G is a collection of vertices V along with edges E, where an edge is an ordered pair of

vertices (u, v). Sometimes the edges have associated weights, and so we can define a function

w : E→ R that assigns weights to edges, and will write G = (V, E,w) for the weighted graph.

We say a weighted graph is undirected if (u, v) ∈ E =⇒ (v, u) ∈ E and w(u, v) = w(v, u).

3

The distance between two vertices is length of the shortest path connecting u and v and is

denoted distG(u, v)

A cycle in a graph is a collection of vertices v1, ..vk such that the edges {(vi, vi+1)}
k
1 exist

in G, where the sum is mod k. A graph is connected if there is a path between any two

vertices. A tree is a connected undirected graph with no cycles. A rooted tree is a tree with a

distinguished vertex r. All other vertices are said to be descendants of r. v is a child of u if

(u, v) exists and distG(r, u) < distG(r, v). Two nodes are siblings if they are children of the

same node.

A string s over alphabet Ω with length k is an ordered tuple s = (ω1,ω2, ...,ωk) with

ωi ∈ Ω. We write s ∈ Ωk to mean s is an ordered tuple of length k where each symbol is from

Ω. We write s ∈ Ω∗ to mean s has arbitrary finite length. We can allow infinite strings and

use the notation s ∈ Ω∞ where Ω∞ := ΩN. A subsequence s ′ of s is an ordered collection of

symbols from s taken in order. For ordered index set I ⊂ [1, ..., k] we can let s ′ = s[I0, I1, ...].

A substring of s is a subsequence where the index set is contiguous.

1.2.2 Glossary of Graph Notation

Graph theory has a zoology of terminology and notation for different graphs. We briefly

characterize some of these terms here. For every graph below, V is the set of vertices and we

just characterize the edge sets. We start with a few deterministic graphs.

Complete Graph - Kn = {(u, v) : u, v ∈ V} with |V | = n

Complete Bipartite Graph - KL,R = {(u, v) : u ∈ V1 and v ∈ V2} and V1 ∪ V2 = V, V1 ∩ V2 = ∅,

|V1| = L, |V2| = R

4

Star Graph - Sn = K1,n

Path Graph - Pn = {(i, i+ 1) : i ∈ [n]} with V = [n]

Cycle Graph - Cn = {(i, (i+ 1) mod n) : i ∈ [n]} with V = [n]

k-regular Graph - Graph where all vertices have exactly k neighbors.

k-ary tree - Rooted tree where each vertex has at most k children

k-regular tree - k-ary tree which is also k-regular

There are three classes of random graphs this thesis discusses. The first, and most classical,

is the Erdős-Reyni random graph model. Here every possible edge (u, v) is included with

probability p independent of all other edges. This induces a measure on the set of all n-vertex

graphs, which is denoted G(n, p). The second type we consider is the random regular graph.

In this model, the measure is uniform on all d-regular graphs, and is denoted G(n, d). There is

no ambiguity between G(n, p) and G(n, d) as p ∈ [0, 1] but d ∈ N. The final class of graphs are

the d-dimensional random geometric graph, which are briefly discussed in Section 2.7.4.

Now vertices are points in Rd distributed uniformly at random. Two vertices are neighbors if

they have Euclidean distance at most γ, and this measure is denoted Gd(γ, n).

Finally we introduce some notation for deterministic finite automata (DFA). A DFA D is

a a tuple (V, τ, γ, n0) where V is the set of states, τ : V × {0, 1}→ V is the transition function,

γ : V → {+,−} is the accept/reject behavior, and v0 is the start state. We think of a D as a

directed labeled graph where each vertex has out-degree 2. The two edges leaving any vertex are

labeled 0 and 1, and each vertex has a label in {+,−}. For any string s ∈ {0, 1}∗, the accept/reject

5

behavior of D on s is defined by starting at q0 and following the labeled edges that agree with s

in order; the final state reached has some label and this is output. We write v0 s for the symbol

output by the above procedure.

1.2.3 Asymptotic Notation

Throughout this thesis we will count the number of operations various algorithms make

before they terminate. We use conventional Big-O, and Little-o notations.

Definition 1 (Big-O Notation). We say that f(n) = O(g(n)) if there exists c0, n0 > 0 such

that for all n > n0, f(n) ≤ c0g(n)

Definition 2 (Little-o Notation). We say that f(n) = o(g(n)) if for every ε > 0 there exists

n0 > 0 such that for all n > n0, f(n) ≤ εg(n)

Definition 3 (Big-Ω Notation). We say that f(n) = Ω(g(n)) if there exists c0, n0 > 0 such

that for all n > n0, f(n) ≥ c0g(n)

Definition 4 (Little-ω Notation). We say that f(n) = ω(g(n)) if for every ε > 0 there exists

n0 > 0 such that for all n > n0, f(n) ≥ εg(n)

Definition 5 (Big-Θ Notation). We say that f(n) = Θ(g(n)) if f(n) = O(g(n)) and f(n) =

Ω(g(n))

1.3 Background

The purpose of this section is to synthesize some concepts in the remaining four chapters, and

show how information theory, combinatorics, and learning are used to solve various problems.

6

We start with random graph theory, which makes appearances in chapters 2 and 5. Broadly,

graphs on n vertices are endowed with a probability measure, and the aim is to study typical

behavior and deviations of graphs chosen from this measure. A central question in this area

is when a graph property holds under different model parameters. A graph property for n-

vertex graphs is a function f : {0, 1}(
n
2) → {True,False} which is invariant under permuting the

vertex labels. Properties can usually be understood colloquially (eg. connectivity, 3-colorability,

triangle-freeness). A nice class of properties are monotone graph properties; these are the

properties where adding edges cannot make the property go True to False.

The first random graph model was studied by Erdős and Reyni (4), where the measure is

uniform on all graphs with exactly M edges. We denote this graph by G(n,M) A related model

was introduced in parallel by Gilbert (5), where edges of the graph are included independently

with probability p. We keep our notation from the introduction and denote this G(n, p). These

two models are basically equivalent when M ∼ pn and p(1− p)n→∞. Here if Q is a convex

graph property (F ⊂ G ⊂ H) and F and H have Q, then so does G), and almost surely (a.s.)

G(n, p) has Q, then so does G(n,M) (6). Here ‘almost surely’ means with probability tending

to 1 as n→∞, the rate of convergence is not relevant.

A historic question in random graph theory is to determine when monotone graph properties

hold almost surely. First noticed by Erdős and Reyni for the G(n,M) model and later for

G(n, p), these models undergo a threshold at some critical edge density; below this density the

random graph does not have the property a.s., and above the density it has the property a.s.

We briefly note that monotonicity is crucial here, as this phenomena is a consequence of the

7

monotone version of the Margulis-Russo Formula for monotone Boolean functions. Friedgut and

Kalai (7) showed under the extra assumption that the graph property is also symmetric, then

the property has a sharp threshold. We discuss this phenomena a bit more in Chapter 2.

We can discuss properties of random DFA, which appear in Chapter 5. These are related

to two other models, random d-regular graphs and random mappings. In both models the

random structure is chosen from the uniform distribution on the support; all d-regular graphs

or all mappings f : [n] → [n]. It was shown by Bollobas (8) that the random regular graph

has great connectivity properties if d > 2 (if d = 2 the graph is a collection of disjoint cycles).

On the other hand, a random DFA is a random out-degree regular graph with dout = 2. If we

isolate one of the out-edge sets, say the edges labeled with a 0, then the resulting structure

is precisely a random mapping, which is a collection of disjoint trees rooted on disjoint cycles.

There are various studies looking into the properties of random mappings, such as size of the

largest component, number of vertices on cycles, number of vertices on trees and more (9; 10).

Unlike the G(n, p) model, there is no parameter p to vary, so these properties hold a.s. for all

random mappings. We discuss random mappings and random DFA more in chapter 5.

Somewhat related to random graphs are random walks on graphs. These appear in chapters

2, 4, and 5. For the purposes of this thesis, the underlying graph G will be fixed for the random

walk, and a particle will be placed at some starting vertex v0. For each discrete time t ∈ N,

the particle uniformly chooses a random neighbor of the current vertex and moves there. In

chapters 2 and 4 we analyze time the particle takes to first visit a distinguished state s, known

as the hitting time for s. For gossip networks, this corresponds to the time a data packet takes

8

to travel from the source to s. For dynamic learning, this corresponds to the time it takes for a

simple learning protocol to observe the moving target under noisy observations. Chapter 5 uses

the random walk as a source of data collection on a DFA, and we compute upper bounds for

the time to hit a state k times. Random walks on graphs are a special type of discrete-time

Markov Chain, and we will see a simple example of a Markov Chain in Chapter 3, which we use

to generate random binary strings.

We conclude by discussing some background on Learning Theory. Chapter 4 refines the

Multiplicative Weights (MW) algorithm for Online Learning. In this setting there are an

unbounded number of rounds r1, r2, ...rn, ..., and a collection of M ‘experts’ e1, ..., eM. Our goal

is to predict some time-varying Boolean function f(t) at round rt given advice from each expert

during that round. After every round we are told if our prediction was correct or not. We know

expert ej is correct with some fixed probability pj, so the question is how to appropriately utilize

the advice from the experts.

The MW algorithm proceeds as follows. Fix some weight parameter ε < 1. After each

round, expert ej have a weight wj assigned to him, and our prediction will be the choice with

the higher total sum of expert weights. Once we learn what the truth was for the round, we

multiply the weights of the correct experts by 1 − ε, and the incorrect by ε. Then it can be

proven that after T rounds, the number of mistakes MT this algorithm makes is bounded by

MT ≤ 2(1− ε)maxi pi+
2 lnn
ε + o(1). This access to experts is a specialization of query learning,

where the learning algorithm has access to some device to possibly noisy query function. The

motivation for Chapter 5 stems from Angluin’s (11; 12) results on query learning DFA. Her

9

L∗ algorithm learns using membership and counterexample queries, which we discuss in the

introduction of Chapter 5.

CHAPTER 2

AGE OF INFORMATION IN GOSSIPING NETWORKS

2.1 Introduction

We live in a world of connectivity, and randomized communication networks are becoming

more ubiquitous. From IoT applications (13) to federated machine learning topologies (14)

to connectivity in drone swarms (15), it is clear that analysis of information flow in random

networks is needed.

In this chapter we consider the version age of information (vAoI) metric over various gossip

network topologies. Herein, a source node observing a process randomly shares its status with a

network G = (V, E), and the nodes in the network randomly share (or ‘gossip’) their statuses

amongst each other. A central question in gossip networks is to characterize how out of date

the status of the network is compared to the source, and the vAoI is just one among many

metrics used to measure ‘freshness’. Others include the age of information (16), age of incorrect

information (17), and age of synchronization (18).

Yates (19) initialized the study of version age by using formula (2.1) to show that the age

of information in the complete gossiping network Kn scales as Θ(logn), and the age of gossip

in the disconnected network Kn scales as Θ(n). Yates also gave a conjecture that the cycle Cn

should have version age O(
√
n) which was subsequently proven by Srivastava and Ulukus (20).

Other works have studied the 2-d lattice (21) and generalizations of cycles (20). For an overview

10

11

of the problem and many variants, we refer the reader to the recent survey by Kaswan, Mitra,

Srivastava, and Ulukus (22).

This chapter investigates the question, ‘how does the vAoI evolve as we interpolate between

Kn and Kn’? This is a natural question to ask, and was stated in other works ((21; 22)) and

partially answered in the context of generalized cycles (20). We choose to focus on complete

bipartite graphs KL,R and random graph models. For bipartite graphs, we investigate how version

age changes when we vary the partition sizes. For random graphs, we show a phase transition

occurs where the graph moves from rational to logarithmic version age. We also study d-regular

graphs and show under the uniform distribution, these almost surely have logarithmic version

age. Precise statements of our results are presented in section 2.3.

2.2 System Model and Background

2.2.1 Version Age of Information

We consider a source node n0 sending updates to a network G = (V, E) over n nodes. We

let V = [1, .., n]. The source updates itself via a Poisson process with rate λe. The source

also sends updates to each v ∈ G as separate Poisson processes with rates λ
n . In all graphs we

consider, an undirected edge ij ∈ E facilitates two-way communication between nodes i and j,

with λi(j) =
λ

deg(i) denoting the Poisson rate from i to j, and λj(i) =
λ

deg(j) denoting the Poisson

rate from j to i. In general λi(j) ̸= λj(i). If node i has no neighbors then for all j, λi(j) = 0.

The source and every node in the network have internal counters; when a node i ∈ V ∪ {n0}

communicates to a neighbor j (because i’s Poisson process updated) i sends its current counter

value. The counter for n0 increments if and only if the process for n0 updates. Contrast this

12

with j ∈ V whose counter increments if and only if j receives a newer version from one of its

neighbors. Let Xj(t) be the number of versions node j is behind n0 at time t, and for any

subset S of vertices let XS(t) = mini∈S Xi(t). Then the limiting average version age of S is

vG(S) = limt→∞ EXS(t).

The information flow from i into set S is denoted by λi(S) =
∑
j∈S λi(j) =

λ|N(i)∩S|
deg(j) . Similarly

λ0(S) =
λ|S|
n . Then the main result of Yates (19) is that the stochastic quantity vG(S) can be

computed combinatorially by the recursion:

vG(S) =
λe +

∑
i̸∈S λi(S)vG(S ∪ {i})

λ0(S) +
∑
i̸∈S λi(S)

(2.1)

In any network where λ and λe are constant, λ0(S) =
λ|S|
n , and λi(j) =

λ
deg(i) , the version age

is monotonic and bounded as Ω(logn) = vG(S) = O(n) as shown in Section 2.9. We use this

fact numerous times throughout and will attempt to be explicit when it is applied.

2.2.2 Random Graphs

A graph is d-regular if all vertices have degree d. We let G(n, d) denote the uniform

probability distribution over all n-node d regular graphs. The Erdős-Reyni model G(n, p)

denotes the distribution on n-node graphs where each edge is chosen i.i.d. with probability

p. We say a graph property Q holds asymptotically almost surely (a.a.s.) under G(n, d) if

P[G(n, d) ∈ Q]→ 1 as n→∞, and likewise for G(n, p).

13

A graph property is called monotone if adding edges to a graph does not change the property

and the property is invariant to permuting the labels of vertices (e.g. connectivity is monotone,

3-colorability is not). Recall the definition of a random graph threshold:

Definition 6. A function p∗ = p∗(n) is a threshold for graph property R in G(n, p) if

lim
n→∞P[G(n, p) ∈ R] =

0 if p/p∗ → 0

1 if p/p∗ →∞
A sharp threshold is defined similarly, where the limits to 0 and ∞ can be bounded by

1− ε and 1+ ε respectively, for every ε > 0. (See eg. (7) for a more formal definition of sharp

thresholds.)

2.3 Notation and Summary of Results

Throughout we assume λ0 and λ are constants and let n→∞. All inequalities are meant

to hold for n sufficiently large. We say a graph property Q holds asymptotically almost surely

(a.a.s.) under G(n, d) if P[G(n, d) ∈ Q] → 1 as n → ∞, and likewise for G(n, p). We use

vG(S) to denote the version age of S ⊆ V, and when there is no ambiguity about the graph

the subscript G will be dropped. The graph KL,R is the complete bipartite graph with vertex

bipartition V = L ∪ R and E(G) = {uv : u ∈ L, v ∈ R}. For any S ⊂ V, the neighborhood of

S is N(S) = {v ∈ V : distG(v, S) = 1} and its edge boundary is ∂S = {ij ∈ E : i ∈ S, j ̸∈ S}.

Let Bm(v) := {u : distG(u, v) ≤ m} be the ball of radius m about v. Define m∗(v) := min{m :

14

|Bm(v)|m ≥ n} and Φm(v) := |Bm(v)|
|Bm−1(v)|

. Finally we use the notation Θ̃(·) to suppress logarithmic

factors. Our main results are presented below.

Theorem 1. Let L := L(n) and R := R(n) be non-decreasing functions such that |L|+ |R| = n

and for all n, |L| < |R|. For KL,R, if j ∈ R then,

1. L = Θ(1) =⇒ v({j}) = Θ(n)

2. L = f(n) and f(n) = o(n) =⇒ v({j}) = Ω(n/f(n))

3. L = nα for α ∈ (0, 1) =⇒ v({j}) = Θ̃(n1−α)

4. L = Θ(n) =⇒ v({j}) = Θ(logn)

Theorem 2. For any fixed d ≥ 3, a.a.s the worst-case version age of any vertex in G(n, d) is

Θ(logn).

Theorem 3. Let ε > 0. If p = (1−ε) logn
n then a.a.s. the average version age of a vertex in

G(n, p) is Ω(nε−o(1)). If p = (100+ε) logn
n then the average version age of a vertex is Θ(logn).

Furthermore there are constants α > 0 and 1 ≤ c∗ ≤ 100 such that p = c∗ logn
n is a threshold for

the graph property “G has average version age less than α logn”

Theorem 4. There exists constants C1, C2 such that for any gossip network where λe = λ = 1

with minimum degree δ and maximum degree ∆, every vertex v ∈ V, the average expected age

satisfies

C1min

{
δ

∆
,

1

Φm∗(v)

}
≤ EXv(t)
m∗(v)

≤ C2∆

15

To summarize in words, the worst-case version age in complete bipartite graphs is inversely

related to the size of the smaller component. This intuitively makes sense, as K0,n = Kn is the

empty graph and has linear version age, and the balanced bipartite graph Kn/2,n/2 is very dense

so information should flow readily (and we will show has the same version age scaling as Kn

up to constant factors). Theorem 1 makes this intuition precise. Our concern with rational

partition sizes in KL,R is to compare these graphs to generalized rings with rational degree as

studied in (20): in both cases rational degree distribution leads to rational version age scaling.

Perhaps surprising is the contrast between Theorem 2 and Theorem 3, where d-regular graphs

have logarithmic version age and G(n, p) only achieves logarithmic version age for expected

degree ∼ logn. An explanation for this is that for any fixed d, G(n, d) is a very good expander,

but G(n, p) only achieves connectivity once p = logn
n and so below this point is a worst-case

expander. Expansion is a good measure for long-range connectivity in graphs, and connectivity

should be a condition for the quick spread of gossip. In fact the proof for Theorem 2 relies

heavily on the expansion properties of G(n, d), and likewise the lower bound of Theorem 3 relies

on counting isolated vertices in G(n, p).

Theorem 4 gives a general result for the average version age of an arbitrary graph. The value

m∗ is the combinatorial quantity that controls the version age scaling. Intuitively this can be

though of as the time it takes a new packet from the source to land ‘close’ to vertex v, and then

for this packet to be forwarded to v by the gossiping protocol. We use Theorem 4 to re-prove

some results above and solve open problems in section 2.7.4

16

2.4 Bipartite graphs

We prove theorem 1. By symmetry of the complete bipartite graph KL,R, the version age of a

subset only depends on the number of nodes in the left and right parts. Therefore for any subset

S ⊂ V with |S ∩ L| = i, |S ∩ R| = j define v(i, j) := vKL,R
(S) and likewise for λw(i, j). Finally

define uKL,R
(i, j) = λ

λe
vKL,R

(i, j).

Lemma 1. Let KL,R be a complete bipartite graph on n vertices. Then for any S ⊂ V with

S ∩ L = i, S ∩ R = j,

uKL,R(i,j) =
1+ (|L|−i)j

|R|
u(i+ 1, j) + (|R|−j)i

|L|
u(i, j+ 1)

i+j
n + (|L|−i)j

|R|
+ (|R|−j)i

|L|

.

Proof. Rearranging equation (2.1) and using v(V) = λe
λ ,

v(V)λ = λ0(S)v(S) +
∑
i ̸∈S
λi(S)(v(S) − v(S ∪ {i}))

17

Note that u(S) = v(S)
v(V) , and λ0(S) =

λ|S|
n . By symmetry of the network we can split the sum and

simplify,

1 =
i+ j

n
u(i, j) +

∑
(S∩L)c

j

|R|
(u(i, j) − u(i+ 1, j))

+
∑

(S∩R)c

i

|L|
(u(i, j) − u(i, j+ 1))

= u(i, j)

(
i+ j

n
+

(|L|− i)j

|R|
+

(|R|− j)i

|L|

)
−

(|L|− i)j

|R|
u(i+ i, j) −

(|R|− j)

|L|
u(i, j+ 1)

Solving for u(i, j) completes the proof

Proof. (Theorem 1) We split the proof into four parts corresponding to the four regimes in

the Theorem. Since u(S) is a constant multiple of v(S), we are content to bound the former.

If L = Θ(1), then there are constants C1 < lim inf L(n) and C2 > lim supL(n). Then for large

enough n,

λ

λe
v(0, 1) = u(0, 1) ≥

1+ C1
n−C1

u(1, 1)

1
n + C2

n−C2

≥ n− C2
C2 + 1

= Θ(n)

Where the second inequality uses the fact that for all graphs uG(S) > 0. The upper bound

follows since any graph has at most linear version age.

For the second case that L = f(n) = o(n),

u(0, 1) ≥
1+ f(n)

n−f(n)u(1, 1)

1
n + f(n)

n−f(n)

≥ n− f(n)

f(n) + 1
= Ω

(
n

f(n)

)

18

where the last equality follows from the upper bound on f. For the third case when L = nα, we

have the lower bound Ω(n1−α) from the above observation. We also have

u(0, 1) =
1+ nαu(1,1)

n−nα

1
n + nα

n−nα

= O
(
n1−α

)
+O (u(1, 1))

so it is enough to show u(1, 1) = Õ
(
n1−α

)
. To that end we state and prove the following lemma.

Lemma 2. For any complete bipartite graph KL,R,

uKL,R
(1, 1) ≤ min{|R|(log(|L|) + 1), |L|(log(|R|) + 1)}.

Proof. For clarity we write L and R instead of |L| and |R| and drop the subscript on u(·, ·). By

Lemma 1

u(k, 1) ≤
1+ L−k

R u(k+ 1, 1) +
k(R−1)
L u(k, 2)

L−k
R + k(R−1)

L

≤
1+ L−k

R u(k+ 1, 1) +
k(R−1)
L u(k, 1)

L−k
R + k(R−1)

L

=
RL+ L(L− k)u(k+ 1, 1) + kR(R− 1)u(k, 1)

L(L− k) + kR(R− 1)

19

Where the second inequality follows since increasing the size of a set can only decrease its version

age. Letting D = L(L− k) + kR(R− 1), we have

u(k, 1)

(
L(L− k)

D

)
≤ RL

D
+
L(L− k)

D
u(k+ 1, 1)

=⇒ u(k, 1) ≤ R

L− k
+ u(k+ 1, 1)

Starting at u(1, 1) and applying this inequality recursively L times, followed by expanding the

right partition yields u(1, 1) ≤ R+
∑L
i=1

R
L−i ≤ R(log(L) + 1). An analogous argument holds for

the quantity L(log(R) + 1) by instead expanding u(1, k).

Applying Lemma 2 gives u(1, 1) ≤ nα (log(n− nα) + 1) and completes the proof for the

third case.

For the fourth case when L = Θ(n), similar to case one we could find constants C1, C2 so

that the tail of L(n) is bounded as nC1 ≤ L(n) ≤ nC2. For clarity we are content to let L = cn,

and K(n) := Kcn,(1−c)n for some absolute constant c. We also drop floors and ceilings on cn

when this isn’t an integer; this obviously doesn’t change the asymptotics. We briefly prove the

following fact.

Fact 1. uK(n)(1, 2) ≤ uK(2n)(1, 2) and uK(n)(2, 1) ≤ uK(2n)(2, 1)

Proof. When we move from Kcn,(1−c)n to K2cn,2(1−c)n, every arc in the larger network has half the

capacity of a corresponding arc in the smaller network. Therefore by symmetry of the network

20

any subset (A,B) ⊂ K2cn,2(1−c)n will have the same version age scaling as (A/2, B/2) ⊂ Kcn,(1−c)n.

The result follows from monotonicity (Appendix A, Lemma 5).

Now there is a δ = δ(c) > 0, and for any ε > 0 and n large enough,

uK(n)(1, 1) =
1+ nc−1

n(1−c)uK(n)(2, 1) +
n(1−c)−1

nc uK(n)(1, 2)

2
n + nc−1

n(1−c) +
n(1−c)−1

nc

≤ 1

1
n + nc−1/2

(1−c)n + n(1−c)−1/2
nc

×

(
1+

nc− 1

n(1− c)
uK(2n)(2, 1)

+
n(1− c) − 1

nc
uK(2n)(1, 2)

)
+ ε

≤ 1

1
n + nc−1/2

(1−c)n + n(1−c)−1/2
nc

×

(
1+

nc− 1/2

n(1− c)
uK(2n)(2, 1)

+
n(1− c) − 1/2

nc
uK(2n)(1, 2)

)
+ ε− δ

= uK(2n)(1, 1) + ε− δ

In the first inequality we applied Fact 1 and noted the limits are the same. In the second

inequality we used the fact that the version age of a subset in any network is at most linear.

Therefore uK(n)(1, 1) ≤ uK(2n)(1, 1) + ε − δ, setting ε < δ implies uK(n)(1, 1) = O(logn). The

lower bound follows since the version age of the clique Kn is Θ(logn).

21

2.5 Random Regular Graphs

The proof for Theorem 2 uses similar techniques to (21) for bounding the age of gossip on a

grid. Therein a key part of the argument is understanding expansion properties of the network;

how many edges exist in any cut of G. We recall the edge expansion number for a graph (also

known as the Cheeger constant, or isoperimetric number).

Definition 7. For any graph G, the edge expansion number h(G) is given by

h(G) := min
|S|≤n/2

|∂S|

|S|

where ∂S is the set of edges in the cut spanning S and Sc.

Recall that G(n, d) is the uniform probability distribution over all d-regular graphs. A result

by Bollobás (8) shows for constant d, G(n, d) generates good edge expanders. We need a weaker

version of his result,

Theorem 5. (Bollobás(8)) For every fixed d ≥ 3. Then there is a constant cd <
1
2 such that

P[h(G(n, d)) ≥ dcd]→ 1 as n→∞
Proof. (Theorem 2) Recalling identity (4) from (21) which is just a rearrangement of equa-

tion (2.1),

λe = λ0(S)v(S) +
∑
i ̸∈S
λi(S)(v(S) − v(S ∪ {i})) (2.2)

22

Since G(n, d) is regular, we can partition ∂S into sets A1, ..., Ad where Aj = {v ̸∈ S : |N(v)∩S| = j}.

Then,

λe = λ0(S)v(S) +

d∑
i=1

∑
j∈Ai

λj(S)(v(S) − v(S ∪ j))

≥ λ0(S)v(S) +
d∑
i=1

|Ai|
iλ

d
min
j∈Ai

(v(S) − v(S ∪ j))

≥ λ0(S)v(S) +

(
λ

d

d∑
i=1

i|Ai|

)
(v(S) − max

i∈N(S)
(v(S ∪ i)))

Since
∑d
i=1 i|Ai| = ∂S, by Theorem 5, when |S| < n/2 a.a.s. G(n, d) satisfies:

λe ≥
λ|S|

n
v(S) +

λ

d
cdd|S|(v(S) − max

i∈N(S)
v(S ∪ i))

=⇒ v(S) ≤
λe
λ + cd|S|maxi∈N(S) v(S ∪ i)

|S|
n + cd|S|

(2.3)

By an analogous argument for when |S| > n/2:

v(S) ≤
λe
λ + cd(n− |S|)maxi∈N(S) v(S ∪ i)

|S|
n + cd(n− |S|)

(2.4)

23

Therefore when unrolling recursion (2.2) for v({i}), if |S| < n/2 we use inequality (2.3), otherwise

we use (2.4). To that end let X be the sum corresponding to small subset size and letting j := |S|,

X ≤ λe

λ

(
1

cd +
1
n

)1+ n/2∑
i=1

i∏
j=1

cdj
j+1
n + cd(j+ 1)

≤ λe

cdλ

1+ n/2∑
i=1

i∏
j=1

cdj
j+1
n + cd(j+ 1)

≤ λe

cdλ

1+ n/2∑
i=1

i∏
j=1

j

j+ 1

=
λe

cdλ

1+ n/2∑
i=1

1

i+ 1

 = O(logn)

Letting Y be the terms corresponding to |S| > n/2, it can be shown that

Y ≤ λe

λ
+
λe

λ

1+ n−2∑
i=n/2

i∏
j=n/2

cd(n− j)
j
n + cd(n− j− 1)

×
n/2−1∏
j=1

cdj
j
n + cd(j+ 1)

× 1

1/2+ cdn/2

≤ C ′λe
λ

logn = O(logn)

Where we omitted computations that are analogous to those found in the previous step and

in (21). Finally noting that for any network v({i}) = Ω(logn) completes the proof.

2.6 Erdős-Reyni Random Graphs

We need the following lemmas on properties of G(n, p),

Lemma 3. The following holds a.a.s.

24

1. If d < 1 and p = d/n, then G(n, p) has no component of size larger than O(logn)

2. If 1/2 < d < 1 and p = d logn
n then G(n, p) has Ω(n1−d−o(1)) isolated vertices

3. If d > 100 and p = d logn
n then G(n, p) is connected and for any 0 < ε < 1, every

v ∈ G(n, p) satisfies deg(v) ∈ ((1− ε)np, (1+ ε)np)

Proof. Items 1 and 3 are easily verified ((23), (24)). We leave item 2 for Section 2.10.

Lemma 4. Let 0 < δ < 1 and p ≥ 30 logn
δ2n

. Then a.a.s. all subsets S of G(n, p) with |S| < n
2

satisfies

P (|∂S| ̸∈ (1± δ)E[|∂S|]) = o(1)

Proof. For any S ⊂ V where |S| = k and α = δ
√
k(n− k)p, define AS := P

[
|∂S| ̸∈ (1±δ)E[|∂S|]

]
.

Since in G(n, p) edges are included i.i.d, the Chernoff bound states

P[AS] ≤ 3 exp
(
−α2

8

)
.

then by the choice of p, for n large,

9 log
(
n
(
n
k

))
δ2k(n− k)

≤
9 log(nek)

δ2(n− k)
+
9 log(n)

δ2(n− 1)

≤ 9(1+ logn)

δ2 n2
+
10 logn

δ2n
≤ p

25

So that by the definition of α,

P

 ⋃
S⊂V

|S|≤n/2

AS

 ≤ 3
n/2∑
k=1

(
n

k

)
exp

(
−δ2k(n− k)p

8

)

≤ 3
n/2∑
k=1

o

(
1

n

)
= o(1)

Proof. (Theorem 3) Let ε > 0 and suppose p ≤ (1−ε) logn
n . Then by Lemma 3.2, there are

O(nε−o(1)) isolated vertices. By equation (2.1) any isolated vertex i has version age v({i}) =

λen
λ = Θ(n). For any i that is not isolated,

vG(n,p)({i}) = Ω(logn).

Then the average version age of a vertex is greater than 1
n(Θ

(
n1+ε−o(1)

)
+Ω ((n− nε)) logn) =

Ω(nε−o(1)), which is a rational function for all ε > 0.

Now let p ≥ 100 logn
n . Define Aj = {v ∈ V(G) : |N(v) ∩ S| = j} and u(S) = v(S)

v(V) . Applying

Lemma 3.3 with ε = 1/2 and Lemma 4 with δ = 1/3, a.a.s. for every k = |S| ⊂ V we have

v(V)λ = λ0(S)v(S) +
∑
i̸∈S
λi(S)(v(S) − v(S ∪ {i}))

=
λk

n
v(S) +

∑
i ̸∈S

|N(i) ∩ S|
deg(i)

(v(S) − v(S ∪ {i}))

26

Where the first line is identity (2.2). Then a.a.s.

n ≥ ku(S) + 2n

3 logn

∑
ℓ<3 logn

Aℓ(u(S) − u(S ∪ {i})) (2.5)

≥ ku(S) + n

2 logn
×
k(n− k) 23 logn

n

× (u(S) − max
i∈N(S)

u(s ∪ i)) (2.6)

≥ ku(S) + 1

3
k(n− k)(u(S) − max

i∈N(S)
u(s ∪ i))

Where (2.5) uses Lemma 3 and connectivity, and (2.6) uses Lemma 4 and symmetry. Rearranging,

u(S) ≤
n+ 1

3k(n− k)maxu(S ∪ {i})

k+ 1
3k(n− k)

(2.7)

Let Pi =
∏n−1
j=i

1
3
j(n−j)

j+ 1
3
j(n−j)

. Expanding a single vertex ℓ ∈ V,

u({ℓ}) ≤ n

1+ n−1
3

+
1
3(n− 1)

1+ 1
3(n− 1)

+

n∑
i=1

n

(i+ 1) + 1
3(i+ 1)(n− i− 1)

Pi

Observing that Pi =
∏n−1
j=i

n−j
n−j+3 ≤

∏n−1
j=i

n−j
n−j+1 =

1
n−i+1 ,

u({ℓ}) ≤ C1 + 3n
n∑
i=1

1

i(n− i+ 1
3)

(2.8)

Where the 1
3 is present to avoid diving by zero and facilitate the next step. Briefly recall some

properties of the Digamma function (25): for every complex z that is not a negative integer,

27

the Digamma function has series representation ψ(1+ z) = −γ+
∑∞
k=1

z
k(k+z) , where γ is the

Euler–Mascheroni constant. Also ψ(1− x) = ψ(x)+π cot(πx) and ψ(1+ x) ∼ log x if x ∈ (0,∞).

Therefore (2.8) is bounded as,

u({ℓ}) ≤ C1 +
∞∑
i=1

3n

i(n− i+ 1
3)

+

∞∑
i=n+1

3n

i(i− n− 1
3)

≤ C2 + 3
∞∑
i=1

−(n+ 1
3)

i(i− (n+ 1
3))

+ 3

∞∑
i=1

n

i(n+ i)

≤ C3 + 3ψ(1− (n+
1

3
)) + 3ψ(n+ 1)

= O(logn)

We conclude by remarking on the existence of a threshold for super-logarithmic to logarithmic

version age in G(n, p). Fix ε > 0, δ > 0 and the sequences p0(n) := (1−ε) logn
n and p1(n) :=

(100+ε) logn
n . Consider the graph property P =‘G has average version age less than α logn’.

We just proved that P[G(n, p0) ∈ P] ≤ δ, and P[G(n, p1) ∈ P] ≥ 1 − δ, when α is suitably

large. By Lemma 6 adding edges to any G cannot increase the average version age, P is a

monotone graph property invariant under vertex permutations. Therefore for all n, there

exists a p∗(n) ∈ (p0(n), p1(n)) where P[G(n, p∗) ∈ P] = 1
2 . By the shrinking critical window,

limn→∞ p1(n)−p0(n)
pc(n)

exists, so Definition 6 is satisfied and a threshold exists.

We briefly note that part 1 of Lemma 3 implies for d < 1 and p < d/n, the expected version

age of a vertex in G(n, p) is Ω
(

n
logn

)
. For p much greater than in part 3, the version age still

scales logarithmically, but the constant factors decrease.

28

2.7 General Bound on Version Age

Throughout we fix a communication graph G = (V, E) and a distinguished vertex v ∈ V

whose age we wish to track. Let Bm := {u : distG(u, v) ≤ m} be the ball of radius m about v.

Define m∗ := min{m : |Bm(v)|m ≥ n} and Φm := |Bm(v)|
|Bm−1(v)|

. Recall Xt(v) is the number of versions

node v is behind the source, δ is the minimum degree of G and ∆ is the maximum degree of G.

For consistency with the above notation, we drop the dependence on v for the version age and

define Xt := Xt(v). For notational convenience we assume λe = λ = 1. In this section we prove

Theorem 4

2.7.1 Lower Bound

We start with the lower bound in Theorem 4.

Proof. For C1 as given in the Theorem statement, let K =
(
100C1

(
∆
δ +Φm∗

))−1
. For any

m ∈ N, 0 ≤ t, and a ≥ 0 define the following events:

• E1 is the event the source n0 updates itself at least Km∗ times in the interval [t− Km∗, t]

• E2 is the event no vertex in Bm∗ received an update from the source in the in the interval

[t− Km∗, t]

• E3 is the event there is no path from Bm∗ \ Bm∗−1 to v that updates in sequence in the

interval [t− Km∗, t]

Note that E1, E2, E3 are mutually independent, so it suffices to show each are bounded below

by a constant, so that their intersection has positive constant probability.

29

The probability of E1 is at least 1/2. The probability of E2 can be bounded as,

P[E2] = exp

(
−
Km∗|Bm∗ |

n

)
≥ exp

(
−
2K(m∗ − 1)|Bm∗−1|Φm∗

n

)
≥ exp (−2KΦm∗)

Which is bounded away from 0 by our choice of K. For E3 we need the following result,

Lemma 5. For Y1, . . . , YN i.i.d. exponential random variables with mean µ, there is a constant

C such that

P

 N∑
j=1

Yj ≤ t

 ≤
(
Ctµ

N

)N

For every vertex w0 ∈ Bm∗ \Bm∗−1, the number of paths of length L from w0 to v is at most

∆L. Let w0, w1, ..., wL−2, v be such a path. Let T1 be the time it takes after t − Km∗ for the

edge w0w1 to update. Then T2 the time after already waiting T1 for w1w2 to update, and so

on for all edges in the path. By definition of the model, the Ti are independent exponential

random variables with mean at most 1/δ (each edge represents a Poisson process with mean

inter-arrival time given by its degree). Therefore define {Yj}
L
j=1 to be i.i.d. standard exponential

random variables. We have by Lemma 5,

P[(w0, w1, ..., v) update in sequence] ≤ P

(
L∑
i=1

Yi ≤ Km∗

)
≤
(
CKm∗
Lδ

)L

30

Summing over all paths we obtain a bound of,

P[Ec3] ≤ |Bm∗ |

∞∑
L=m∗+1

(
∆
CKm∗
δL

)L

= |Bm∗ |

∞∑
L=m∗+1

(
∆
CKm∗|Bm∗ |

1/L

δL

)L

≤ |Bm∗ |

∞∑
L=m∗+1

(
∆
CKm∗|Bm∗ |

1/m∗

δL

)L

Which is bounded away from 0 by our choice of K. Therefore P[E1 ∩ E2 ∩ E3] is bounded away

from 0, and on this event the age of v is at least Km∗ which implies

EXt ≥ C1m∗min

{
δ

∆
,
1

Φm∗

}

2.7.2 Upper Bound

We prove the upper bound in Theorem 4.

Proof. For any m ∈ N, 0 ≤ t, and a ≥ 0 define the following events:

• E4 is the event that Bm received a source update in the time interval
[
t− 2a

3 , t−
a
3

]
• Among all vertices in Bm that received an update from the source in

[
t− 2a

3 , t−
a
3

]
, let w

be one such vertex chosen uniformly at randomly. E5 is the event that there is a path of

31

vertices from w to v so that the directed edges of the path update in sequence during the

times
[
t− a

3 , t
]
.

• E6 is the event that the source updates fewer than a times in
[
t− 2a

3 , t
]
.

We have the following fact,

Fact 2. P[Xt > a] ≤ P[Ec4] + P[Ec5] + P[Ec6]

Proof. Observe that on the event E4 ∩ E5 ∩ E6 we have Xt ≤ a, then the fact is immediate from

the union bound.

It then suffices to bound each of the events. By the model definition, the number of updates

from the source to any subset S ⊂ V in the interval [t− t0, t] is a Poisson random variable with

parameter t0|S|
n . Therefore for Ec4 ,

P(Ec4) ≤ exp

(
−
a|Bm|

3n

)
≤ exp

(
−
a

3m∗

)
.

For Ec5 , it suffices to bound the probability an individual path from an updated node w0 ∈ Bm

to v updates in sequence. Note this path has length at most m ≤ m∗. Define {Yi}i = 1
m to

be i.i.d. standard exponential random variables with mean 1/∆. By a similar argument for

bounding Ec3 in the previous section,

P[Ec5] ≤ P

 m∑
j=1

Yj ≥
a

3∆

 ≤ P

m∗∑
j=1

Yj ≥
a

3∆

 ≤ P

 1

m∗

m∗∑
j=1

(Yj − 1) ≥
a

3∆m∗
− 1

 ≤ exp

(
−c0a

3∆m∗

)

For some absolute constant c0, where the last inequality follows from Bernstein’s inequality.

32

Finally we have Ec6 is exactly the probability a Poisson variable with mean 2a/3 is larger

than a, which is bounded by,

P[Ec6] ≤ exp(−c1a)

For some absolute constant c1. Let c := max{c0, c1}. Then we have,

P[Xt > a] ≤ exp

(
−
a

3m∗

)
+ exp

(
−

ca

3∆m∗

)
+ exp (−ca)

≤ 3 exp
(
−

ca

3∆m∗

)

So summing over all a and letting C be a large constant,

EXt =
∑
a≥0

P[Xt > a]

≤ 3
∑
a≥0

exp

(
−

ca

3∆m∗

)

≤ C
∫∞
0

exp

(
−

cx

3∆m∗

)
dx

= C2∆m∗

2.7.3 The Upper Bound is tight: ∆-regular tree

Let T∆(n) be the complete ∆-regular tree on n vertices (n chosen appropriately, ∆ is constant).

Note that for the root vertex r we have m∗(r) = log∆(n), so the following result matches the

upper bound in Theorem 4.

33

Theorem 6. There is some constant C := C(∆) such that for the root r of the ∆-regular tree,

the average expected age of r is at least C∆ log∆(n)

Proof. The proof follows similarly from Section 2.7.1, but specialized to T∆. Let K = ∆
100 , and

d = m∗
2 = log∆(n)

2 . For any t ≥ 0 define the following events.

• E1 is the event the source updates at least Km∗ times in [t− Kd, t]

• E2 is the event no vertex in Bd(r) receives an update from the source in [t− Kd, t]

• E3 is the event no path from Bd(r) \ Bd−1(r) updates in sequence in [t− Kd, t]

Then the probability of E1 is bounded below by a non-zero constant. For E2, note |Bd(r)| ∼
√
n.

Therefore,

P[E2] = exp

(
−
Kd|Bd(r)|

n

)
∼ exp

(
−
∆ log∆(n)

200
√
n

)

which is also bounded below by a non-zero constant.

For E3, we can apply Lemma 5 to bound the probability a path (w0, w1, ..., r) of length L

updates in sequence in the time window as,

P[(w0, w1, ..., r) updates in sequence] ≤ P

[
L∑
i=1

Yi ≤ kd

]
≤
(
CKd

L∆

)L

Where the Yi are i.i.d. copies of exponential random variables with mean ∆. We can then

sum over all such paths and bound,

P[Ec3] ≤ |Bd(r)|

log∆(n)∑
L=d+1

∆L
(
CKd

L∆

)L
≤ |Bd(r)|

∞∑
L=d+1

(
CKd

L

)L

34

Which is bounded away from 1 by some constant that depends on ∆. Therefore on the

event E1 ∩ E2 ∩ E3 is bounded from 0 as the tree grows, and on this event the age is at least

km∗ =
1
100∆ log∆(n).

We briefly comment that as d→∞, Φm∗(Zd)→ 1, and we believe for this case the extra

factor ∆ = 2d can be removed so that the d-dimensional lattice is a tight example for the lower

bound.

2.7.4 Application of Theorem 4 to Open Problems

We start with the observation that the diameter of a graph G is greater than m∗(G), where

m∗(G) := maxu{m∗(u)} is the largest value of m∗ achieved in G. We now apply Theorem 4 to

some open problems. All graphs below are assumed to have n vertices.

1. If Zdn is the d-dimensional toroidal lattice (n = ℓd), then m∗ = n
1

d+1 , so there is some

large constant Cd depending only on the dimension such that 1
Cd
n

1
d+1 ≤ EXt ≤ 2Cddn

1
d+1 .

This solves an open problem from (21) when d is constant or slowly growing with n.

2. If G = Cn is a cycle, then this is just a specialization of the above to 1-dimension, so

EXt ∼ n1/2

3. If G = C + M, is the union of a cycle and a random matching, then a classic result

by Bollobas and Chung (26) gives the diameter of G is with high probability O(logn),

therefore Xt = Θ(logn). This shows a curious property - adding O(n) edges can reduce

the version age of a graph from O(
√
n) to asymptotically optimal.

35

4. For constant d, let G = G(n, d) be a d-regular graph chosen uniformly at random from all

possible d-regular graphs on n vertices. Bollobas and Vega (27) showed the diameter of G

is O(log(n logn)), so Xt = Θ(logn). This is another proof of Theorem 2.

5. Let G = Gd(γ, n) be the d-dimensional random geometric graph, where vertices are

vectors x ∈ Rd, ∥x∥2 < 1 distributed uniformly at random in the unit ball and uv ∈

G ⇐⇒ ∥u, v∥2 < γ. For ε > 0 Suppose that γ > (1 + ε)
(
logn
n

)1/d
, then Ellis,

Martin, and Yan (28) showed this is sufficient for G to be connected, and furthermore

G has diameter scaling as O

(
1
1+ε

(
n log logn

log2 n

)1/d)
. It can be shown that the degree

distribution in G concentrates, so with high probability no vertex has degree greater

than Cd(1+ ε)
d log2 n for some constant Cd depending only on the dimension. Therefore

Xt = O
(
(1+ ε)d−1 log2 n(n log logn)1/d

)
= Õ((1+ ε)d−1n1/d), which agrees with item (1)

as d gets large up to logarithmic factors. This, along with item (1) gives evidence that

connected graphs embedded in a metric space have version age governed by some global

property of the metric space.

2.8 Remarks

We have analyzed vAoI from the combinatorial perspective of Yates (19), as well as a novel

probabilistic approach in section 2.7. There are still open problems in this area. One question is

posed at the end of item 5 above: if G is a graph embedded in a metric space, so that edges now

have weights proportional to their distance in the space, how does version age scale? Would

long-range connections with high weights improve version age? This doesn’t follow from the

Monotonicity of vAoI, as the model would need modifying.

36

2.9 Monotonicity of vAoI

We show the vAoI function is monotone, which was extensively used up to section 2.7. We

assume λ, λe are constants, and λi(j) =
λ

deg(i) .

Lemma 6. For any graph G, let G ′ be obtained from G by adding an edge (uv). Then for any

S ⊂ G,

vG ′(S) ≤ vG(S)

Proof. Recalling equality 2.1, note that if u ∈ S and v ∈ S, then the version age of S in G and

G ′ are identical. Therefore we only need to consider the cases when one of u, v are in S, or

neither are in S. We prove these cases separately via reverse induction on S ⊂ G. To that end,

the base case is S = N and the statement is true by the observation above. For the inductive

hypothesis, suppose the claim is true for |S ′| = k > 1. We now consider sets |S| = k− 1.

Case 1 is that u ∈ S but v ̸∈ S. Then,

vG ′(S) =

λe
λ +

∑
i ̸∈S∪{v}

(
|S∩NG(i)|
degG ′ (i)

vG ′(S ∪ {i})
)
+

|S∩NG ′ (v)|
degG ′ (v)

vG(S ∪ {v})

|S|
n +

∑
i̸∈S∪{v}

(
|S∩NG(i)|
degG ′ (i)

)
+

|S∩NG ′ (v)|
degG ′ (v)

≤

λe
λ +

∑
i ̸∈S∪{v}

(
|S∩NG(i)|
degG ′ (i)

vG(S ∪ {i})
)
+

|S∩NG ′ (v)|
degG ′ (v)

vG(S ∪ {v})

|S|
n +

∑
i ̸∈S∪{v}

(
|S∩NG(i)|
degG ′ (i)

)
+

|S∩NG ′ (v)|
degG ′ (v)

≤

|S|
n +

∑
i̸∈S∪{v}

(
|S∩NG(i)|
degG ′ (i)

)
|S|
n +

∑
i̸∈S∪{v}

(
|S∩NG(i)|
degG ′ (i)

)
+

|S∩NG ′ (v)|
degG ′ (v)

 vG(S)

37

+

|S∩NG ′ (v)|
degG ′ (v)

|S|
n +

∑
i̸∈S∪{v}

(
|S∩NG(i)|
degG ′ (i)

)
+

|S∩NG ′ (v)|
degG ′ (v)

 vG(S ∪ {v})

≤

|S|
n +

∑
i̸∈S∪{v}

(
|S∩NG(i)|
degG ′ (i)

)
|S|
n +

∑
i̸∈S∪{v}

(
|S∩NG(i)|
degG ′ (i)

)
+

|S∩NG ′ (v)|
degG ′ (v)

 vG(S)

+

|S∩NG ′ (v)|
degG ′ (v)

|S|
n +

∑
i̸∈S∪{v}

(
|S∩NG(i)|
degG ′ (i)

)
+

|S∩NG ′ (v)|
degG ′ (v)

 vG(S)
= vG(S)

Where the first inequality is from the inductive hypothesis, the second is multiplying by 1 and

applying equation 2.1, the third is the fact that adding a vertex to a set cannot increase the

version age, and the fourth is just rearranging the coefficients in the large brackets.

Case 2 is when neither u or v are in S. Notice that the only terms obtained by unrolling

equation 2.1 that are different in G and G ′ are those when either u or v are neighbors of the S;

otherwise the extra edge uv doesn’t play a role in the expansion, or the edge is present in S so

the terms are identical. Therefore we only need to consider those sets which are distance 1 from

{u, v}. For completeness we can then perform analogous computations to above.

vG ′(S) =

λe
λ +

∑
i∈NG ′ (S)\{u}\{v}

(
|S∩NG(i)|
degG ′ (i)

vG ′(S ∪ {i})
)
+

|S∩NG ′ (v)|
degG ′ (v)

vG ′(S ∪ {v}) +
|S∩NG ′ (u)|
degG ′ (u)

vG ′(S ∪ {u})

|S|
n +

∑
i∈NG ′ (S)\{u}\{v}

(
|S∩NG(i)|
degG ′ (i)

)
+

|S∩NG ′ (v)|
degG ′ (v)

+
|S∩NG ′ (u)|
degG ′ (u)

38

≤

λe
λ +

∑
i∈NG ′ (S)\{u}\{v}

(
|S∩NG(i)|
degG ′ (i)

vG(S ∪ {i})
)
+

|S∩NG ′ (v)|
degG ′ (v)

vG(S ∪ {v}) +
|S∩NG ′ (u)|
degG ′ (u)

vG(S ∪ {u})

|S|
n +

∑
i∈NG ′ (S)\{u}\{v}

(
|S∩NG(i)|
degG ′ (i)

)
+

|S∩NG ′ (v)|
degG ′ (v)

+
|S∩NG ′ (u)|
degG ′ (u)

≤

|S|
n +

∑
i∈NG ′ (S)\{u}\{v}

(
|S∩NG(i)|
degG ′ (i)

)
|S|
n +

∑
i∈NG ′ (S)\{u}\{v}

(
|S∩NG(i)|
degG ′ (i)

)
+

|S∩NG ′ (v)|
degG ′ (v)

+
|S∩NG ′ (u)|
degG ′ (u)

 vG(S)

+

|S∩NG ′ (v)|
degG ′ (v)

|S|
n +

∑
i∈NG ′ (S)\{u}\{v}

(
|S∩NG(i)|
degG ′ (i)

)
+

|S∩NG ′ (v)|
degG ′ (v)

+
|S∩NG ′ (u)|
degG ′ (u)

 vG(S ∪ {v})

+

|S∩NG ′ (u)|
degG ′ (u)

|S|
n +

∑
i∈NG ′ (S)\{u}\{v}

(
|S∩NG(i)|
degG ′ (i)

)
+

|S∩NG ′ (v)|
degG ′ (v)

+
|S∩NG ′ (u)|
degG ′ (u)

 vG(S ∪ {u})

≤ vG(S)

We have the easy corollary, which follows from above and results by (19).

Corollary 1. For any graph G and any i ∈ G,

Ω(logn) ≤ vG({i}) ≤ O(n)

2.10 Proof of Lemma 3

Proof. Let X be the random variable counting the number of isolated vertices in G(n, p) for

p = (1−ε) logn
n . In a classical result, Barbour, Karoński, and Ruciński (29) show X−EX√

VarX

D→ N (0, 1).

That is, X appropriately scaled and shifted converges in distribution to the standard Gaussian.

39

We can compute for n large, EX ≈ n exp(−(1−ε) logn) ≈ nε and VarX ≈ nε+2
(
n
2

)
exp(−2(1−

ε) logn) ≈ nε + n−2ε.

Then by the Portmanteau Lemma and tail bounds on the standard Gaussian,

lim
n→∞P

(
X− nε√
nε + n−2ε

≤ −
√
logn

)
= P

(
N (0, 1) ≤

√
logn

)
≤ 1

2n

⇐⇒ P
(
X ≤ nε −

(
logn(nε + n−2ε

)1/2)
≤ 1

2n

So in particular, a.a.s. X ≥ nε−o(1)

CHAPTER 3

STRING AND TREE RECONSTRUCTION

3.1 Introduction

In this chapter, we study the complexity of reconstructing trees from traces under the tree

edit distance model, as defined by Davies et al. (30). Tree trace reconstruction is a generalization

of the traditional string trace reconstruction problem, where we observe noisy samples of a

binary string after passing it through a deletion channel several times (31). Trace reconstruction

and tree trace reconstruction have a variety of applications including in archival DNA storage,

sensor networks, and linguistic reconstruction (32; 33; 34; 35).

3.1.1 String Trace Reconstruction

A trace of a string s on n bits is obtained by sending the string through a deletion channel that

removes each bit of s independently with probability q. Each trace is generated independently

of other traces. The string trace reconstruction problem is to recover s with probability at

least 1− δ using as few traces as possible. Denote by T(n, q, δ) the minimum number of traces

needed to reconstruct a string with n bits with deletion rate q and success probability 1− δ.

We sometimes hide the dependency on q by writing T(n, δ) when q is known.

This problem has been studied extensively, yet there is still an exponential gap in the upper

and lower bounds on trace sample complexity. (36) recently proved that exp(Õ(n1/5)) traces

40

41

are sufficient to reconstruct a string, improving on the previous bound of exp(O(n1/3)) traces

that was independently proved by (37; 38). The current best lower bound is Ω̃(n3/2) (39).

Many variants on trace reconstruction have been considered. In the average-case setting, the

unknown input string is chosen uniformly at random, and improved upper bounds are known in

this case (31; 40; 41; 42). (41) showed that O(exp(C log1/3 n)) traces are sufficient to recover

the string with high probability.

Other settings which yield improved bounds are in the smoothed-analysis setting where the

unknown string is perturbed before generating traces (43), in the coded setting where the string

is confined to a pre-determined set (44; 45; 46), and in the approximate setting where the goal

is to output a string that is close to the original in edit-distance (47).

The motivation for developing reconstruction theory is also pragmatic, reconstruction has

direct application of trace reconstruction to DNA data storage where algorithms are deployed

to recover the data from noisy samples (32; 33; 48). Clearly there is a practical need to reduce

the sample complexity as this impacts the time and cost of retrieving archival data stored with

DNA. For example, biologists were able to store a 53,426 word book, 11 JPG images, and a

JavaScript program (a total of 5.27 megabits) in a DNA medium (33).

3.1.2 Tree Trace Reconstruction

Robust branching DNA structures for storage have recently been created by biologists and

bio-engineers (34; 49). This naturally leads to a modelling question for reconstructing these

structures. In the tree trace reconstruction problem, a trace of an ordered tree R on n nodes is

obtained by removing each node of R independently with probability q. Each trace is generated

42

independently of the other traces. An ordered tree is a rooted tree where the children of each

vertex is assigned a total order. In our diagrams the ordering of children is depicted left-to-right.

Given a tree R taken from the set of all trees on n nodes, the goal is to reconstruct R with

probability at least 1−δ using as few traces as possible. There are many ways to define removing

a node in a tree. We follow the tree edit distance and left-propagation models introduced by (30).

In the tree edit distance (TED) model when a node w is removed, the children of w become the

children of w’s parent.

Figure 1: The generic picture before (left) and after (right) node w is removed from tree R in
the TED model. The subtrees 3 and 4 are inserted as children of 1 when w is removed.

The left-propagation model is discussed in 3.3.2. Now when a node w is deleted, recursively

replace every node (together with its label) in the left-only path defined by the total orderings

starting at w with its child in the path. The ordering of children stays the same, except that

now the left-most child might change for some vertices. Note that in both models the order of

deletions doesn’t matter, only the set of nodes that are removed.

43

3.2 Related Work

The problem of string-trace reconstruction has received considerable attention since it was

first introduced by Batu et. al. (31). Despite this there is still an exponential gap in the upper

and lower bounds for the number of traces needed to reconstruct an arbitrary input string

(39; 36; 38; 40; 37). The best lower bound thus far is due to Chase (39), where he showed that

Ω̃(log5/2 n) traces are necessary, and the best upper bound is due to Chase (36), where the same

author showed that exp(Õ(n1/5)) traces are sufficient. Previous to this, Nazarov and Peres (37)

and De et al. (38) independently achieved the upper bound of exp(O(n1/3)) traces.

Variants of trace reconstruction have been proposed in order to develop new techniques to

close the exponential gap in the original problem formulation. Davies et al. (30) investigated a

new problem of reconstructing trees from their traces, which this chapter builds upon. Those

authors investigated two classes of trees; complete k-ary trees and spider graphs. They also

introduced the “tree edit distance” (TED) and “left-propagation” deletion channels.

For a complete k-ary tree T the authors considered the general case for arbitrary k, as well as

when k is ‘large’ compared to the total number of nodes. Under TED, if k ≥ O(log2(n)), then

a complete k-ary tree can be reconstructed using exp(O(logk n)) · T(k, 1/n2) traces generated

from T . With no restrictions on k, exp(O(k logk n)) traces suffice to reconstruct T . Under

left-propagation, if k ≥ O(log n) then T(O(logk n+ k), 1/n2)) traces suffice to reconstruct T.

For arbitrary k then O(nγ logn) traces suffice, where γ = ln
(

1
1−q

)(
c′k
lnn + 1

ln k

)
. The authors

use primarily combinatorial arguments to achieve these bounds, which is in contrast to the

44

current methods used in string trace reconstruction. It was given as an open problem to extend

these combinatorial arguments to general trees.

The case of spider graphs was broken into small leg-depth and large leg-depth. Note

that for spider graphs, TED and left-propagation are identical deletion channels. For depth

d ≤ log1/q n and q > 0.7, then exp(O(d(nqd)1/3)) traces suffice to reconstruct the spider. For

depth d ≥ log1/q n and all q > 1, then 2T(d, 1/2n2) traces suffice to reconstruct the spider. The

algorithms proposed here generalize the mean-based methods of De et al. (38) and Nazarov and

Peres (37) to multiple independent strings, where some strings have a chance of being completely

removed.

3.3 Tree Reconstruction Lower Bounds

The goal of this section is to give lower bounds for tree reconstruction via reductions to

string reconstruction. As stated in 3.1.2 all trees are ordered. Theorem 7 gives a reduction from

learning trees under TED to the string reconstruction problem. Corollary 1 shows recovery of

arbitrary trees in the left-propagation model require exponentially many traces.

3.3.1 Recovering Unknown Tree Topologies

Given an ordered tree R on vertex set N , a labelling of R is a function f : N → {0, 1}. This

section is concerned with recovery of R when the labelling is uniform, i.e. f ≡ 0. We will call

such trees unlabelled.

Begin by considering any binary string s ∈ {0, 1}n, q ∈ (0, 1) and δ > 0. In the next

paragraph we construct a tree Rs := R(s, q, δ) that naturally ‘encodes’ s. Given the deletion rate

q and failure probability δ this will allow an emulation of the string reconstruction problem.

45

First, create a path with n+ 2ℓ vertices, where ℓ = Θ
(
ln(1/δ)+ln(T(n,q,δ))

ln(1/q)

)
. Next, for each bit

s(i) ∈ s, if s(i) = 0 add a left child to the node in position (ℓ+ i) in the path. Otherwise s(i) = 1

so add a right child to node (ℓ+ i) in the path.

Lemma 7. Let s ∈ {0, 1}n be a string and Rs be the tree encoding described above. Let δ > 0

and q ∈ (0, 1). Under the TED deletion channel with deletion rate q, reconstructing Rs with

probability greater than 1− δ requires at least Ω(T(n, q2, δ)) traces.

Proof. Begin by generating T(n, q2, δ) i.i.d. TED traces of Rs. Call this (random) set of traces

T . Recall that the data available to any reconstruction algorithm is just T , δ, and q. We will

strengthen the algorithm by informing it that the set of possible trees that could have generated

T are precisely those Rs generated from any s ∈ {0, 1}n; note that this cannot increase the lower

bound.

Observe that by the choice of ℓ above, with probability 1− δ for any R ′ ∈ T at least one of

the nodes in the path below ℓ and above n+ ℓ survives. Using O(n log 1δ) traces, by Hoeffding’s

inequality with probability 1−δ at least one trace will include a path of length n+2ℓ. Therefore

what remains is to determine the positions of the leaves in Rs.

Noting figure Figure 2, say a leaf and its parent are completely removed from Rs if both

are deleted in the TED channel (e.g. a is completely removed if a and b are deleted). If a

leaf is completely removed this corresponds to a complete deletion of a bit in s. Otherwise

there are residual nodes in the trace that don’t correspond to bits in s. This suggests the

following procedure for generating a trace equivalent to TED. First with probability q2 each

leaf-parent pair is removed i.i.d. (if a node does not have a leaf child it is ignored). Then with

46

Figure 2: Example configuration of a leaf node a and the leaves nearest it. The survival of a is
dependent on the nodes in its 2-neighborhood.

probability q− q2 each node is removed i.i.d. (a node ignored in the previous step is removed

with probability q).

We consider the modified TED channel where only the first deletion step is performed; this

cannot increase the lower bound. By the above observations any trace generated from this

modified channel will contain a path of some length, then an encoding of a string trace generated

from s, then another path of some length. Since we used Hoeffding’s inequality to recover the

length of the longest path in Rs, we may apply the string trace reconstruction algorithm to

recover the leaf positions in the weakened TED channel. Therefore recovery of Rs under the

TED channel is at least as hard as recovering s under the deletion channel.

Note that the choice of ℓ reduces to O(n) if q and δ are constants, so the lemma above

shows tree reconstruction under TED is at least as hard as string reconstruction up to some

constant factors.

47

Theorem 7. Let q ∈ (0, 1) and δ > 0 be constants. Then there exists C > 0 such that for

any r, s ∈ {0, 1}Cn, at least Ω(T(n, q2, δ)) TED traces are needed to distinguish Rr and Rs with

probability at least 1− δ.

3.3.2 Left-Propagation

We briefly describe an easy construction to show that reconstruction of arbitrary trees under

the left-propagation model requires at least exponentially many traces. Consider the unlabelled

trees Pn and Rn on n vertices in figure Figure 3. Tree Pn is a path on n vertices. Tree Rn is a

path on n − 2 vertices, with the final node in the path having 2 children. As in the previous

section we consider the case that all vertices have the same label 0, and will refer to these as

‘unlabelled’ trees.

Figure 3: Trees Pn and Rn described above

48

Consider the following protocol for distinguishing distributions. An algorithm A is given as

input a positive integer n > 0. A returns a value f(n), the number of samples drawn from known

distribution D1 or D2. It is then provided f(n) i.i.d samples from one of these distributions.

We say A is a distinguishing algorithm for D1 and D2 if with probability greater than 2/3, A

outputs the correct distribution the samples were drawn from. We say f(n) is the sample size A

uses to distinguish the distributions.

Lemma 8. The expected number of traces needed for any algorithm to distinguish Pn and Rn

under the left-propagation model is at least Ω ((1− q)−n)

Proof. Let DP be the distribution of traces generated from the left-propagation channel applied

to Pn, and similarly for DR. If k nodes are removed from either Pn or Rn, then the resulting

trace is isomorphic to Pn−k. Therefore the support of DP and DR are identical except for the

tree generated when no nodes are removed. Furthermore the probability mass on elements in

the intersection of the supports are identical.

Because the distributions are identical conditioned on removing at least one node, distin-

guishing DP and DR requires at least one sample where no nodes have been removed. The

expected number of samples needed for this to happen is exactly 1
(1−q)n .

Distinguishing between the distributions generated by Pn and Rn is a prerequisite to recon-

structing arbitrary trees. Therefore we conclude.

Corollary 1. For any δ > 0 the number of traces needed to reconstruct arbitrary ordered trees

under the left-propagation model with probability at least 1− δ is at least Ω ((1− q)−n).

49

3.4 Tree Reconstruction Upper Bounds

The goal of this section is to give upper bounds for tree reconstruction. Subsection 3.4.1

shows the labels of a known tree can be recovered via a reduction to string reconstruction.

Subsection 3.4.2 proves trees with large degree can be reconstructed with polynomially many

traces. Subsection 3.4.3 shows if trees are encoded in a special way, then they can be reconstructed

with polynomially many traces.

3.4.1 Labelled Trees with known Topology

We start by showing that learning the labels of a tree under TED is no harder than the

string reconstruction problem.

Lemma 9. Let R be an ordered tree and R ′ be an ordered tree obtained from R via an arbitrary

set of deletions under the tree edit distance model. If u, v are any two nodes in R ′ such that a

pre-order traversal of R ′ visits u before v then a pre-order traversal of R will also visit u before

visiting v.

Proof. Given the deletion of an arbitrary node w, we consider how it effects the traversal order

of the remaining nodes. Figure 1 shows the general case when a node w is removed, with the

subtrees numbered in the order they are visited according to a pre-order traversal.

If u and v fall in the same subtree, their visitation order is clearly not affected. Otherwise,

if u is in a tree that’s visited earlier than when the tree of v is visited on the left of Figure 1,

then it is also visited earlier on the right. This simple illustration captures all of the cases (i.e.

pairs of trees where u and v can occur)

50

This immediately gives the following.

Theorem 8. Let R be any ordered labelled tree on n nodes and δ > 0. Given only T(n, q, δ)

traces from the TED deletion channel, the labels of R ordered by pre-order traversal can be

reconstructed with probability at least 1− δ.

Applying the results of Chase (36) for recovering any string from Õ(exp(n1/5)) traces when

q is constant, there is an algorithm for reconstructing a tree from traces if the structure of the

tree is given to the algorithm.

Corollary 2. Let R be any ordered labelled tree on n nodes, and q, δ > 0. Given the structure of

R and Õ(exp(n1/5)) traces from the TED deletion channel, R can be reconstructed with probability

at least 1− δ.

3.4.2 Trees with Large Degree

For any tree, call a leaf terminal if all of its siblings are leaves. We define a partially complete

tree of degree m as a tree where all terminal leaves have at least m− 1 siblings.

Theorem 9. Let q, δ > 0. Given a partially complete ordered tree R of degree at least

log 1
q
(nT(n, δ)) on n nodes, , we can reconstruct R using T(n, δ) traces with probability at

least 1− δ.

Proof. Sample T(n, δ) traces from R. For TED trace R ′, construct two binary strings sR
′
0 , s

R ′
1

from a pre-order traversal of R ′. sR
′
0 uses the alphabet {0, 2} and sR

′
1 uses the alphabet {2, 1}.

sR
′
1 is constructed by writing a 1 when the traversal moves down an edge, and a 2 when the

51

traversal encounters a leaf. Analogously sR
′
0 is constructed by writing a 0 when the traversal

moves up an edge, and a 2 when the traversal encounters a leaf.

Because of the assumption that R is partially complete, for any trace the probability that

there exists a node with all children deleted is less than 1
nT(n,δ) . By the union bound the

probability that any trace contains a node where all children are deleted is less than 1/n.

R has two unknown strings s0 and s1 constructed analogously to the trace strings above. It

is easy to see that a node deletion in R corresponds to a single bit deletion in s0 and s1 where

the ordering among the remaining bits is maintained. This property holds for multiple deletions

as well. By the argument above, with high probability no node will have all its children removed.

Because only one edge is represented by each bit in the two strings, only one edge is removed in

a TED deletion, and all children of a leaf are not deleted with high probability, we conclude

that with high probability deletions in s0 and s1 behave as i.i.d. deletions in the string deletion

channel model.

3.4.3 Trees with Leaf Labels

The following theorem shows certain labellings allow for a natural reduction from tree

reconstruction to string reconstruction. We use the labelling set {L, I} in place of {0, 1} below.

Theorem 10. For any ordered tree R on n nodes, and q, δ > 0, if the leaves of R have label ‘L’

and internal nodes have label ‘I’, under the TED deletion channel a.a.s. we can reconstruct R

and its labelling using exp(Õ(n1/5)) traces.

52

Proof. The proof is similar to Theorem 9. Sample T(n, δ) TED traces generated from R. For

TED trace R ′ construct two binary strings sR
′
0 , sR

′
1 from a pre-order traversal of m. sR

′
0 uses

the alphabet {0, 2} and sR
′
1 uses the alphabet {2, 1}. sR

′
1 is constructed by writing a 1 when the

traversal moves down an edge and neither endpoint has value ’L’, and a 2 when the traversal

encounters an ’L’ node. Analogously sR
′
1 is constructed by writing a 0 when the traversal moves

up an edge and does not encounter an ’L’ node, and a 2 when the traversal encounters an ’L’

node.

A single node deletion in R corresponds to a single bit deletion in sR
′
0 and sR

′
1 where the

ordering among the remaining bits is maintained per lemma 9. Further these deletions are i.i.d.

As ordering of nodes is invariant under deletions, independence would only be violated if a bit

is flipped in the two trace encoding. A bit is flipped if and only if it represents an internal

node in R, and that node became a leaf in the trace. However when we transcribed sR
′
0 and sR

′
1 ,

the states of the nodes were captured by the node labels, therefore even if an internal node

becomes a leaf, the proper bit is transcribed. Therefore bit deletions are i.i.d. and so behave as

in the string deletion channel model. Applying (39) to the two sets of pre-order strings gives

the desired result.

3.5 Combinatorics of String Reconstruction

This section introduces new combinatorial and probabilistic identities for the string deletion

channel. Subsection 3.5.2 studies the distribution of traces of a fixed length. A combinatorial

identity is given for the expectation of any function over this distribution. Subsection 3.5.1 gives

a generating function expansion for the probability that the i’th bit is a 1 or a 0.

53

3.5.1 Infinite Strings

We can discuss the deletion channel applied to infinite strings. This could for instance

model a continuous datastream where bits are lost with some probability. For an infinite string

t ∈ {0, 1}∞, define Dt : {0, 1}∞ → R as the distribution on infinite strings obtained by removing

each bit from t independently with probability q. Note the probability the deletion process

generates a finite string with probability 0 so we can restrict the domain to infinite strings.

For a string s ∈ {±1}n, let s(i) be the i’th bit of s, with indexing starting from 0. Define the

event Aj = {x ∈ {0, 1}∞ : x(j) = 1}. We can exactly characterize the probability of Aj based on

the j’th derivatives of the generating function of the parent string defining the distribution:

Theorem 11. Let t ∈ {0, 1}∞, and suppose the 1’s occur at indices I ⊂ N. Consider the

generating function for t, f(t; x) :=
∑
i∈I x

i. Then,

PDt [Aj] =
1

j!
(p)j+1

∂jf(t; ·)
∂xj

∣∣∣∣
(1−p)

Proof. ∂jf(k;x)
∂xj

=
∑
i∈I

(i)!
(i−j)!x

i−j. Also, PDt [Aj] =
∑
i∈I
(
i
j

)
pj+1(1− p)i−j by inspecting each 1 in

t and noting the probability it ends up at position j. For every i ∈ I, there are exactly
(
i
j

)
ways

for the bit to end up at position j, so exactly i− j bits are removed with probability (1−p), and

54

j+ 1 bits including i are retained with probability p. Further notice that no bit I ∋ i < j+ 1

contributes anything to the sum, and by convention i < j =⇒ (
i
j

)
= 0. Therefore,

PDt [Aj] =
1

j!
(p)j+1

∑
i∈I

i!

(i− j)!
(1− p)i−j

=
1

j!
(p)j+1

∂jf(k; ·)
∂xj

(1− p)

When the string t is well structured we can hope to evaluate the j’th derivative of the

generating function explicitly, as the next corollary shows.

Corollary 3. Let s = (1, 0)∞. Then,

PDs [An] =
1

2

(
1−

(
−

p

q− 2

)j+1)

Proof. Using the identity that
∑∞
k=0 x

2k = 1
1−x2

corresponds to the infinite series 1, 0, 1, 0, ... and

differentiating both sides j times yields

∞∑
k=0

2k!

(2k− j)!
x2k−j =

j!

2

(
1

(1− x)j+1
−

1

(−1− x)j+1

)

55

Therefore via Theorem 11,

PDs [An] =
1

j!
pj+1

j!

2

(
1

pj+1
−

1

(q− 2)j+1

)
=
1

2

(
1−

(
p

q− 2

)j+1)

Corollary 3 shows that the probability an individual bit in a trace is 1 converges to 1/2 as

the index of the bit increases, so much of the information about the string is contained in the

prefixes of the traces.

For this particular string s = (1, 0)∞, if p = q = 1/2 we can find a much simpler description

of the distribution Ds. Consider a 2-state Markov chain with states ‘flip’ and ‘stay’ (F and S

respectively). The transition from F to S has weight 1/3, the transition from S to F has weight

2/3, and the self-weights are such that the out-edges have sum 1 (see Figure 4). Now start with

the string r = (1), and start a random walk on the Markov chain starting from state F . At

discrete time i read bit r[i]. If the chain is at state F , append r[i] − 1 mod 2 to r. Else the

chain is in state S, so append r[i] to r. That is, if in state F append the flipped bit, otherwise

append the same bit to r. It’s not difficult to see the same probability in Corollary 3 applies to

this chain by a simple inductive argument.

56

Figure 4: The Markov chain under consideration.

3.5.2 Fixed Length Traces

Throughout we will assume the deletion rate q = 1
2 unless otherwise stated. Let si→j be the

substring of s starting at the i’th bit and ending at the j − 1’th bit. Extend this notation so

that si→ := si→n. Let k < n represent the index of a bit in s. If I ∈ {0, 1}n, |I| ≤ k, define s[I] as

a string in {±1}|I| as the subsequence of s on indices where I = 1. I can be thought of as the

‘indexing’ set where bits from s are extracted.

For s ∈ {±1}n, let Ds be the distribution over binary strings t ∈ {±1}≤n induced by the

deletion channel with q = p = 1/2. Let R(s, t) = |{t is a subsequence of s}|; then Ds(t) =

1
2nR(s, t) is the measure of t under Ds.

Define Z(s, k) =
∑

t∈{±1}k
R(s, t). Then let Dks (x) = 1

Z(s,k) · R(s, x) · 1{|x| = k} be the restriction

of Ds to only those traces with length k. (Z is just a normalizing function).

We restate a commonly known combinatorial identity for the deletion channel, see for

example (50) for more detail.

Observation 1. R(s, t) = R(s1→, t) + 1{s[0] = t[0]} · R(s1→, t[1 :])
We also have Z(s, k) =

(
n
k

)
. To see this, each trace is obtained by removing n− k bits from

s, and summing over all traces there are exactly
(
n
n−k

)
=
(
n
k

)
ways of removing the bits.

57

It is desirable to see on average how often a trace appears over all input strings of a given

length. That is, letting Dk := E
s∼U({±1}n)

[Dks]. This turns out to be the uniform distribution.

Lemma 10. Dk is a distribution on {±1}k and is equal to the uniform distribution U({±1}k)

Proof. Let x ∈ {±1}k. Then,

Dk(x) = 1

2n

∑
s∈{±1}n

(
R(s, x)

Z(s, k)

)

=
1

2n

∑
s∈{±1}n

R(s, x)(
n
k

)
=

1

2n
(
n
k

) ∑
s∈{±1}n

R(s, x)

=
1

2n
(
n
k

) 2n(nk)
2k

=
1

2k

Instead of taking expectations over the uniform distribution, we may want to take expectations

over a particular Dks . We generalize lemma 10 by taking the expectation over real-valued functions.

If h : {±1}k → R is real valued, we can define hsI := h(s[I], ·, ·, ..., ·) as a function from {±1}k−|I|

to the reals. This is just replacing the first |I| arguments of h by s[I], and allowing the unfilled

arguments to vary. We have the following recursive identity.

Theorem 12. Let h : {±1}k → R be any function, and s ∈ {±1}n any string. Then for every

0 ≤ k ≤ n,

58

EDk
s
[h] =

1(
n
k

) ∑
I∈{0,1}k

((
n− k

k− |I|

)
· EDk−|I|

sk→ [hsI]

)

Proof. Recall Observation 1. Then,

EDk
s
[h] =

∑
x∈{±1}k

h(x) · R(s, x)
Z(s, k)

=
1

Z(s, k)

∑
x∈{±1}k

h(x)
(
R(s1→, x)

+ 1{s[0] = x[0]} · R(s1→, x[1 :]))
=

Z(s1→, k)
Z(s, k)

EDk

s1→ [h] +
∑

y∈{±1}k−1

hs1(y)R(s
1→, y))

=
Z(s1→, k)
Z(s, k)

EDk

s1→ [h] +
Z(s1→, k− 1)

Z(s, k)
EDk−1

s1→ [hs1]

Recursively applying this equality 2k times proves the lemma. That is, each leaf of the complete

binary tree of depth k corresponds to one term in the sum in the theorem statement.

In particular Theorem 12 gives a way to compute the expected value of a real-valued function

h over the distribution Dks . This evaluation only involves the substring sk→ and its traces. The

values of the first k bits of s are then used when evaluating hsI . This could be useful for doing

discrete Fourier analysis on the string trace distribution.

59

We conclude this chapter with the open questions: Do there exist other strings with simple

distribution descriptions (clearly (1)∞ does)? Could we use these as a tool for proving lower

bounds on the string reconstruction problem?

CHAPTER 4

DYNAMIC INTERACTIVE LEARNING

4.1 Introduction

The problem of recommending products or media is ubiquitous in many practical settings

such as search engines, online marketplaces, or media streaming services (e.g. Google search,

Amazon, Spotify, etc.). In such settings any algorithm that tries to optimize recommendations

receives implicit feedback from users in the system. This feedback is then used to refine future

queries.

Drawing inspiration from earlier work on query learning by (12), as well as more recent

models for interactive clustering (51; 52; 53), Emamjomeh-Zadeh and Kempe (54) considered

such product recommendation problems from the perspective of combinatorial learning, where

specific orderings of recommendations are nodes in a (very large) digraph. In this graph there is

a distinguished node that corresponds to the ordering that the learner wishes to discover. This

can be thought of as the ‘ideal’ ordering of products in a marketplace, or the ‘best’ sequence of

recommendations in a streaming service. A directed edge exists from node s to s ′ if the user

might propose s ′ as a response to s. For example, a user might want to swap two items from an

ordered list s to get the more preferred ordering s ′. If the learner proposes a node and that is

not the target, it receives noisy (random (54) or even adversarial (55)) feedback in the form of

60

61

an edge on the shortest path from the proposed node and the target. This form of feedback is

similar to the correction queries from query learning (56).

(57) subsequently considered cases when the combinatorial structure itself can evolve over

time – as they noted, some of these settings resembled earlier work on shifting bandits (58).

These dynamic settings are also where our results lie, and among our results, we generalize the

work of (57) and solve some of their open problems herein.

4.2 Preliminaries

(54) first introduced a static graph model for robust interactive learning, where there is one

fixed concept in the concept class, and the learner is trying to learn under noisy feedback. Later

(57) extended the model to dynamic interactive learning, where the target concept can change

during learning. Our work is based on the same framework, so we will briefly describe previously

defined models and results here.

4.2.1 Static model

For clarity we first state the static learning model from (54), as it is a foundation for later

work on dynamic models.

Definition 8 (Feedback graph (54)). Define a weighted (directed or undirected) graph G =

(V, E,w), where the vertices represent a set of n = |V | candidate concepts. The edge set E

captures all possible corrections a learner can receive: edge (s, s ′) exists if the user is allowed to

propose s ′ in response to s. The edge weights w are given to the learning algorithm, satisfying a

key property: if the learner proposes s and the ground truth (target) is t ̸= s, then every correct

user feedback s ′ lies on a shortest path from s to t with respect to edge weight w.

62

Note that we assume that the weighted graph is given to the algorithm and faithfully

represents the underlying problem.

For an undirected graph G, let NG(v) denote the neighborhood of v in G. For a directed

graph G, let NinD (v) be the in-neighborhood of v in digraph D (including self loops) and NoutD (v)

be the out-neighborhood of v in digraph D (including self loops).

In the static model there exists a fixed target vertex t ∈ V that the algorithm is attempting to

learn over multiple rounds. In each round the learner proposes a query vertex q ∈ V and receives

a feedback vertex z which is noisy with probability p. Specifically, if q = t, with probability

1− p the learner receives feedback q indicating the query is correct, and with probability p it

receives an incorrect feedback z which is adversarially chosen from NG(q); if q ̸= t the algorithm

is given a feedback z ∈ NG(q) which is incorrect with probability p. Crucially both correct and

incorrect feedback is adversarial. As discussed in (54) this implies learning is only feasible when

p < 1/2.

Other important definitions used throughout include the collection of concepts that are

consistent with a particular feedback, or the version space for a query-feedback pair, as well as

the weighted median of the feedback graph, which can be interpreted as the ‘center of mass’ of

the graph.

Definition 9 (Version space (54)). If the learner proposes q and receives feedback z, let

SG(q, z) be the collection of concepts (nodes) that are consistent with the feedback. Formally,

SG(q, z) = {v | z lies on a shortest weighted path from q to v}.

63

Definition 10 (Weighted median (59)). Let L : V → R≥0 be a function that assigns likelihood to

every vertex in the feedback graph G = (V, E,w). A weighted median u is a vertex that minimizes∑
v∈V L(v) ·w(u, v).

(54) presented a multiplicative weight update algorithm, which assigns likelihoods for each

vertex in the feedback graph, and repeatedly queries the weighted median, which has the property

of halving the total likelihood of its version space each round.

4.2.2 Dynamic model

Our paper is concerned with dynamic interactive learning where the target t is allowed to

move. Assume that over the R rounds of learning the target moves at most B times and at

round r the target is located at some node tr. Without further assumption on target evolution,

(57) showed the following general mistake upper bound. For the remainder of the paper, denote

the entropy as H(p) = p log 1
p + (1− p) log 1

1−p .

Theorem 13 ((57)). Assume the total number of rounds R is known beforehand. Let A = VR be

the set of all node sequences of length R and let a∗ = ⟨t1, . . . , tR⟩ be the sequence of true targets

throughout the R rounds. Let λ : A → R≥0 be a function that assigns non-negative weights to

these sequences, such that
∑
a∈A λ(a) ≤ 1. There is an online learning algorithm that makes at

most

1

1−H(p)
· log 1

λ (a∗)

mistakes in expectation.

64

While this is a positive result for the mistake bound, it does not guarantee an efficient

algorithm as it has to keep track of weights for all sequences VR, and in the worst case the

number of sequences is O(nR) where n = |V |. Relatively efficient implementations exist for the

following two models without explicitly constructing the λ map for each sequence.

4.2.2.1 Shifting target

In the Shifting Target model there exists an unknown subset of vertices S ⊆ V where |S| ≤ k,

and the learner knows k. Target transition is restricted within S, viz. tr ∈ S for every round r.

Previous work by (57) proved the following theorem.

Theorem 14 ((57)). Under the Shifting Target model, there is a deterministic algorithm that

runs in time O(nkpoly(n)) and makes at most

1

1−H(p)
· (k logn+ (B+ 1) log k+ R ·H(B/R))

mistakes in expectation. Furthermore, there exists a graph such that every algorithm makes at

least

min
{ 1

1−H(p)
· [k logn+ (B− 2k+ 1) · (log k)] − o(logn) − B · o(log k) , R− o(R)

}

mistakes in expectation.

Note in particular the exponential dependence on k in the runtime of the algorithm.

65

4.2.2.2 Drifting target

In the Drifting Target model, it is assumed that the target slowly evolves over time, and the

evolution can be modeled by following the edges of some transition graph defined below.

Definition 11 (Transition graph (57)). There exists a known unweighted digraph G ′ = (V, E ′),

where in particular G ′ and G have the same vertex set but their edge sets can be different. The

target is only allowed to move along edges of G ′. Formally for every round r the model requires

tr+1 ∈ {tr} ∪NoutG ′ (tr). Let ∆ be the maximum degree in G ′.

Previous work by (57) proved the following theorem.

Theorem 15 ((57)). Under the Drifting Target model, there is a deterministic algorithm that

runs in time poly(n) and makes at most 1
1−H(p) · (logn + B · log∆ + R · H(B/R)) mistakes in

expectation..

Furthermore, there exists a graph such that every algorithm makes at least

min
{
R− o(R),

1

1−H(p)
· (logn+ B log∆) − o(logn) − B · o(log∆)

}

mistakes in expectation.

Notice that for both Shifting Target and Drifting Target models, there is a gap of R ·H(B/R)

between the mistake upper bound and lower bound, which remains an open problem in (57).

We will show a new lower bound and close the gap in Section 4.

66

4.3 A unified model

Our first contribution is to define a more generalized model inspired by the original Drifting

Target model, and show that the results from Theorems 14 and 15 are both valid under this

generalization, thus unifying previous models. The technique used in (57) to efficiently implement

the Shifting Target model was to keep track of likelihoods for each subset of nodes instead

of each sequence, reducing computational complexity from O(nR) to O(nk). Similarly, their

efficient implementation for the Drifting Target model keeps track of likelihoods for each node,

reducing computational complexity to O(poly(n)). This method requires customization for

each transition model, and can become tricky as the models become more complicated. A key

motivation for a general model is that it unifies a wide class of transition models, and allows us

to easily obtain mistake upper bounds and runtime guarantees based on a single algorithm.

As above let G = (V, E,w) be the graph representing the candidate models (the feedback

graph), and G ′ = (V ′, E ′, π) be a directed transition graph, representing all possible ways the

target might change over time. The key difference is that for each vertex i ∈ V, V ′ contains

possibly duplicated vertices corresponding to the same vertex i, denoted by V ′
i := {u ∈ V ′ | u

corresponds to i ∈ V}. Define n ′ = |V ′|, ∆ ′ as the max degree of G ′, and πij as the transition

probability in G ′, where πii = (1−b) with b = B
R , and πij = πout :=

b
∆ ′ for i ̸= j under a uniform

transition assumption.

We present a modified version of the algorithm from (57). In the rth round, we keep track of

the likelihoods for each vertex u ∈ V ′ as L ′
r(u), and for each vertex i ∈ V its likelihood Lr(i) is

aggregated from L ′
r as the summation over all of i’s duplicates in V ′. The median of the feedback

67

Algorithm 1 Interactive learning likelihood update

Initialize L ′
1(u) ∀u ∈ V ′

for 1 ≤ r ≤ R do
∀i ∈ V : Lr(i)←∑u∈V ′

i
L ′
r(u) {Aggregate Lr from L ′

r over the duplicates}
qr ← argmini∈V

∑
j∈V Lr(j) ·w(i, j) {Query the weighted median}

zr ← feedback from adversary
∀i ∈ Vand ∀u ∈ V ′

i :
P(i)← (1− p) · 1[i ∈ SG(qr, zr)] + p · 1[i ̸∈ SG(qr, zr)] {Weight update multiplier for i}
P(u)← P(i) {Same weight update for each duplicate u of i}

∀u ∈ V ′ : L ′
r+1(u) =

∑
v∈Nin

G ′ (u)
P(v) · L ′

r(v) · πvu {Apply weight update and transition}
end for

graph G is then calculated based on Lr. We update the likelihoods L ′
r+1 for all corresponding

nodes in G ′ based on each node’s consistency with the feedback using the same rules as (57).

Theorem 16. Assuming the first target is chosen uniformly at random from V ′, Algorithm 1

runs in time O(∆ ′ · n ′ + poly(n)), uses space O(n ′), and has query complexity

1

1−H(1− p)
·
(
logn ′ + B · log∆ ′ + R ·H(B/R)

)
.

Alternatively writing the bound using transition probabilities instead of maximum degree,

Algorithm 1 runs in time O
(
1
n ′ · πBout · (1− b)R−B

)
, uses space O(n ′), and has query complexity

1

1−H(1− p)
·
(
logn ′ + B · log(b/πout) + R ·H(b)

)
.

68

Proof. We wish to show that the likelihood of the ground truth sequence a∗ is at least

λ(a∗) =
1

n ′ · ∆ ′B ·
(
R
B

) ,
or alternatively

λ(a∗) =
1

n ′ · π
B
out · (1− b)R−B.

Note that these two expressions correspond to two equivalent interpretations of the transition

model: 1, the target changes at most B times during R rounds; 2, the target changes with

probability at most b = B/R at each round.

For the first interpretation, we provide the expression for λ(a∗) with a combinatorics

argument: there are n ′ choices for the first node, and the next node differs from the previous

node at most B times, each time with ∆ ′ choices, and these changes can occur at
(
R
B

)
locations

in the sequence. Thus the total number of valid sequences is n ′ ·∆ ′B ·
(
R
B

)
. The initial likelihoods

are assigned uniformly among all sequences, so dividing 1 by the total number of sequences

gives us λ(a∗).

For the second interpretation, we have a probability argument: the sequence starts with any

particular node in the transition graph with probability 1
n ′ , and the next node changes to one of

the neighbors with probability πout =
b
∆ ′ for B times, and stays the same with probability 1− b

for R− B times. Taking the product of these probabilities gives the result.

69

The bound on query complexity follows by substituting λ(a∗) into Theorem 5 of (57).

Note that for large R we approximate
(
R
B

)
by
(
R
B

)B · (R
R−B

)(R−B)
, which contributes to the term

R ·H(B/R) = R logR− B logB− (R− B) log(R− B) after taking logarithm.

For algorithmic complexity, steps 3 (aggregating likelihoods) and 6 (computing weight

multiplier) both take time O(n ′), step 4 (computing median) takes time O(n3), and step

7 (updating weight and transition) takes time O(∆ ′ · n ′), and Lr, L
′
r takes space n and n ′

respectively.

Under our generalized model, any dynamic interactive learning problem can be reduced

to defining the feedback graph G to represent the concept class, and defining the transition

graph G ′ to represent the concept evolution. Specifically, the Shifting Target model and Drifting

Target model studied in the original paper can be shown as special cases under this general

model, and we will show that the general bounds agree with the original results.

Corollary 4. In the Drifting Target model, Algorithm 1 runs in time O(∆ · poly(n)), uses

space O(n), and makes at most

1

1−H(1− p)
·
(
logn+ B · log∆+ R ·H(B/R)

)

mistakes in expectation.

Proof. The transition graph G ′ is the same as the feedback graph G, and transition probability

is assumed to be uniform. Thus n ′ = n, and ∆ ′ = ∆. Plugging into Theorem 16 gives the

result.

70

Corollary 5. In the Shifting Target model, Algorithm 1 runs in time O(k2 · nk), uses space

O(k · nk), and makes at most

1

1−H(1− p)
·
(
k · logn+ (B+ 1) · log k+ R ·H(B/R)

)

mistakes in expectation.

Proof. The transition graph G ′ consists of
(
n
k

)
disconnected sub-graphs, where each sub-graph

is a clique of size k, corresponding to a subset of k vertices in V. Each round the target might

shift within a k-clique, and each clique represents a possible choice of the k-subset of targets.

Thus n ′ =
(
n
k

)
· k and ∆ ′ = k. Plugging this into Theorem 16 gives the result.

Since the query and computational upper bounds mostly depend on the size of transition

graph, namely n ′ and ∆ ′, minimality of the transition graph is crucial for query and compu-

tational efficiency. We want to find the worst case query upper bound, which can be used

as a benchmark when modeling various types of transitions. A trivial upper bound on query

complexity occurs in the case that the learner does not have any information about how target

might change over time, thus the transition graph G ′ is a complete graph on n ′ = n vertices,

and ∆ ′ = n. Plugging into Theorem 16 gives the following result.

Corollary 6. The worst case query complexity using Algorithm 1 is

1

1−H(1− p)
·
(
(B+ 1) · logn+ R ·H(B/R)

)
,

71

and runs in time O(poly(n)) and space O(n).

In the following sections, we will discuss a few examples of other transition models, showing

a hierarchy of query complexity.

4.3.1 Shortest path

Given two vertices s, t ∈ G, define SBG(s, t) to be the collection of all subsets of SG(s, t) that

contain at most B vertices. Formally, SBG(s, t) = {H ⊆ SG(s, t) : |H| ≤ B}. In the Shortest Path

model we insist the target can only move along a shortest path in G.

We can describe this model in the language of our generalized framework. The transition

graph G ′ consists of many disconnected directed paths, each corresponding to some element of

SBG(s, t) for some s, t ∈ G. This procedure overcounts, so we also restrict G ′ to only include one

copy of any subset of vertices in a path in G. Finally the vertices in any subgraph of G ′ are

connected with B− 1 arcs that correspond to the ordering imposed by traversing SG(s, t) from

s to t.

The number of vertices in G ′ is bounded as n ′ ≤ B ·
(
n
B

)
. We can’t hope to do better than this,

as there are classes of graphs with exponentially many shortest paths between two distinguished

vertices. The maximum degree of G ′ is 2, as all disconnected components are paths.

This model is a variation of the Shifting Target model. If the target can move B times, then

the target can only move in one direction in each valid path. We can still apply Thm. 16 and

get a naive mistake upper bound that runs in time nB · poly(n). We can achieve the
(
n
B

)
bound

on the number of subsets when G is a path with n vertices. However, the target can only move

72

in one direction along the path, so it’s natural to think a better algorithm can be developed at

least for this case.

Corollary 7. In the Shortest-path model, Algorithm 1 runs in time O(nB), uses space O(B ·nB),

and makes at most

1

1−H(p)
· (B · logn+ (B+ 1) · logB+ R ·H(B/R))

mistakes in expectation.

4.3.2 m-Neighborhood

Let NmG (v) denote the set of vertices in G that have a shortest path of length m to v. In

the m-Neighborhood model, the target can move within NmG , and m is known to the learner.

This model is a variation of the Drifting Target model, and note that m = 1 is exactly the case

when G = G ′ in the original Drifting Target model. The transition graph G ′ is constructed by

including an arc from every v ∈ V to every node in its m-Neighborhood. Note that n ′ = n and

∆ ′ ≤ ∆m. Applying Theorem 16 gives the following mistake bound for the m-Neighborhood

model:

Corollary 8. In the m-Neighborhood model, Algorithm 1 runs in time O(∆m · n), uses space

O(n), and makes at most

1

1−H(p)
· (logn+ B ·m · log(∆) + R ·H(B/R))

73

mistakes in expectation.

To complete our hierarchy, in descending query complexity, we have: Shortest Path model,

the original Shifting Target model, the m-Neighborhood model, and the original Drifting Target

model.

4.4 Query complexity lower bound

In this section we close the gap between upper and lower bounds on query complexity, which

remained an open problem in (57). We show a query complexity lower bound that matches the

upper bound asymptotically.

Our result requires some background on the noisy binary search problem. Here there is a

distinguished integer t from the set {1, ...,m}. In each round r, the learner queries some integer

x. If x = t then the item has been found and the procedure stops. Otherwise with probability

1 − p the learner receives correct feedback of the form x > t or x < t. We make use of the

following lower bound.

Theorem 17 ((57)). Every algorithm for the noisy binary search problem requires at least

logm
1−H(p) − o(logm) queries in expectation.

The idea of our proof is to establish a reduction from noisy binary search: given a noisy

binary search problem where the target is uniformly random among m items, we will reduce it

to a specific Drifting Target problem under our dynamic interactive learning model. Thus the

lower bound on noisy binary search is also a lower bound on interactive learning.

74

Theorem 18. For every n and ∆ ′, there exists a Drifting Target problem such that every

algorithm makes at least

1

1−H(1− p)
·
(
logn+ B · log∆ ′ + R ·H(B/R)

)
− o

(
logn+ B · log∆ ′ + R ·H(B/R)

)

mistakes in expectation.

Proof. We reduce a noisy binary search problem over m items to an interactive learning problem

defined in the following way: choose n and R such that m ≤ nR so that each of the m items can

be represented as a base n encoding/enumeration of a sequence with R digits. The feedback

graph G for the learning problem is a simple path on n vertices, ordered in the same way as in

the encoding: the left end is the smallest digit while the right end is the largest. The transition

graph G ′ is defined on the same set of vertices as in G so n ′ = n. G ′ includes all the edges in G

as bi-directional edges, potentially with additional edges up to some degree ∆ ′.

For example, to search among m ≤ 1000 items, we can choose n = 10 and R = 3, so that

each item can be encoded by a length-3 sequence between ⟨0, 0, 0⟩ and ⟨9, 9, 9⟩, which are our

familiar base-10 natural numbers up to 999. The graph G consists of vertices 0, 1, 2, . . . , 9 on a

path, and interactive learning continues for 3 rounds. Suppose the target item is encoded as the

sequence ⟨1, 1, 2⟩, then the ground truth target locations during the 3 rounds are vertices 1, 1, 2

respectively (target shifted once from vertex 1 to 2).

In the rth round of the interaction, the learner queries vertex i ∈ [n], which can be interpreted

as guessing the rth digit of the target’s encoding sequence. Without loss of generality, suppose

75

the adversary’s feedback is some vertex j to the left of vertex i, which is interpreted as the

rth digit of the target sequence is less than the value i. The learner updates likelihoods for

sequences whose rth digit is less than i by a factor of 1− p > 1
2 , and the other sequences by a

factor of p < 1
2 . According to Lemma 6 from (57), the likelihood of the target item’s encoding

sequence (ground truth) decreases exponentially more slowly than the rest of the sequences and

will eventually prevail.

To establish the lower bound for a Drifting Target problem with arbitrary n and ∆ ′, there

exists a noisy binary search problem on m = n · ∆ ′B ·
(
R
B

)
items that reduces to the Drifting

Target problem. The encoding is restricted such that after the first digit is chosen, the remaining

digits can change at most B times among ∆ ′ choices (all other sequences are initialized with

0 likelihoods). Plugging in our value of m into Theorem 17 gives a mistake lower bound of

1
1−H(1−p) ·

(
logn+ B · log∆ ′ + R ·H(B/R)

)
− o(logn+ B · log∆ ′ + R ·H(B/R)), as desired.

4.5 Efficient algorithm for low diameter graphs

While Algorithm 1 emphasizes on bounding the number of mistakes for general interactive

learning problems, its computation can be inefficient in each round and deteriorates as the

transition model becomes more complex. We realize that the computational complexity mainly

comes from keeping track of the likelihoods under all possible transitions, so we consider an

alternative approach where the learner ignores the transition model completely and simply

follows the adversary’s feedback each round. After the initial query, the algorithm requires no

computation. In this section, we study this simple algorithm’s performance on low diameter

graphs. We formally present this algorithm below.

76

Algorithm 2 ‘Follow the Feedback’ Procedure for Interactive Learning

q1 ← argmini∈V
∑
j∈V w(i, j){Start with a ‘center’ vertex}

for 1 ≤ r ≤ R do
zr ← feedback from adversary after querying qr
qr+1 ← zr {Follow the feedback for next round}

end for

4.5.1 Cliques: graphs with diameter 1

A clique is the most symmetric graph, where each vertex can be considered the center, and

the graph has diameter 1. This means no matter which node the learner queries, a correct

feedback from the adversary will reveal the true target at each round. Therefore after each

mistake, the learner will keep querying the correct node until the target’s next move. The

mistake upper bound is stated in the theorem below.

Theorem 19. If the feedback graph G ′ is fully-connected (a clique on the concept class),

Algorithm 2 makes at most B+ p(R− B) mistakes in expectation.

Proof. By assumption the learner queries a node then receives a feedback, and the target may

move at any point during this process. To help with the analysis in this case, we break down

the chain of events in the following way: in each round we assume that at first the target moves

(or stays put), then the learner makes a query and receives a new feedback. Notice that in every

round where the target moves the learner will make a mistake regardless of the correctness of

the previous feedback. If we assume target can move at most B times, this leads to B mistakes.

For the R− B rounds where the target doesn’t move, the learner makes a mistake if and only if

77

the previous feedback is incorrect. As feedback is noisy with probability p, this leads to p(R−B)

mistakes. So the expected number of mistakes over the course of R rounds is:

E[M] = B+ p(R− B)

In anticipation of discussing other classes of graphs we present a second analysis of Algorithm 2

on cliques. Assume that each round the target moves with probability b = B
R . We can model

the process as a Markov Chain where the states {0, 1} represent the learner’s distance from the

target at each round. Note that these states do not represent the learner’s position in the graph.

Now we break down the chain of events in a slightly different way: first, the learner queries the

node received from previous feedback and receives a new feedback, then target either moves or

stays put for the next round.

The new feedback is correct with probability 1− p, and the target stays at the same vertex

with probability 1− b, so in the next round, the learner queries the correct vertex (transitions

to state 0) with probability (1− p)(1− b). If either the new feedback is incorrect or the target

moves at the end of this round, the learner will make a mistake next round (transitions to state

78

1) with probability p+ b− pb, assuming noise of feedback and target evolution are independent.

The state transition matrix is:

P =

0 1
0 (1− p)(1− b) p+ b− pb

1 (1− p)(1− b) p+ b− pb

Each row in the transition matrix is already in its stationary distribution π = (π0, π1). The

expected number of mistakes over the course of R rounds is: E[M] = R(1−π0) = B+p(R−B).

4.5.2 Stars: graphs with diameter 2

A simple star graph is a graph of diameter 2, with one center vertex connecting to all the

other vertices (leaf nodes). After querying the center vertex, a correct feedback will reveal the

true target, so an efficient strategy is to query the center first then follow the feedback. We

assume the target only moves among the leaf nodes, because the learner will make no more

mistakes in the case that the target can move to the center: if the learner queries a wrong leaf,

it takes at least 2 queries if target is on another leaf, and takes 1 query if the target is at the

center.

Theorem 20. If the feedback graph G ′ is a star then Algorithm 2 makes at most 2B+ p(R−

B) + p2(R− B) mistakes in expectation.

Proof. We again break down the chain of events in this order: first, the target either moves or

stays put, then the learner queries the previous feedback received and the adversary provides a

79

new feedback. For the B rounds that the target shifts, the learner will make 1 mistake each

time. For the R−B rounds when the target doesn’t move, if the previous feedback was incorrect,

the learner will make 1 mistake; if the previous feedback was correct, the learner will make a

mistake if the feedback pointed to the center, which means the previous query was a wrong leaf.

Another case that the feedback points to the center is when the learner queried the correct leaf,

but received an incorrect feedback pointing to the center.

Let x, y, z represent the number of times the learner queries the correct leaf, the wrong leaf,

and the center respectively. Based on the analysis above, we can set up a system of linear

equations:

x+ y+ z = R (4.1)

px+ (1− p)y = z (4.2)

B+ p(R− B) + (1− p)(R− B)(y/R) = R− x (4.3)

Equation 4.1 is trivial; equation 4.2 represents the number of times the learner queries the

center as a function of queries to correct/incorrect leaf nodes; equation 4.3 is the expected

number of mistakes, which is the number of times the learner does not query the correct leaf.

After elimination, equation 4.3 becomes:

E[M] = B+ p(R− B) +

(
[B+ p2(R− B)] · (1− p)(R− B)

B+ p2(R− B) + (1− p)R

)
≤ 2B+ p(R− B) + p2(R− B)

80

Alternatively, if we assume each round the target moves with probability b = B
R , we can model

the process using a Markov Chain with states {0, 1, 2} representing the learner’s distance from

the target at each round. Similar to the analysis of the clique, we have state transition matrix:

P =

0 1 2

0 (1− p)(1− b) p (1− p)b

1 (1− p)(1− b) 0 p+ b− pb

2 0 1− p p

This is a fully-connected Markov Chain, and the stationary distribution π = (π0, π1, π2) can

be calculated numerically. The expected number of mistakes over the course of R rounds is

R(1 − π0). It can be verified that the numerical solution agrees with the analytical solution

above.

In Appendix 4.8, we extend this analysis for “quasi-stars” with a central vertex connecting

otherwise disjoint paths of length d/2 (for even d).

4.5.3 Graphs with diameter o(log n)

From our previous analysis, we notice that the mistake bound does not depend on the

number of nodes in the feedback graph, but rather the diameter, which is the largest distance

from any node to the target. Therefore we consider general graphs bounded by diameter d. The

mistake bound is stated as the theorem below.

81

Theorem 21. If the feedback graph has diameter d, then Algorithm 2 makes at most

1

1− p
·
(
dB−

pB

1− 2p
+ pR

)

mistakes in expectation.

We model the learning process as a random walk on a Markov Chain with states {0, . . . , d}.

However, now we reverse the meaning of the states: state 0 means the query node is distance d

from the true target, and state d means the query node is the target. This change does not

affect the result of analysis, but greatly simplifies the notation. Every time the target moves, the

random walk restarts at state 0 and moves towards state d: the learner moves 1 step forward

upon every correct feedback, and moves 1 step backward upon every noisy feedback. There are

two types of mistakes during the random walk: before reaching the target for the first time,

every query contributes a mistake; once the learner reaches the target, it will circle around it

due to noise probability p < 1/2, and occasionally misses the target.

The first type of mistake is captured by the hitting time of random walk on the Markov

Chain from state 0 to state d. We have the following lemma (see Appendix 4.7 for the proof):

Lemma 11. Let p < 1/2, for a Markov Chain on a path of length d+ 1, the random walk with

forward probability 1− p and backward probability p has a hitting time

h0,d ≤ d

1− 2p
−

p

(1− 2p)2
.

82

Next we consider the second type of mistake. Once the learner reaches the target, it will

keep reporting the correct node unless it receives noisy feedback and is misguided to move away

from the target, which will cause a mistake for the next query. We bound the fraction of time

the learner misses the target with the following lemma.

Lemma 12. Let p < 1/2, after reaching state d and before the next target transition, the

expected fraction of time the learner wanders away from state d is bounded by

Toff ≤ p

1− p
.

Proof. Once the random walk reaches state d (learner queried the correct target), let Td denote

the expected time spent at state d, we have the following recurrence relations:

p · Td = (1− p) · Td−1 =⇒ Td−1 = r · Td where r =
p

1− p

Td−1 = (1− p) · Td−2 + p · Td =⇒ Td−2 = r · Td−1

...

p · T1 = (1− p) · T0 =⇒ T0 = r · T1

For i = 0 . . . d : Ti = r
d−i · Td

The expected fraction of time not spent at state d:

Toff = 1−
Td∑d
i=0 Ti

= 1−
1− r

1− rd+1
≤ r = p

1− p
,

83

which finishes the proof.

Note that the hitting time h0,d is linear in d, and Toff is positively related to entropy H(p).

Combining the results above, we can prove our theorem:

Proof of Theorem 21. Assume every time the random walk restarts at state 0, state d can be

reached before the next restart. This means every time the target moves, the learner is able to

reach the target before its next transition. Since the learner makes a mistake every round spent

on the hitting time, this is the worst case assumption because the learner is forced to make

all the mistakes possible for each target transition. Combining the two types of mistakes from

previous lemmas, the total expected number of mistakes is:

E[M] = B · h0,d + (R− B · h0,d) · Toff

≤ B ·
(d

1− 2p
−

p

(1− 2p)2

)
· 1− 2p
1− p

+
pR

1− p

=
1

1− p
·
(
dB−

pB

1− 2p
+ pR

)
,

which completes the proof.

In the case that d = 2, the bound in Theorem 21 for a general diameter-2 graph is slightly

larger than the bound from Theorem 20 for the star graph. This makes sense because a star is

the best case diameter-2 graph, with a center node that when queried provides information to

the true target.

In the case that d = o(logn) and p = o(H(B/R)), we notice that the result from Theorem

21 is comparable to the trivial upper bound of Algorithm 1 as stated in Corollary 6. This

84

means that if the learner has very limited information on target transition, or the transition

model is complex, and the graph is bounded by low diameter, then Algorithm 2 makes a huge

improvement on computational efficiency without too much sacrifice on query complexity. Note

that a complex transition model is often correlated with a low diameter feedback graph: highly

connected graphs tend to have low diameters, and potentially complex transitions due to the

close relationships between concepts.

4.5.4 Paths: graphs with diameter n

We also note that while path graphs seem like an easy case, they actually present difficulties

due to their large diameter.

An upper bound on noisy binary search was given by (60). Their algorithm returns the

correct element with probability (1− δ) with an expected

(1− δ)

1−H(p)
·
(
logn+O(log logn) +O(log(1/δ))

)

queries. This can be implemented in poly-time.

A naive algorithm for the shifting target case is to run their algorithm k times, setting δ

appropriately small, for example, δ = 1/ log(kn). Then as both k and n go to infinity, the

probability of failure goes to 0.

If k ≈ log(n), B ≈ k, and the number of rounds is much larger than the expected number of

queries, this naive algorithm essentially matches the mistake bound from (54). The difference is

the k log k vs. k2 log k and R ·H(B/R) vs. log(log(kd)) terms.

85

4.6 Acknowledgements

This work was supported in part by the National Science Foundation grant CCF-1934915.

4.7 Proof of Lemma 11

Proof. The transition probabilities of the Markov Chain are:

Pij =

1− p j = i+ 1 (move towards target)

p j = i− 1 (move away from target)

1− p j = i = d (self-loop on the target)

p j = i = 0 (self-loop on nodes furthest from the target)

Let r = p
1−p . It follows from the assumption p < 1

2 that r < 1. The hitting time analysis follows:

For i = 1 . . . d: hi,i+1 = (1− p) · 1+ p · (1+ hi−1,i+1) = 1+ p · (hi−1,i + hi,i+1)

86

We solve the recurrence: hi,i+1 =
1+p·hi−1,i

1−p with base cases: h0,1 =
1
1−p , h1,2 =

1+ p
1−p

1−p = 1
(1−p)2

.

For i ≥ 2:

hi,i+1 =

(∑i−2
j=0 (1− p)

i−j · pj
)
+ pi−1

(1− p)i+1

=
(1− p)i ·

∑i−2
j=0

(
p
1−p

)j
+ pi−1

(1− p)i+1

=
1

(1− p)i+1
·
(
(1− p)i · 1− r

i−1

1− r
+ pi−1

)
=

1

(1− p)i+1
·
(
(1− p)i+1 · 1− r

i−1

1− 2p
+ pi−1

)
=

1

1− 2p
−

ri−1

1− 2p
+

pi−1

(1− p)i+1

=
1

1− 2p
+
(1

(1− p)2
−

1

1− 2p

)
· ri−1

h2,d =

d−1∑
i=2

hi,i+1

=
d− 2

1− 2p
+
(1

(1− p)2
−

1

1− 2p

)
·
d−1∑
i=2

ri−1

=
d− 2

1− 2p
+
(1

(1− p)2
−

1

1− 2p

)
· r− r

d−1

1− r

=
d− 2

1− 2p
+
(1

(1− p)2
−

1

1− 2p

)
· p

1− 2p

h0,d = h0,1 + h1,2 + h2,d

≤ 1

1− p
+

1

(1− p)2
+
d− 2

1− 2p
+
(1

(1− p)2
−

1

1− 2p

)
· p

1− 2p

=
d− 2

1− 2p
−

p

(1− 2p)2
+

1

1− p
+

1

(1− p)2
+

p

(1− p)2(1− 2p)

=
d

1− 2p
−

p

(1− 2p)2

87

4.8 Quasi-stars: graphs with diameter d

Now we consider a star graph where each branch is a path of length greater than one, and we

have diameter d > 2. We can generalize the Markov Chain with states {0, 1, ..., d}, representing

the distance from query node to the true target. Further assume that every time the target

moves, it moves for a distance of at least 2, with uniform probability of landing at any distance

(≥ 2) to the target. The (d+ 1) by (d+ 1) transition matrix P can be approximated as follows:

Pij =

0 j = i− 2, moves 2 steps closer

(1− p)(1− b) j = i− 1, moves 1 step closer

0 j = i, distance to target does not change

p(1− b) j = i+ 1, moves 1 step further

p ′ all remaining probabilities sum to 1 uniformly

With the exception that P00 = (1− p)(1− b). For example, for d = 4:

P =

(1− p)(1− b) p(1− b) b/3 b/3 b/3

(1− p)(1− b) 0 p(1− b) b/2 b/2

0 (1− p)(1− b) 0 p(1− b) b

b 0 (1− p)(1− b) 0 p(1− b)

(p+b−pb)
2

(p+b−pb)
2 0 (1− p)(1− b) 0

88

With stationary distribution π = (π0, ..., πd), we get expected total mistakes as E[M] = R(1−π0),

which can be computed numerically.

CHAPTER 5

LEARNING AUTOMATA FROM RANDOM WALKS

5.1 Introduction

Learning from environmental feedback is a ubiquitous problem in algorithms, machine

learning, and game theory. We’ve already seen an example of this in Chapter 4, and this chapter

studies a classical problem in this area - learning deterministic finite automata.

For our purposes a deterministic finite automata is described by a tuple M = (Q, τ, γ, q0).

Q is a finite set of states, τ : Q × {0, 1} → Q is the transition function, γ : Q → {+,−} is the

labelling function, and q0 ∈ Q is the start state. It is often helpful to think of an automata as a

directed graph with labels {+,−} on the nodes and labels {0, 1} on the directed edges. An edge

(i, j) with label ℓ exists if and only if τ(i, ℓ) = j. We let GM be the edge-labelled directed graph

induced by M without the state labels.

Learning DFA has a rich history which we briefly summarize here. The first results in this

area were pessimistic; Gold (61) and Angluin (11) separately showed the problem of finding the

smallest automaton consistent with a set of accept and reject strings is NP-complete. Later

Pitt and Warmuth (62; 63) gave an NP-hard result for efficiently approximating the smallest

machine. These works imply the intractability of learning finite automata in a variety of passive

learning models when the hypothesis representation is an automata, including PAC-learning

(64). Kearns and Valiant (65) later proved passive learning in the PAC model by any reasonable

89

90

representation is as hard as breaking crypotgraphic protocols. While passive learning in the

most general sense is hard, there are positive results for active learning. Angluin (12), extending

an algorithm presented by Gold (61), showed finite automata are efficiently learnable when

the learner has access to so called ‘membership’ queries and counterexamples to it’s current

hypothesis. This is the well known L∗ algorithm.

The model we consider was first introduced by Freund et al. (66). In their work, the transition

function τ is arbitrary but the labelling γ is chosen uniformly at random. The learner has access

to bits generated by a uniform random walk on the states: if the walk is at state qt at time t, it

moves to state qt+1 = τ(qt, b) at time t+ 1 where b is an unbiased Bernoulli random variable.

The learner the makes a prediction on the label of qt+1, and receives feedback γ(qt+1). The

objective in this procedure is for the learner to stop making prediction mistakes at some point,

up to some confidence parameter δ that . We formalize this procedure below.

Freund et al. (66) were able to prove the existence of an algorithm that makes polynomially

many mistakes for all τ, if the confidence parameter is δ = 1/n2. Their algorithm relies on a

subroutine where the random walk is reset to the starting node q0. This chapter will only be

concerned with this ‘reset’ model, so we assume the learner has access to a button that when

pressed sends the random walk back to q0 and incurs a mistake. In their analysis, (66) give an

algorithm that makes O(n5/δ2) mistakes in the reset model. We will extend their results to the

setting where the random walk is not uniform

91

5.2 Notation and Problem Statement

We borrow some notation from (66). For any state q ∈ Q and x ∈ {0, 1}∗, let qx ∈ Q be the

state reached by taking the walk x starting from state q. Let q⟨x⟩ be the string of length |x|+ 1

of {+,−} labels observed along this walk, and let x(i) be the first i bits in x.

While we would like to be able learn arbitrary automata topologies under arbitrary labellings

γ, due to hardness results this is not feasible. In Section 5.3 we settle to learn arbitrary automata

under random labellings γ and refer to ‘the adversary’ or ‘adversarially chosen graph’ as the

worst-case nature of the choice of GM. We borrow the following definition from (66):

Definition 12. Let Pn,δ be any property on n-state finite automata depending only on n and

confidence parameter 0 ≤ δ ≤ 1. We say that uniformly almost all automata have property

Pn,δ if for all δ > 0, for all n > 0 and for any n-state graph GM, when the state labels {+,−} are

chosen uniformly at random with probability at least 1− δ, Pn,δ holds for the resulting automata

M

In section 5.4 we consider DFA topologies chosen uniformly at random.

5.2.1 Problem Statement

Given any adversarially chosen graph GM and random labelling γ, we would like to learn

the automata M induced by the graph and labelling. In the model we consider, the learner

has access to bits generated from a p-biased random walk on GM starting from q0 and a ‘reset

switch’ which restarts the random walk from q0.

Formally the learner participates in the following procedure, which is repeated forever:

92

1. The learner predicts a label ℓt ∈ {+,−, ?} for the current state st ∈ Q of the random walk

2. The learner is told the correct label γ(st) ∈ {+,−} of the current state st

3. A new state st+1 is chosen:

• if the learner predicted ‘?’, st+1 = q0

• otherwise st+1 = τ(st, 1) with probability p. st+1 = τ(st, 0) with probability 1− p

That is, when the learner predicts “?” the random walk is reset to the initial state q0. Otherwise

the next state is one of the two out-neighbors of the current state, chosen randomly with bias p.

The learner will inevitably make some mistakes when predicting the label for the current

state. In our analysis we distinguish between prediction mistakes, when the learner chooses

ℓt ∈ {+,−} but ℓt ̸= γ(st), and default mistakes, when the learner chooses ‘?’. Our results

explicitly characterize the number of prediction and default mistakes made. Finally, in each

round we require that the computation needed to predict a label is pseudo-polynomial in n and

1/δ, so is of the form O
(
nc logn

)
.

Our interest in psuedo-polynomial mistake bounds is motivated by the section below. Without

modifying the core learning algorithm from (66), their analysis gives a psuedo-polynomial mistake

bound when p = n−c for any constant c. Below this regime, their algorithm makes at least

exponentially many mistakes, and many more if p << 2−n Improving this to a polynomial

mistake bound is an interesting open problem, but we chose to focus on the small transition

probability regime, where p = o(n−c) for every c. In this setting achieving a psuedo-polynomial

bound would unify these two regimes.

93

There is also theoretical reasons to be interested in this regime. A DFA can be thought of

as two mappings from [n] to [n] by considering the partial transitions τb = {qb : q ∈ [n]} for

b ∈ {0, 1}. In the low transition probability regime, the walk is trapped in τ0 majority of the

time, and only occasionally does a transition in τ1 occur. Because the random walk is assumed

to continue forever, all positive probability events will occur, so the learner needs to learn large

parts of the DFA that are observed incredibly rarely. This provides a unique landscape for

developing novel algorithms.

5.3 Learning with large transition probabilities

In this section, we analyze the RESET algorithm from (66) for arbitrary transition proba-

bilities, referenced here as algorithm 3. In the regime where p > 1/n2, the algorithm achieves a

pseudo-polynomial mistake bound.

To bound the number of mistakes, we use a combinatorial property on the distinguishing of

two states in the machine.

Definition 13. A string x ∈ {0, 1}∗ is a distinguishing string for states q1 and q2 if q1⟨x⟩ ̸=

q2⟨x⟩.

A result proved by (66) is that over random labelings, all pairs of states in almost all

automata have short distinguishing strings. Note that the randomness is over the labelling of

the states of the automata, not the transition probabilities. This will be useful to us when we

bias the random walk.

The main idea for this algorithm is to identify every state with its signature which is assumed

to be unique; if we reach the same state often enough, the signature of that state can be

94

Algorithm 3 RESET algorithm from (66)

1. Q ′ = ∅, Q ′
inc = {q ′

0}

{Initializing the automata to be empty except the start state}
2. q ′ = q ′

0

3. While q ′ ̸∈ Q ′
inc, after observing b set q ′ ← τ ′(q ′, b)

{While we’re in a learned part of the automata, predict normally.}
4. Traverse the path through Σ ′(q ′) as dictated by the input sequence. At each step predict
the label of the current node. Continue until an unlabelled node is reached, or the maximum
depth of the tree is exceeded
5. Predict ”?”. If at an unlabelled node of Σ ′(q ′), then label it with the observed output
symbol.
6. if Σ ′(q ′) is complete, then promote q ′ via:
(a) Q ′

inc ← Q ′
inc − {q ′}

(b) if Σ ′(q ′) = Σ ′(r ′) for some r ′ ∈ Q ′:
- find s ′, b such that τ ′(s ′, b) = q ′

- τ ′(s ′, b)→ r ′

(c) else
- Q ′ ← Q ′ ∪ {q ′}
- create new states r ′0, r

′
1

- Q ′
inc ← Qinc ∪ {r ′0, r

′
1}

′

- partially fill in signatures of r01, r
′
1 using Σ

′(q ′)
- τ ′(q ′, b)← r ′b for b ∈ {0, 1}

7. GOTO 2.

discovered, thus its identity can be determined. By identifying the states of the machine, can

reconstruct the transition function.

Theorem 22 (Freund et al. (66)). For uniformly almost all automata, every pair of inequivalent

states have a distinguishing string of length at most 2 log2(
n2

δ).

A signature tree with depth d for state q is a complete binary tree of depth d obtained by

all possible walks q⟨x⟩, x ∈ {0, 1}d. We set Σ(q) to be the d-signature tree with d = 2 log2

(
n2

δ

)
.

95

By Theorem 22 for uniformly almost all automata M, every state q ∈ Q(M) has a unique

d-signature tree Σ(q).

In Algorithm 3, a partial automataM ′ = (Q ′, τ ′, γ ′, q ′
0) is slowly built by considering partial

d-signature trees of hypothesis states Σ ′(q ′). Implicit in the analysis of algorithm 3 found

in (66) is that regardless of the transition probability p, for uniformly almost all automata the

algorithm is correct and for any automata only makes default mistakes. This is because of

the conservative nature of the construction of M ′ and the Σ ′(·): a new hypothesis node and

transition are added only when the algorithm explores the ‘frontier’ of the signature tree built

from the root node. We can exploit this fact and push their analysis further to all values of p:

Theorem 23. For any transition probability p := p(n) ∈ (0, 1), the expected number of default

mistakes made by Algorithm 3 is O

(
n5

δ2

(
n2

δ

)2 log⌈1/p⌉)
and Algorithm 3 makes no prediction

mistakes.

Proof. We follow the analysis of (66). By the observations above, Algorithm 3 makes no

prediction mistakes, and only makes default mistakes when exploring the leaf nodes of a

signature tree for some state q. Since Σ ′(q) is a partial d-signature the leaves are not necessarily

at depth d when explored. Therefore for 0 ≤ i ≤ d, let Xi be the random variable counting

the number of default mistakes made at depth i of Σ ′(q0). Then for all q ′ ̸= q, let Yq ′ be the

random variable counting the number of times q ′ is reached before Σ ′(q ′) is complete.

Then the expected number of mistakes is the expectation of the sum of these random

variables, which reduces to the coupon collectors problem. Let k = ⌈ 1p⌉ and consider Tk, the

complete k-ary tree with depth d. Also consider taking a uniform random walk down Tk and

96

resetting the walk to the root after i steps. The expected number of resets needed to observe

all nodes at depth i of Tk is an upper bound on E[Xi]. A similar argument holds for E[Yq ′].

Therefore,

d∑
i=1

E[Xi] +
∑
q ′ ̸=q

E[Yq ′] ≤
d∑
i=1

ki(log2(k
i) + 1) + knkd(log2 k

d + 1)

≤ kd(log kd + 1) + knkd(log kd + 1)

≤ nklog(n4/δ2) log
(
klog(n

4/δ2)
)

Then re-writing this in terms of p and rearranging finishes the proof, we have

(
n5

δ2

)
(⌈1/p⌉)log(n

4/δ) = O

(
n5

δ2

(
n2

δ

)2 log⌈1/p⌉)
.

This immediately gives a quasi-polynomial result for all sufficiently large p.

Corollary 9. If p > 1/nc, then the number of default mistakes made by Algorithm 3 is

O
((

nc

δ

)2c log(n))
.

5.4 Learning with Small Transition Probabilities: Random DFA

As discussed above, when the transition probability is sub-polynomial the learner spends

majority of it’s time in the 0-transitions. To see why this could be problematic, consider the DFA

where for every state qi ∈ q0, ..., qn−1, qi0 = q0 and qi1 = qi+1 mod n. That is, the 0-transitions

97

all point to state q0, and all 1-transitions form a cycle on the n vertices. Then to observe state

qn−1 requires n 1-transitions to be observed in a row. This is an extremely low probability

event, but for any fixed n is still positive. We have not found a way to handle events such as

this, so we specialize to the case of random DFA. Here both the labelling γ and the transitions

τ are chosen uniformly at random. This will allow us to leverage results from random mappings

and develop ideas towards an algorithm.

5.4.1 Identifying 0-Cycles

The purpose of this section is to show the combinatorial result from Theorem 22 can be

generalized to 0-cycles in a DFA. Here a 0-cycle is a set of vertices where the 0-transitions form

a cycle. We will apply results from this section to random DFA, where the number of 0-cycles is

small with high probability.

We specialize the notion of ‘uniformly almost all’ from definition 12 automata having a

property to subsets of DFA,

Definition 14. Let Pn,δ be any property on n-state automata depending only on n and confidence

parameter 0 ≤ δ ≤ 1. Let S be a subset of all automata that is non-empty for every n. We say

that uniformly almost all automata from S have property Pn,δ if for all δ > 0, for all n > 0

and for any n-state graph GD ∈ S, when the state labels {+,−} are chosen uniformly at random

with probability at least 1− δ, Pn,δ holds for the resulting automata D.

Definition 15. A string s ∈ {0, 1}∗ is called an n, d-path if every 1 in s is preceded by at least

n 0’s, and the number of 1’s in s is at least d. Let Sn,d be the set of all such strings. The length

of s is denoted by |s|, and the number of 1’s in s is denoted by ∥s∥.

98

Now let DC be the collection of DFA (on any number of nodes) where the 0-transitions

form at most C disjoint cycles, and all vertices are on a 0-cycle. Two 0-cycles are said to be

equivalent if every pair of vertices in the cycles are equivalent (have the same behavior on all

strings x ∈ {0, 1}∗). In general a cycle may not be equivalent to itself.

We state and prove the following structural result. Recall that q⟨x⟩ is the length |x| + 1

sequence of {+,−} labels observed by taking the walk x starting from q.

Definition 16. For an n-state automata D ∈ DC and states q1, q2 ∈ D, an n, d-path x is an

n-distinguishing path for q1 and q2 if q1⟨x⟩ ≠ q2⟨x⟩

Theorem 24. For uniformly almost all automata on n vertices from DC, every pair of inequiv-

alent 0- cycles C1, C2 contain states s1 ∈ C1, s2 ∈ C2 such that there is an n-distinguishing path

x for s1, s2 with norm at most ∥x∥ = 2 log
(
C2

δ

)
.

As in (66), this is proved via a sequence of lemmas. The proof is very similar, except now

the length of the distinguishing string is replaced by the norm of the distinguishing path. For

completeness, we will present the lemmas and proofs. Throughout, D will be a DFA from the

set DC on n vertices, and C1, C2 will be 0-cycles in D.

Lemma 13. Let C1 and C2 be inequivalent cycles in D, v1 ∈ C1, v2 ∈ C2 be inequivalent vertices

on the cycles, and x ∈ {0, 1}∗ be an n-distinguishing path for v1 and v2 with smallest norm. Let

T1 and T2 be the sets of 0-cycles passed through on taking an x-walk from v1 and v2. Then

|T1 ∪ T2| ≥ ∥x∥+ 2

99

Proof. First observe that the statement is well-posed; since any 0-cycle has length less than n,

any n-distinguishing path will necessarily have to completely pass through a cycle in between

any two 1-transitions. Also note that C1 could be equal to C2, as a cycle need not be equivalent

to itself.

Let R be a set of 0-cycles in D, and let y ∈ {0, 1}∗. Define the partition of R induced by y to

be the subsets of 0-cycles with the same behavior on y; C1 and C2 are in the same part if and

only if for every q1 ∈ C1 and q2 ∈ C2, q1⟨x⟩ = q2⟨x⟩.

Let xi be the i’th bit of x and ℓ = |x|. Let yi = xi, ..., xℓ be the suffix of x starting from

position i. For any index i, let i− be the index of the last 1 before i, and let i+ be the index of

the first 1 after i. We claim that for every i such that xi = 1, the partition of T1 ∪ T2 induced

by yi is a strict refinement of the partition induced by yi+ . For the sake of contradiction

suppose that there exists an index j such that the partition induced by yj is the same as the

partition induced by yj+ . Define r1 = v1x
(j−), and r2 = v2x

(j−). Because x distinguishes v1, v2

we know r1⟨yj⟩ ̸= r2⟨yj⟩. But then since we assume the partition for yj is the same as yj+ ,

v1⟨x(j
−)yj+⟩ ≠ v2⟨x(j

−)yj+⟩, contradicting minimality of x.

Since the number of classes induced by the empty string is two (those vertices with a + label

form one class, those with a - form the other), the number of classes in the partition induced by

x is at least ∥x∥+ 2. On the other hand, the size of the partition of T1 ∪ T2 induced by any set

of strings is at most |T1 ∪ T2|, therefore ∥x∥+ 2 ≤ |T1 ∪ T2|.

Let x ′ be a prefix of the shortest n-distinguishing path x for q1 and q2 in D, such that

the last bit of x ′ is followed by a 1 in x. Let y be such that x = x ′y. Let z be new symbol

100

and define a new automata Dy = (Qy, τy, γy, qy0) over alphabet {0, 1, z} as follows. qy0 = q0.

Qy = Q ∪ {q+, q−}. All transitions in D
y from states in Q on input in {0, 1} remain the same.

For q ∈ Q, τy(q, z) = q+ if γ(qy) = +, and q− otherwise. For q ∈ {q+, q−}, τ
y(q, b) = q− for

b ∈ {0, 1, z}. Thus the automata Dy is identical to the automata My defined in (66), except we

now condition that the string x ′ be in Sn,d for d large enough. In this new setting, all definitions

from above will hold over the alphabet {0, 1, z} by treating z as if it were a 1. For instance,

n-distinguishing path over 0, 1, z is a string where every 1 or z is preceeded by at least n 0’s.

Lemma 14. x ′z is an n-distinguishing path for q1 and q2 in Dy with smallest norm.

Proof. Clearly x ′z is an n-path by construction, and obviously distinguishes q1 and q2 in D
y.

Suppose t is a distinguishing path for q1 and q2 with smaller norm than x ′z. Then z cannot

appear in the middle of t, as by construction every z transition takes the machine to q+ or q−,

so the prefix of t containing z would have smaller norm than t. If t = t ′z, then t ′y has smaller

norm than t ′x in D which is a contradiction. Likewise if z ̸∈ t, then t has smaller norm than x

in D which is also a contradiction.

Lemma 15. Let x ′ be a prefix of x such that the last bit of x ′ is followed by a 1 in x. Let

T ′
1 ⊆ T1 and T ′

2 ⊆ T2 be the sets of states in D passed upon executing x ′ starting from v1 and v2.

Then |T ′
1 ∪ T ′

2 | ≥ ∥x ′∥+ 1.

Proof. By Lemma 14, x ′z is a shortest distinguishing string for v1 and v2 in D
y. The set of cycles

(0-cycles and the z self-cycle) passed upon executing x ′z starting from q1 is T
′
1 ∪ {q+}, and those

101

passed starting from q2 is T
′
2 ∪ {q−}. Applying Lemma 13, |T ′

1 ∪ T ′
2 |+ 2 ≥ ∥x ′z∥+ 2 = ∥x ′∥+ 3,

so the result follows. (Here we used the definition of ∥ · ∥ posed just above Lemma 14).

Proof of Theorem 24: Let D ∈ DC be an automata on n vertices where the 0-transitions form

cycles. Let d := 2 log
(
C2

δ

)
. Let C1 and C2 be two (possibly the same) 0-cycles. If in every

labelling of D, C1 and C2 are equivalent, then they are indistinguishable and we are done.

Suppose instead that in every labelling there are distinguishable states v1 ∈ C2, and v2 ∈ C2

such that the norm of the n-distinguishing path is at most d. Then we are also done, because

this is true for any random labelling of D.

Otherwise, there exists some labelling of D where C1 and C2 are inequivalent but distin-

guishing them requires an n-distinguishing path with norm greater than d. To be precise, there

do not exist a pair of distinguishable states v1 ∈ C2, and v2 ∈ C2 with an n-distinguishing path

containing less than d 1’s.

Let (v ′1, v
′
2) ∈ (C1, C2) be a pair of vertices in the 0-cycles with an n-distinguishing path x

that has the smallest norm. That is,

(v ′1, v
′
2) = argmin

(a,b)∈C1×C2

min
a⟨y⟩≠b⟨y⟩

∥y∥

Define x(j) to be the prefix of x just before the j+1’st 1. Consider the x(d) walks taken from

v ′1 and v
′
2. Define d + 1 state pairs (ri1 = r

i
2) of D by (ri1 = r

i
2) = (v1x(j), v2x(j)) for 0 ≤ i ≤ d.

Now since x is a distinguishing path, for every i ri1 ̸= ri2. Furthermore Lemma 15 tells us that at

least d+ 1 unique 0-cycles are represented in these state pairs. Each cycle contains at least one

102

vertex and therefore at least one randomly labelled bit. The probability that the string v1⟨x(d)⟩

is identical to v2⟨x(d)⟩ is therefore at most 2−(d+1)/2.

For any fixed pair of 0-cycles C1, C2 in D, the probability that C1 and C2 are inequivalent

but indistinguishable by strings of length d is at most 2−(d+1)/2. Thus the probability of this

occurring for any pair of cycles is bounded by C22−(d+1)/2. If d ≥ 2 log C
2

δ , this probability is

smaller than δ.

5.4.2 Learning Random DFA in Stages

Consider a DFA D on states [n] with transitions chosen uniformly at random. Then the

0 and 1 transitions form two independent random mappings over [n]. Therefore we can talk

about the 0-mapping as the random mapping induced by the 0-transitions. Furthermore we say

0-cycles and 0-transitions to mean directed cycles and trees in the 0-mapping. We briefly prove

some useful properties of random mappings.

Let P(n) be the number of components in a random mapping, Let Y(n) count the number

of vertices on cycles in a random mapping, and let L(n) be the length of the longest cycle in a

random mapping. The following holds.

Lemma 16. There exists a constant C1 such that a.a.s. P(n) < C1 logn.

Proof. Set C1 = 5 (this can be optimized). (10) showed the distribution of P(n) converges to

a standard gaussian when scaled and centered appropriately. Applying this, the Portmanteau

lemma, and the symmetry of the Gaussian,

103

lim
n→∞P

P(n) − EP(n)√
1
2 logn

≤ −t

 = P[N (0, 1) ≤ −t]

=⇒ lim
n→∞P

P(n) − EP(n)√
1
2 logn

≥ t

 = exp

(
−t2

2

)

Setting t = 2
√
logn is enough to guarantee P(n) ≤ C1 logn.

Lemma 17. For ε > 0, for n sufficiently large, P[L(n) ≤ ε
√
n] ≤ ε+O

(
1√
n

)
.

Proof. Consider the following process. First, for vertex 1 choose a neighbor v1 uniformly at

random from [n]. Likewise for all k > 1, vk+1 is defined by choosing a neighbor uniformly at

random from [n]. This gives an infinite sequence of vertices {1, v1, v2, ..., vi, ..., vj, vi, ...vj, vi...}

where the random substring vi, ..., vj repeats forever. Let the random variable H(n) count the

length of this repeating segment, and let F(n) = mink{vk|vk+1 ∈ {v1, ..., vk}} be the last index

before the repeating segment. Notice that this process defines part of one component of M(n),

so bounds on H(n) imply bounds on L(n). We have,

104

P[L(n) ≤ ε
√
n] ≤ P[H(n) ≤ ε

√
n]

= P[H(n) ≤ ε
√
n ∧ F(n) ≤

√
n] +P[H(n) ≤

√
n ∧ F(n) >

√
n]

= P[H(n) ≤ ε
√
n|F(n) ≤

√
n]P[F(n) ≤

√
n]

+P[H(n) < ε
√
n|F(n) >

√
n]P[F(n) >

√
n]

≤ P[F(n) ≤
√
n] +P[H(n) ≤ ε

√
n|F(n) ≤

√
n]

Then notice that P[H(n) ≤ ε
√
n|F(n) ≤

√
n] ≤ ε, because conditioning on the length of the

non-repeating section F(n) ensures that the probability of forming a cycle is at most ε. To finish

the proof it is enough to show P[F(n) ≤
√
n] = O(1/

√
n),

105

P[F(n) ≤
√
n] = P[F(n) ∈ 1, ...,

√
n]

=

√
n∑

i=1

i

n

i−1∏
j=1

n− j

n

=

log(n)−1∑
i=1

i

n

i−1∏
j=1

n− j

n
+

√
n∑

i=logn

i

n

i−1∏
j=1

n− j

n

≤ log2 n

n
+

√
n−logn∑
k=0

k+ logn

n

k+logn−1∏
j=1

n− j

n

=
log2 n

n
+

√
n−logn∑
k=1

k+ logn

n

1

nk+logn

(n− 1)!

(n− k− logn)!

≈ log2 n

n
+

1√
n

√
n−logn∑
k=0

1

nk+logn

√
2πn√

2π(n− k− logn)

(n
e

)n (n
e

)−n+k+logn

=
log2 n

n
+

1√
n

√
n−logn∑
k=1

√
2πn

exp(k+ logn)

≤ log2 n

n
+
√
2π

√
n

n

= O

(
1√
n

)

Where the second line is by independence of edges, the third line is splitting the sum, the first

inequality is bounding the first summation, and the approximation is by Stirling’s formula.

Corollary 10. For all ε > 0 and n sufficiently large, P[Y(n) ≤ ε
√
n] ≤ ε+O

(
1√
n

)
If all the 0-components in a random DFA were cycles, an immediate application of Theorem 24

and modification of Algorithm 3 would be sufficient to produce an algorithm for learning when

p is sub-polynomial. To see this, instead of building signature trees for each node, we could

106

instead build signature trees for each cycle with depth 2 log C
2

δ . By Algorithm 3, every cycle

would have an n-distinguishing tree, and we would therefore only need to connect these with

the appropriate 1-transitions to recover the DFA.

Because a Random DFA has 0-paths leading into 0-cycles we need a bit more work. Given

a random DFA D, let D ′ be the automata where 0-transitions not on cycles are contracted

to the first vertex that is on a cycle. Then D ′ ∈ DC, and by Corollary 10, |V(D ′)| ≥ n1/3

with high probability. By Theorem 24 and Lemma 16, for any cycles C1, C2 there are states

s1 ∈ C1, s2 ∈ C2 such that there is a n1/3-distinguishing path x for s1, s2 with norm at most

∥x∥ = 2 log
(
log2(n)
δ

)
. This informs the algorithm in the following section, which after completion

will not make mistakes on strings of the form (0n
1/3
1)∗.

5.4.2.1 Stage 1

Stage 1 proceeds by building a sub-DFA where no mistakes are made when the input string

does not contain two minority-transitions (1-transitions) within distance n of each other.

The subroutine COLLECT(k) predicts arbitrarily for k steps and outputs either −1 if a

1-transition occurs, or it outputs the labels seen on the all 0-transition path of length k.

The subroutine LOLLIPOP(S) takes in a string S, and outputs a labelled directed graph on

|S| nodes. The digraph contains a path entering a cycle, where the path is labelled by a prefix

of S and the cycle is labelled by the shortest repeating subsequence of the suffix of S. If the

length of this suffix is less than 2 logn, it is increased in size to be at least 2 logn by repeating

its labelling. (For example if n = 5 and S = 101011, the output will be a 4-path labelled 1010

leading into a 6-cycle labelled 111111.)

107

Algorithm 4 STAGE 1

1. Qfin ← ∅, Qinc ← {q0}

2. Cfin ← ∅, Cinc ← ∅
2a. From the initial node q0, call S← COLLECT(n) until S ̸= −1, and add the cycle part of
LOLLIPOP(S) to Cinc
3. q ′ ← q0, C

′ ← C(q ′) {C(q) is the 0-cycle in the component containing q. We can assume
eg. there is a dictionary mapping nodes to cycles stored}
4. While q ′ ̸∈ Qfin, receive input and predict until encountering an unlabelled node, updating
q ′ to be the current node, and setting C ′ ← C(q ′)
5. Call S← COLLECT(n). If S = −1 goto step 2. Else add the state-output pairs to Σ ′(q ′),
and add the cycle-part from LOLLIPOP(S) to ΣT (C

′). Predict ’?’
6. If ΣT (C

′) is complete:
(a) Remove C ′ from Cinc
(b) If ΣT (C

′) = ΣT (R
′) for some R ′ ∈ Cfin then

- for every q ′ ∈ C ′, find appropriate 1-transitions and connect them
(c) Else

- Add C ′ to Cfin
- Add new states r ′0, ..., r

′
ℓ to Qinc corresponding to the 1-transitions out of the cycle

- Partially fill in the node-signature trees and cycle-signature trees where applicable
- Add 0-transition paths into C ′ observed on previous calls of step (5) in Σ ′(q ′). Root

all these paths on a node in C ′ so that no two paths share a node.
7. GOTO step (3)

Theorem 25. The expected number of mistakes for Algorithm 4 to learn strings of the form

(0n1)∗ with probability at least (1− δ) is O

(
n log3(n) (2 logn)2 log

log2 n
δ

)
. In particular this is

less than O
(
n2(logn)log

1
δ

)
.

Proof. We first discuss correctness of the algorithm. It keeps track of two quantities, Qfin

corresponding to completed states of the machine, and Cfin corresponding to completed 0-cycles.

It also tracks two signature trees, Σ ′ and ΣT for each node and cycle respectively.

108

A cycle is only added to Cfin in stage 6, when its signature tree ΣT (C
′) is complete. By

Theorem 24 this tree will contain some distinguishing path, so every pair of cycles will be

distinguished with probability at least 1− δ. Furthermore by the definition of COLLECT(n),

any cycle of length less than 2 logn will have its size increased to match 2 logn. A simple

computation shows that the probability any pair of n randomly labelled cycles on ≥ 2 logn

vertices share a labelling is o(1). Therefore, by this blow-up procedure no two cycles with the

same labelling will be identified as the same.

Furthermore, a node is included in Qfin only if it has a 0-path to a cycle in Cfin, as per (6c).

Furthermore by the construction of the signature trees, every 0-path is observed at some point

in a Σ ′, therefore this step will terminate, so the algorithm will form a partial DFA that doesn’t

make mistakes on strings of the form (0n1)∗.

For the mistake bound, note that the probability (2a) and (5) takes one step to complete is

O(1− pn), and since p = o(n−c) for every c, we will see failure of (2a) and (5) only contributes

to lower order terms in the mistake bound. Furthermore each cycle signature tree has depth

2 log log2 n
δ . Naively one might expect the branching factor to grow as O(n), but we can reduce

this to 2 logn by the following observation. Any 0-cycle with length greater than 2 logn will

not share it’s labelling with any other cycle with high probability. Therefore we may prune the

signature tree whenever encountering a cycle of this length. By the definition of COLLECT(n),

all cycles in the tree will have size at least 2 logn.

Each cycle therefore has a cycle tree with depth d = 2 log log2 n
δ and branching factor

b = 2 logn, and the algorithm stops making mistakes once all cycle trees are complete. Once

109

the walk is on a 0-cycle, the probability of exiting any node is very close to uniform, so for

simplicity we will assume it is actually uniform. Correcting this assumption will only incur lower

order terms to the mistake bound. By a coupon collector argument, the expected number of

mistakes before a signature tree is complete is upper bounded as O(db log(db)). Summing over

all cycles is sufficient to complete the proof.

5.4.2.2 Stage 2 and Beyond

We briefly summarize and discuss some open problems for this chapter. We have seen how to

learn a DFA from biased random walks by adapting the core algorithm from Freund et al. (66).

This produces a psuedo-polynomial mistake bound when p = 1/ poly(n). For p much smaller,

we just described Stage 1 of an algorithm that learns the most probable strings with poly(n)

mistakes in random DFA.

For the following stages, we run into a few difficulties. First, almost certainly the sub-DFA

constructed in Stage 1 does not include some small 0-cycles. In particular as n grows there

are Pois(1/k) 0-cycles of constant length k, and O(
√
n) vertices on 0-cycles. As this stage only

observes 1-transitions off of 0-cycles, there will be some 0-cycle that is reachable from q0 but not

observed in this stage. Furthermore, a heuristic calculation shows there are at least a constant

number of vertices that are only reachable from O(logn) 1-transitions in a row. Thus, while

Stage 1 learns very likely strings, it somehow misses at least constantly many vertices.

Learning these rarely visited vertices poses the following conceptual challenge - how to learn

rare events without incurring many mistakes? We have spent some time thinking about this

110

question and have some partial results. This chapter and progress on algorithms for Random

DFA will be represented in future works.

CITED LITERATURE

111

Bibliography

[1] Maranzatto, T.: Age of gossip in random and bipartite networks, 2024.

[2] Maranzatto, T.: Reconstructing arbitrary trees from traces in the tree edit distance model,
2021.

[3] Gao, X., Maranzatto, T., and Reyzin, L.: A unified analysis of dynamic interac-
tive learning. In 2023 59th Annual Allerton Conference on Communication, Control, and
Computing (Allerton). IEEE, September 2023.

[4] Erdős, P., R. A.: On random graphs i. Publicationes Mathematicae Debrecen, 6, 1959.

[5] Gilbert, E. N.: Random Graphs. The Annals of Mathematical Statistics, 30(4):1141 – 1144,
1959.

[6] Bollobás, B.: The evolution of random graphs. Transactions of the American Mathematical
Society, 286(1):257–274, 1984.

[7] Friedgut, E. and Kalai, G.: Every monotone graph property has a sharp threshold. 1996.

[8] Bollobás, B.: The isoperimetric number of random regular graphs. European Journal of
Combinatorics, 9(3):241–244, 1988.

[9] Flajolet, P. and Odlyzko, A. M.: Random mapping statistics. In International Conference
on the Theory and Application of Cryptographic Techniques, 1990.

[10] Stepanov, V. E.: Limit distributions of certain characteristics of random mappings. Theory
of Probability & Its Applications, 14(4):612–626, 1969.

[11] Angluin, D.: On the complexity of minimum inference of regular sets. Inform. and Control,
39(3):337–350, 1978.

[12] Angluin, D.: Queries and concept learning. Mach. Learn., 2(4):319–342, 1987.

[13] Mohamed, M., ElSawy, H., and Mesbah, W.: Optimized degree-aware random patching for
thwarting iot botnets. IEEE Networking Letters, 5(1):59–63, 2023.

[14] Isik, B., Pase, F., Gunduz, D., Weissman, T., and Michele, Z.: Sparse random networks for
communication-efficient federated learning. In The Eleventh International Conference on
Learning Representations, 2023.

[15] Liu, D., Xu, Y., Wang, J., Xu, Y., Anpalagan, A., Wu, Q., Wang, H., and Shen, L.: Self-
organizing relay selection in uav communication networks: A matching game perspective.
IEEE Wireless Communications, 26(6):102–110, December 2019.

[16] Sun, Y., Kadota, I., Talak, R., and Modiano, E. H.: Age of information: A new metric for
information freshness. Synthesis Lectures on Communication Networks, 2019.

[17] Maatouk, A., Kriouile, S., Assaad, M., and Ephremides, A.: The age of incorrect information:
A new performance metric for status updates. IEEE/ACM Transactions on Networking,
28(5):2215–2228, October 2020.

112

113

[18] Zhong, J., Yates, R. D., and Soljanin, E.: Two freshness metrics for local cache refresh. 2018
IEEE International Symposium on Information Theory (ISIT), pages 1924–1928, 2018.

[19] Yates, R. D.: The age of gossip in networks. In 2021 IEEE International Symposium on
Information Theory (ISIT). IEEE, July 2021.

[20] Srivastava, A. and Ulukus, S.: Age of gossip on generalized rings. In MILCOM 2023 -
2023 IEEE Military Communications Conference (MILCOM). IEEE, October 2023.

[21] Srivastava, A. and Ulukus, S.: Age of gossip on a grid. In 2023 59th Annual Allerton
Conference on Communication, Control, and Computing (Allerton). IEEE, September
2023.

[22] Kaswan, P., Mitra, P., Srivastava, A., and Ulukus, S.: Age of information in gossip networks:
A friendly introduction and literature survey, 2023.

[23] Blum, A., Hopcroft, J., and Kannan, R.: Random Graphs, page 215–273. Cambridge
University Press, 2020.

[24] Krivelevich, M. and Sudakov, B.: The phase transition in random graphs: A simple proof.
Random Structures and; Algorithms, 43(2):131–138, September 2012.

[25] Srivastava, H. and Choi, J.: Zeta and q-zeta functions and associated series and integrals.
In Zeta and q-Zeta Functions and Associated Series and Integrals, eds. H. Srivastava and
J. Choi, pages 1–140. London, Elsevier, 2012.

[26] Bollobás, B. and Chung, F. R. K.: The diameter of a cycle plus a random matching.
SIAM Journal on Discrete Mathematics, 1(3):328–333, 1988.

[27] Bollobás, B. and Fernandez de la Vega, W.: The diameter of random regular graphs.
Combinatorica, 2(2):125–134, June 1982.

[28] Ellis, R. B., Martin, J. L., and Yan, C.: Random geometric graph diameter in the unit ball.
Algorithmica, 47(4):421–438, February 2007.

[29] Barbour, A., Karoński, M., and Ruciński, A.: A central limit theorem for decomposable
random variables with applications to random graphs. Journal of Combinatorial Theory,
Series B, 47(2):125–145, 1989.

[30] Davies, S., Rácz, M. Z., and Rashtchian, C.: Reconstructing trees from traces. In COLT,
eds. A. Beygelzimer and D. Hsu, volume 99, pages 961–978. PMLR, 2019.

[31] Batu, T., Kannan, S., Khanna, S., and McGregor, A.: Reconstructing strings from random
traces. In SODA, pages 910–918. SIAM, 2004.

[32] Bhardwaj, V., Pevzner, P. A., Rashtchian, C., and Safonova, Y.: Trace reconstruction
problems in computational biology. IEEE Transactions on Information Theory, page 1–1,
2020.

[33] Church, G. M., Gao, Y., and Kosuri, S.: Next-generation digital information storage in
dna. Science, 337(6102):1628–1628, 2012.

114

[34] He, L., Karau, P., and Tabard-Cossa, V.: Fast capture and multiplexed detection of short
multi-arm dna stars in solid-state nanopores. Nanoscale, 11:16342–16350, 2019.

[35] Bouchard-Côté, A., Hall, D., Griffiths, T. L., and Klein, D.: Automated reconstruction of
ancient languages using probabilistic models of sound change. Proceedings of the National
Academy of Sciences, 110(11):4224–4229, March 2013. Publisher: National Academy of
Sciences Section: Physical Sciences.

[36] Chase, Z.: New upper bounds for trace reconstruction, 2020.

[37] Nazarov, F. and Peres, Y.: Trace reconstruction with exp(O(n1/3)) samples. In STOC,
pages 1042–1046. ACM, 2017.

[38] De, A., O’Donnell, R., and Servedio, R. A.: Optimal mean-based algorithms for trace
reconstruction. Annals of Applied Probability, 29(2):851–874, 2019.

[39] Chase, Z.: New lower bounds for trace reconstruction, 2019.

[40] Holden, N. and Lyons, R.: Lower bounds for trace reconstruction, 2018.

[41] Holden, N., Pemantle, R., and Peres, Y.: Subpolynomial trace reconstruction for ran-
dom strings and arbitrary deletion probability. In Proceedings of the 31st Conference On
Learning Theory, eds. S. Bubeck, V. Perchet, and P. Rigollet, volume 75 of Proceedings of
Machine Learning Research, pages 1799–1840. PMLR, 06–09 Jul 2018.

[42] Holenstein, T., Mitzenmacher, M., Panigrahy, R., and Wieder, U.: Trace reconstruction
with constant deletion probability and related results. In SODA, 2008.

[43] Chen, X., De, A., Lee, C. H., Servedio, R. A., and Sinha, S.: Polynomial-time trace
reconstruction in the smoothed complexity model, 2020.

[44] Brakensiek, J., Li, R., and Spang, B.: Coded trace reconstruction in a constant number of
traces, 2019.

[45] Cheraghchi, M., Gabrys, R., Milenkovic, O., and Ribeiro, J.: Coded trace reconstruction.
IEEE Transactions on Information Theory, 66(10):6084–6103, 2020.

[46] Srinivasavaradhan, S. R., Du, M., Diggavi, S., and Fragouli, C.: On maximum likelihood
reconstruction over multiple deletion channels. In 2018 IEEE International Symposium on
Information Theory (ISIT), pages 436–440. IEEE, 2018.

[47] Davies, S., Racz, M. Z., Rashtchian, C., and Schiffer, B. G.: Approximate trace reconstruc-
tion, 2020.

[48] Organick, L., Ang, S., Chen, Y., Lopez, R., Yekhanin, S., Makarychev, K., Racz, M.,
Kamath, G., Gopalan, P., Nguyen, B., Takahashi, C., Newman, S., Parker, H., Rashtchian,
C., Stewart, K., Gupta, G., Carlson, R., Mulligan, J., Carmean, D., Seelig, G., Ceze, L.,
and Strauss, K.: Random access in large-scale dna data storage. Nature Biotechnology,
36(3):242–248, March 2018.

[49] Karau, P. and Tabard-Cossa, V.: Capture and translocation characteristics of short
branched dna labels in solid-state nanopores. ACS Sensors, 3(7):1308–1315, 2018. PMID:
29874054.

115

[50] Mitzenmacher, M.: A survey of results for deletion channels and related synchronization
channels. Probability Surveys, 6:1–33, 2009.

[51] Awasthi, P., Balcan, M., and Voevodski, K.: Local algorithms for interactive clustering.
J. Mach. Learn. Res., 18:3:1–3:35, 2017.

[52] Balcan, M.-F. and Blum, A.: Clustering with interactive feedback. In International
Conference on Algorithmic Learning Theory, pages 316–328. Springer, 2008.

[53] Lelkes, Á. D. and Reyzin, L.: Interactive clustering of linear classes and crypto-
graphic lower bounds. In Algorithmic Learning Theory - 26th International Conference,
ALT 2015, Banff, AB, Canada, October 4-6, 2015, Proceedings, eds. K. Chaudhuri, C.
Gentile, and S. Zilles, volume 9355 of Lecture Notes in Computer Science, pages 165–176.
Springer, 2015.

[54] Emamjomeh-Zadeh, E. and Kempe, D.: A general framework for robust interac-
tive learning. In Proceedings of the 31st International Conference on Neural Information
Processing Systems, pages 7085–7094, 2017.

[55] Dereniowski, D., Tiegel, S., Uznanski, P., and Wolleb-Graf, D.: A framework for searching
in graphs in the presence of errors. In 2nd Symposium on Simplicity in Algorithms, SOSA
2019, January 8-9, 2019, San Diego, CA, USA, eds. J. T. Fineman and M. Mitzenmacher,
volume 69 of OASICS, pages 4:1–4:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2019.

[56] Becerra-Bonache, L., Dediu, A., and Tirnăucă, C.: Learning DFA from correction and equiv-
alence queries. In Grammatical Inference: Algorithms and Applications, 8th International
Colloquium, ICGI 2006, Tokyo, Japan, September 20-22, 2006, Proceedings, eds. Y.
Sakakibara, S. Kobayashi, K. Sato, T. Nishino, and E. Tomita, volume 4201 of Lecture
Notes in Computer Science, pages 281–292. Springer, 2006.

[57] Emamjomeh-Zadeh, E., Kempe, D., Mahdian, M., and Schapire, R. E.: Interactive learning
of a dynamic structure. In Algorithmic Learning Theory, pages 277–296. PMLR, 2020.

[58] Bousquet, O. and Warmuth, M. K.: Tracking a small set of experts by mixing past
posteriors. J. Mach. Learn. Res., 3:363–396, 2002.

[59] Emamjomeh-Zadeh, E., Kempe, D., and Singhal, V.: Deterministic and probabilistic
binary search in graphs. In Proceedings of the 48th Annual ACM SIGACT Symposium
on Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, eds. D.
Wichs and Y. Mansour, pages 519–532. ACM, 2016.

[60] Ben-Or, M. and Hassidim, A.: The bayesian learner is optimal for noisy binary search (and
pretty good for quantum as well). In 49th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2008, October 25-28, 2008, Philadelphia, PA, USA, pages 221–
230. IEEE Computer Society, 2008.

[61] Gold, E. M.: System identification via state characterization. Automatica J. IFAC, 8:621–
636, 1972.

116

[62] Pitt, L. and Warmuth, M. K.: The minimum consistent DFA problem cannot be approxi-
mated within any polynomial. J. Assoc. Comput. Mach., 40(1):95–142, 1993.

[63] Pitt, L. and Warmuth, M. K.: Prediction-preserving reducibility. J. Comput. System Sci.,
41(3):430–467, 1990.

[64] Valiant, L. G.: Robust logics. In Annual ACM Symposium on Theory of Computing
(Atlanta, GA, 1999), pages 642–651. ACM, New York, 1999.

[65] Kearns, M. and Valiant, L.: Cryptographic limitations on learning Boolean formulae and
finite automata. J. Assoc. Comput. Mach., 41(1):67–95, 1994.

[66] Freund, Y., Keams, M., Ron, D., Rubinfeld, R., Schapire, R., and Sellie, L.: Efficient
learning of typical finite automata from random walks. pages 315–324, June 1993. 25th
Annual ACM Symposium on Theory of Computing, STOC 1993 ; Conference date: 16-05-
1993 Through 18-05-1993.

	to1 Introduction
	 Introduction
	 Notation
	 Data Structures
	 Glossary of Graph Notation
	 Asymptotic Notation

	 Background

	to2 Age of Information in Gossiping Networks
	 Introduction
	 System Model and Background
	 Version Age of Information
	 Random Graphs

	 Notation and Summary of Results
	 Bipartite graphs
	 Random Regular Graphs
	 Erdős-Reyni Random Graphs
	 General Bound on Version Age
	 Lower Bound
	 Upper Bound
	 The Upper Bound is tight: -regular tree
	 Application of Theorem 4 to Open Problems

	 Remarks
	 Monotonicity of vAoI
	 Proof of Lemma 3

	to3 String and Tree Reconstruction
	 Introduction
	 String Trace Reconstruction
	 Tree Trace Reconstruction

	 Related Work
	 Tree Reconstruction Lower Bounds
	 Recovering Unknown Tree Topologies
	 Left-Propagation

	 Tree Reconstruction Upper Bounds
	 Labelled Trees with known Topology
	 Trees with Large Degree
	 Trees with Leaf Labels

	 Combinatorics of String Reconstruction
	 Infinite Strings
	 Fixed Length Traces

	to4 Dynamic Interactive Learning
	 Introduction
	 Preliminaries
	 Static model
	 Dynamic model
	 Shifting target
	 Drifting target

	 A unified model
	 Shortest path
	 m-Neighborhood

	 Query complexity lower bound
	 Efficient algorithm for low diameter graphs
	 Cliques: graphs with diameter 1
	 Stars: graphs with diameter 2
	 Graphs with diameter o(log n)
	 Paths: graphs with diameter n

	 Acknowledgements
	 Proof of Lemma 11
	 Quasi-stars: graphs with diameter d

	to5 Learning Automata from Random Walks
	 Introduction
	 Notation and Problem Statement
	 Problem Statement

	 Learning with large transition probabilities
	 Learning with Small Transition Probabilities: Random DFA
	 Identifying 0-Cycles
	 Learning Random DFA in Stages
	 Stage 1
	 Stage 2 and Beyond

	to CITED LITERATURE

