
Algorithms for Learning Networks and Learning from Networks

by

Mano Vikash Janardhanan
Integrated MS, Indian Institute of Science Education and Research, Thiruvananthapuram, 2014

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Mathematics

in the Graduate College of the
University of Illinois at Chicago, 2019

Chicago, Illinois

Defense Committee:

Lev Reyzin, Chair and Advisor
György Turán
Dhruv Mubayi
Bhaskar DasGupta, Department of Computer Science
Anastasios Sidiropoulos, Department of Computer Science

To my parents

iii

ACKNOWLEDGMENT

I am deeply indebted to my advisor Lev Reyzin for all his help during my time at UIC. I am grateful to

him for teaching me how to be passionate about research. From picking a problem that I find interesting

to publishing the results, I can not understate the value of his guidance throughout the process. I am

grateful for his incredible guidance and endless patience. I am inspired by his passion for research and

honesty in everything he does. I also want to thank Lev for encouraging me to collaborate with other

research groups within academia and outside because this showed me different styles of research and

more importantly helped me find what I want to do. I feel I have been extremely fortunate to have him as

my advisor and I hope to emulate these qualities in my career.

I would also like to extend my deepest gratitude to all my collaborators in UIC- Mohsen Aliabadi,

Bhaskar DasGupta, Yi Huang and Farzane Yahyanejad. Their contribution has had a major role in this

dissertation and it was a pleasure working with them. I also want to thank Bhaskar DasGupta, Dhruv

Mubayi, Anastasios Sidiropoulos and Gyuri Turan for teaching the graduate classes that gave me a solid

mathematical background and for always being available to answer my questions. I am extremely grateful

to the subset of people mentioned above for being in my thesis committee.

I would like to extend my sincere thanks to Ádám Lelkes for helping me explore research in industry.

I did not know much about industry when I applied but he helped me navigate through the entire process

and found an amazing team for me to work with. It was an great experience which deeply influenced my

perspective on research.

iv

ACKNOWLEDGMENT (Continued)

Before coming to UIC, I spent five wonderful years in Indian Institute of Science Education and

Research, Thiruvananthapuram which laid the foundations for my graduate study. I am grateful to my

Masters thesis advisor, Sujith Vijay for helping me take my first steps in mathematics research which

ultimately led to my first paper.

I thank all my friends in UIC for their encouragement and support. Special thanks to Maryam

Emami for her marathon running tips and Sarthak Chimni for his insightful analysis of every soccer

game we played and watched. I thank Arunkumar Muthusamy and Ajai Pulianmackal (my friends from

undergrad) for visiting me once in a while and forcing me to host them every time. I am also grateful to

Ramasubramonian Deivanayagam for his unwavering support right from my undergraduate days.

This thesis would not be possible without the support of my family. While every other student from

my high school class went on to study engineering, my family encouraged me to pursue my passion. I

dedicate this dissertation to the trust they placed in me.

MVJ

v

CONTRIBUTIONS OF AUTHORS

• Chapter 2 represents the paper Graph verification using a betweenness oracle by Mano Vikash

Janardhanan (Janardhanan, 2017).

• Chapter 3 represents the paper Network construction with ordered constraints by Yi Huang, Mano

Vikash Janardhanan and Lev Reyzin (Huang et al., 2017). This work also appears in the thesis of

Yi Huang (Huang, 2017).

• Chapter 4 represents the preprint How did the shape of your network change? (on detecting anoma-

lies in static and dynamic networks via change of non-local curvatures) by Bhaskar DasGupta,

Mano Vikash Janardhanan and Farzane Yahyanejad (DasGupta et al., 2018). The results in this

preprint are split between this thesis and Farzane Yahyanejad’s thesis (Yahyanejad, 2019).

All content in these chapters, including introduction, formulation of definitions, theorems, algorithms,

and writing of the various manuscripts were done jointly with the co-authors.

vi

TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . 1
1.1 Complexity theory . 2
1.2 Learning theory . 4
1.3 Preliminaries . 5
1.3.1 Complexity of graph theoretic problems 7
1.3.2 Query learning of graphs . 8
1.3.3 Offline and online problems . 9

2 NETWORK VERIFICATION WITH BETWEENNESS ORACLE 11
2.1 Introduction and previous work . 11
2.1.1 The problem . 14
2.2 Lower bound . 14
2.3 Definitions . 16
2.4 Main result . 18
2.4.1 Edge verification . 18
2.4.2 Non-edge verification . 21
2.5 Open problems . 27

3 NETWORK RECONSTRUCTION WITH ORDERED CONSTRAINTS . . . 29
3.1 Introduction . 29
3.1.1 Past Work . 31
3.1.2 Connection to network inference . 32
3.1.3 Our results . 33
3.2 The offline problem . 34
3.3 The online problem . 36
3.3.1 Arbitrary graphs . 37
3.3.2 Stars . 43
3.3.3 Paths . 44

4 DETECTING NETWORK ANOMALIES VIA NON-LOCAL CURVATURES 52
4.1 Introduction . 52
4.1.1 Some basic definitions and notations 54
4.1.2 Why use network curvature measures? 55
4.1.2.1 Scalar vs. vector curvature . 57
4.1.3 Why only the edge-deletion model? 58
4.1.4 Two examples in which curvature measures detect anomaly where

other simpler measures do not . 58

vii

TABLE OF CONTENTS (Continued)

CHAPTER PAGE

4.1.4.1 Extremal anomaly detection for a static network 59
4.1.4.2 Targeted anomaly detection for a dynamic biological network 60
4.1.5 Algebraic approaches for anomaly detection 61
4.1.6 Remarks on the organization of our proofs 61
4.2 Two notions of graph curvature . 61
4.2.1 Gromov-hyperbolic curvature . 61
4.2.1.1 Is Gromov-hyperbolic curvature a suitable statistically significant

measure for real-world networks ? . 63
4.2.1.2 Some clarifying remarks regarding Gromov-hyperbolicity measure . 64
4.2.2 Geometric curvatures . 64
4.2.2.1 Some basic topological concepts . 64
4.2.2.2 Geometric curvature definitions . 65
4.2.2.3 Are geometric curvatures a suitable measure for real-world networks ? 67
4.3 Formalizations of two anomaly detection problems on networks . . . 67
4.3.1 Extremal anomaly detection for static networks 67
4.3.2 Targeted anomaly detection for dynamic networks 69
4.4 Computational complexity of extremal anomaly detection problems . 69
4.4.1 Geometric curvatures: exact and approximation algorithms for EadpC2

d
69

4.4.2 Gromov-hyperbolic curvature: computational complexity of EadpCGromov
71

4.4.2.1 Proof techniques and relevant comments regarding Theorem 11 . . . 71
4.4.2.2 Proof of Theorem 11 . 71
4.5 Computational complexity of targeted anomaly detection problems . 72
4.5.1 Geometric curvatures: computational hardness of TadpC2

d
(G1, G2) . 72

4.5.1.1 Proof techniques and relevant comments regarding Theorem 12 . . . 73
4.5.1.2 Proof of Theorem 12 . 73
4.5.2 Gromov-hyperbolic curvature: computational hardness of TadpCGromov

81
4.5.2.1 Proof techniques and relevant comments regarding Theorem 13 . . . 81
4.5.2.2 Proof of Theorem 13 . 82
4.6 Conclusion and future research . 89

CITED LITERATURE . 92

APPENDIX . 103

VITA . 109

viii

LIST OF TABLES

TABLE PAGE
I Specific patterns and replacements that appear through the algorithm.

P4(1) denotes the case of P4 where the top p-node is retained in the replace-
ment and P4(2) denotes the case where the top p-node is deleted. The same
is true for P6. P0, P1, Q0, and Q1 are just relabelling rules, and we have
omitted them because no edges need to be added. We use the same shapes
to represent p-nodes, q-nodes, and subtrees as in Booth and Lueker’s paper
for easy reference, and we use diamonds to represent leaf nodes. 48

II How the terms in the potential function:
∑

p∈P c(p), |P |, and |Q| change
according to the updates. 50

ix

LIST OF FIGURES

FIGURE PAGE
1 Representation of Ĝ for Theorem 2 in Chapter 2 15
2 Representation of H for Theorem 2 in Chapter 2 16
3 Pictorial representation of the definitions for Lemma 7 in Chapter 2 24
4 Toy example of extremal anomaly detection discussed in Section 4.1.4.1. . . 59
5 Toy example of targeted anomaly detection discussed in Section 4.1.4.2. . . 60
6 Illustration of the reduction in Theorem 13. (a) The input graph G = (V,E)

for the Hamiltonian path problem for cubic graphs (Cubic-Hp). (b) and (c)
The graphs G1 = (V ′′, E1) and G2 = (V ′′, E2) for the generated instance of
TadpCGromov

(G1, G2). The graph G′ = (V ′, E′) obtained from the given graph
G′ by adding three extra nodes and three extra edges. (d) An optimal solution
G′2 for TadpCGromov

(G1, G2) if G contains a Hamiltonian path between v1 and
vn. 83

x

SUMMARY

There are many different networks we encounter in every day life. Social networks, internet (short

form of interconnected network) and biological networks are some examples. With the enormous amount

of data this is being generated in recent times, the size of these networks have grown substantially. Hence

it is important to develop new models and algorithms for studying networks on a large scale.

This thesis focuses on problems in graph theory that are related to learning and algorithms. We will

explore how to formalise the question “How to learn a graph?” in Chapters 2 and 3. In Chapter 2, we

give the learner the power to query a graph and the objective is to learn the edges (or connections) of

the graph with the least number of queries. In Chapter 3, the learner gets to see some information about

the graph that is generated by some process and the objective is to learn (or approximately learn) the

edges. We consider various models for how the information is given to the algorithm. Finally, in Chapter

4, suppose we observe some dynamic graph at two different times, we ask what changes in the edges

caused the maximum change in the overall structure of the graph. The intuition here is that these changes

correspond to anomalies.

In this thesis, we have built models for various learning and algorithmic questions on graphs. For

each of these models, we pick the quantities of most significance and give algorithms and bounds for

them.

xi

CHAPTER 1

INTRODUCTION

Recent advances in technology has made it easier to collect, store and process data about the world

around us. Interactions among entities in our world play a significant role in the data that is generated.

Hence, it is extremely important to consider these interactions when building models for the data. These

interactions are captured mathematically by graphs (also called networks). As the amount of data

available increases, so does the size of these graphs. This motivates the need to develop new models and

algorithms for handling various problems over graphs.

The basic structure of a graph is a collection of elements and connections between pairs of elements

to denote that those pairs interact with each other in some way. Graphs arise naturally in many different

scenarios. In computer science, graphs can be used to represent a network of communications. The

internet can be thought of as a graph where the elements of the graph are computers and two computers

interact if there is a direct channel of communication between them. In molecular biology, an interactome

is modelled by a graph which captures the whole set of molecular interactions in a particular cell. In a

protein-protein interactome, the elements are proteins and connections represent whether two proteins

interact. In a social network, individuals form the elements and connections may represent whether two

individuals are friends.

Suppose a scientist observes some data and wants to construct a graph from the data. This data may

be a result of experiments run by the scientist or it may be generated by some natural process that the

scientist has no control over. In the former case (studied in Chapter 2), the scientist has the power to

1

2

choose experiments to run in order to find the graph. Hence, the question becomes what is the best

experiments to run. In the later case (studied in Chapter 3), the interesting question is what method does

the scientist use to deduce the graph from the data. Now, suppose a scientist used some data and inferred

a graph. It is natural to ask what can the scientist conclude from it. In Chapter 4, we look at the problem

of finding the interactions which are most important for the overall structure.

This thesis considers a theoretical framework for each of these problems. We start by giving a brief

introduction to standard models in theoretical computer science.

1.1 Complexity theory

The P versus NP problem is one of the biggest unsolved problems in computer science. This section

discusses the essence of the problem without many of the technical definitions. A formal treatment of the

problem can be found in (Arora and Barak, 2009).

Turing Machines are models of computation used to define computational complexity problems.

Intuitively, a Turing machine is equivalent to any reasonable model of computation (like a computer or

laptop). Decision problems are problems for which the output is yes or no. The class P contains decision

problems that can be solved by a deterministic Turing machine in time polynomial in the size of the input.

The class NP contains decision problems for which the yes instances of the problem can be verified by

a deterministic Turing machine in time polynomial in the size of the input. When a problem can be

solved by a deterministic Turing machine in time polynomial in the size of the input, it is considered to

be “easy”.

Given a set of integers A with |A| = n, consider the problem of checking whether the total sum of

integers in A is positive or not. This problem is in class P because it is easy to sum all the numbers. Given

3

a set of integers A with |A| = n, consider the problem of checking whether there is a subset S ⊆ A such

that the sum of integers in S is equal to zero. If the subset S which is a candidate for summing to zero is

given, it is easy to verify whether that the numbers in S adds up to zero or not. Hence, this problem is in

NP. But it is not clear whether this problem is in P or not. This motivates the general question of whether

a problem that can be verified in polynomial time can be solved in polynomial time. This is the essence

of the P versus NP problem. Formally, the P versus NP problem is the question whether P=NP or P 6=NP?

While the problem is unsolved, it is reasonable to believe that in general, problems in NP can be harder

than problems in P and hence it is conjectured that P 6=NP. The hardest problems in class NP are called

NP-complete problems. If P6=NP, then NP-complete problems can not be solved in polynomial time.

A polynomial time reduction from a decision problem A to a decision problem B is an algorithm

that, on input instance x of problem A, outputs an instance y on problem B in polynomial time, such

that the answer to y is yes if and only if the answer to x is yes. If such a polynomial time reduction

exists from problem A to problem B, it is denoted as A ≤p B. When studying the complexity of a

problem X , if X ≤p Y and Y is in class P then, X is also in class P. On the other hand if X ≤p Y and

Y is NP-complete, then X does not have a polynomial time algorithm assuming P6=NP. These type of

reductions are standard methods in complexity theory to study the computation complexity of a problem.

SAT is the problem of deciding whether a Boolean formula is satisfied. A formula is satisfiable if there

exists an assignment of true or false values to the variables such that the value of the formula becomes

true. SAT is the first problem that was proven to be NP-complete. 3-SAT is the problem of deciding

whether a Boolean formula in 3-conjunctive normal form is satisfiable. 3-SAT is also NP-complete. This

means that if P6=NP, 3-SAT can not be decided in polynomial time. The Exponential Time Hypothesis

4

(ETH) introduced in (Impagliazzo and Paturi, 2001) postulates that 3-SAT can not be solved in 2o(n) time

in the worst case. Hence, ETH is a stronger assumption than P 6=NP and leads to stronger lower bounds

for many problems. The unique games conjecture (UGC) introduced in (Khot, 2002) is another standard

assumption that is stronger than P 6=NP. It postulates that finding the approximate value of a certain type

of game is hard.

Optimization problem occur naturally in various scenarios. Given a set of integers A, let X be

problem of finding the maximum value that can be attained by summing the elements of a subset S ⊆ A.

It is possible to get a decision version of the optimization problem X by introducing an extra variable

k. In particular, let X ′ be following the decision problem: given A and k, does there exists a subset

S ⊆ A such that the sum of integers in S is greater than k. It is usually easy to convert an optimization

problem to a decision problem. A polynomial time algorithm for X implies a polynomial time algorithm

for X ′. A simple binary search over the values of k along with a polynomial time algorithm for X ′

implies a polynomial time algorithm for X . Such relationships between optimization problems and the

corresponding decision problems are usually obvious.

1.2 Learning theory

For a formal introduction to learning theory see (Mohri et al., 2012). There are many models to

study the theoretical frameworks for learning. The PAC learning model is arguably the most popular

one for real world scenarios. Looking at what scenarios it captures naturally leads to some of the other

frameworks studied in this thesis.

In 1984, Valiant introduced PAC (Probably Approximately Correct) learning model (Valiant, 1984).

This model captured the essence of what it means to learn from data that is generated by the real world.

5

In this model, training examples are generated by a fixed distribution, labeled by a concept and given

to the learner. A concept class is said to be PAC learnable if for any concept in the class, and any

distribution, a learner can produce with probability at least (1− δ), a hypothesis that has at most ε error

on sufficiently large number of future examples drawn from the same distribution where sufficiently large

means polynomial in the relevant parameters. If the learner can produce the hypothesis in polynomial

time in the relevant parameters, then the concept class is said to be efficiently PAC-learnable.

While the PAC-learning model captures most settings where the data is generated by some real world

process, it does not model the ability of the learner to interact with the world and choose the training

data. This gap was filled by active learning models introduced by (Angluin, 1988). In active learning, the

learner has the ability to query an oracle. In Angluin’s model, the learner could ask the oracle to label an

example according to the unknown concept (called membership query) or the learner could ask whether

a proposed concept is the correct one (called equivalence query).

In the online learning scenario, the examples appear one at a time (usually adversarially) and the

learner must produce labels on the spot. This model captures settings where the data is generated over a

large period of time or when the dataset is too large for the learner to store all the previously seen data.

There are various models for the adversary and the amount of power the adversary has determines how

well an algorithm can perform against it.

1.3 Preliminaries

This section starts with some of the basic definitions which may be found in standard textbooks in

graph theory (van Lint et al., 2001), then proceeds to discuss some standard results in complexity of

graph theoretic problems, definitions of problems in query learning of graphs and definition of offline

6

and online problems. While the subsequent chapters use the basic definitions and results in this section,

the background and previous work related to the specific models are discussed within the chapters.

A graph is an ordered pair G = (V,E) comprising of a set V of n vertices and a set E of m edges

where each element e ∈ E is a 2-element subset of V . If {u, v} ∈ E, u and v are said to be adjacent to

each other. An edge e is incident on a vertex v if v ∈ e. A weighted graph is a graph together with a

function associating a real number w(e) to each edge e ∈ E. If no such function is provided, the graph is

assumed to be unweighted and all edges are assumed to have unit weight. It will be made clear in each

chapter whether the problem being considered is on weighted or unweighted graphs.

It is possible to define the edge set by 2-tuples of vertices instead of 2-element subsets. However, in

the 2-tuple definition, if (u, v) is an edge, it is interpreted as a directed edge from u to v. This leads to the

definition of a directed graph. It will be made clear in each chapter whether the graph being considered is

directed or undirected.

A path is a sequence of vertices and edges v1, e1, v2, e2, . . . , vk−1, ek−1, vk where ei = {vi, vi+1}

for 1 ≤ i ≤ k − 1 and e1, e2, . . . , ek−1 are distinct elements. A path is called simple if the vertex terms

v1, v2, . . . , vk are distinct. The length of a path is the sum of weights of edges in the path. A cycle

is a path where v1 = vk and all other vertices are distinct. A graph is a path if V = {v1, v2, . . . , vk}

and E = {e1, e2, . . . , ek−1}. A graph is connected, if for any pair of vertices u and v, there is a path

connecting them. An acyclic graph is a graph without any cycle. A tree is a connected acyclic graph.

A leaf is a vertex in a tree with only one edge incident on it. A star graph is a tree where every edge is

incident on a single vertex v0. A path can also be denoted by an ordered sequence of vertices as it is clear

what edges are present between them.

7

The distance between two vertices u and v in a graph G is the length of a shortest path connecting u

and v. It is denoted by dG(u, v) or distG(u, v). The subscript G is dropped when clear from context.

A shortest path is always simple. Given a graph G and two vertices, a shortest path between the two

vertices may not be unique. A shortest path between u and v is denoted by u, v. A shortest path between

v1 and vk passes through v2, v3, . . . , vk−1 if v1, e1, v2, e2, . . . , vk−1, ek−1, vk is a shortest path. The vi’s

for 2 ≤ i ≤ k − 1 are said to lie on a shortest path between v1 and vk.

A degree of a vertex in a graph is the number of edges incident on it. A graph has maximum degree

∆ if all its vertices have degree ≤ ∆. A subgraph of a graph G is a graph H such that the vertex set of H

is a subset of vertex set of G and the edge set of H is a subset of edge set of G that contains only edges

e such that both ends of e are in H . The subgraph of G induced by a subset S of vertices of G is the

subgraph whose vertex set is S and whose edges are all the edges of G with both ends in S.

1.3.1 Complexity of graph theoretic problems

Most of the results stated in this subsection can be found in standard textbooks (Papadimitriou and

Steiglitz, 1982; Garey and Johnson, 1990).

Given an undirected unweighted graph G = (V,E), a cut is a partition of V into two disjoint

non-empty subsets. A cut can be denoted by a tuple (S, V \S) for S ⊂ V . The size of a cut (S, V \S) is

the number of edges in G such that one end of the edge lies in S and the other end of the edge lies in

V \S.

Consider the following decision problem. Given a graph G and an integer k, does there exist a cut

of size at most k. Let this problem be MIN-CUT. The Stoer-Wagner algorithm is a polynomial time

algorithm for solving the problem and hence MIN-CUT∈P (Stoer and Wagner, 1997). Let MAX-CUT be

8

the following decision problem: Given a graph G and an integer k, does there exist a cut of size at least k.

MAX-CUT is NP-complete. It is surprising that such a small change in the statement of the problem

makes it difficult to solve efficiently.

The vertex cover problem is a classical problem in complexity theory. A vertex cover is a set of

vertices S ⊂ V such that each edge of the graph is incident on at least one vertex in S. The optimization

problem of finding the vertex cover of minimum size is called the minimum vertex cover problem. The

decision version of the problem is called the vertex cover problem and it is NP-complete.

Another classical NP-complete problem in graph theory is the Hamiltonian path problem. A Hamilto-

nian path is a path that visits every vertex in the graph exactly once. The Hamiltonian path problem is the

decision problem of whether there exists a Hamiltonian path in a graph.

Consider the minimum vertex cover problem. If P6=NP, there does not exist a polynomial time

algorithm to find the minimum vertex cover SOPT . However, there exists a polynomial time algorithm

that finds a set SALG such that |SALG|
|SOPT | ≤ 2. Such an algorithm is called an approximation algorithm and

the upper bound 2 on the factor |SALG|
|SOPT | is called the approximation ratio of the algorithm.

If P6=NP, then the minimum vertex cover problem can not be approximated within a factor of 1.3606

(Dinur and Safra, 2005b). If unique games conjecture is true, then 2 is the best possible approximation

ratio for the minimum vertex cover problem (Khot and Regev, 2008b).

1.3.2 Query learning of graphs

Let G = (V,E) be a undirected, unweighted graph such that the vertex set is known and edge set is

not known to the learner. The problem is to find the set E. The learner has access to the graph through an

oracle. Suppose a learner has access to G through a distance oracle, then a learner can query (u, v) and

9

receive the distance between u and v in G. The objective of the learner is to find E exactly using the

minimum number of queries to the oracle. This is one of the standard models in query learning of graphs

and is called the graph learning problem with a distance oracle (Mathieu and Zhou, 2013).

Consider the following problem. Let G = (V,E) be a undirected, unweighted graph such that the

vertex set is known and edge set is not known to the learner. Let Ĝ = (V, Ê) be a undirected, unweighted

graph on the same vertex set for which the learner knows both the vertices and edges. Suppose the learner

has access to G through a distance oracle. The objective of the learner is to check whether E = Ê using

the minimum number of queries to the oracle. In other words, the problem is to verify whether G is the

same as Ĝ. This is called the graph verification problem with a distance oracle.

The betweenness oracle returns information about whether a vertex lies on a shortest path between

two other vertices. Chapter 2 gives matching bounds for the query complexity of the graph verification

problem with a betweenness oracle.

1.3.3 Offline and online problems

This subsection motivates offline and online problems by considering the example of the minimum

hitting set problem. A formal introduction to the topic can be found in (Borodin and El-Yaniv, 1998).

The input to the minimum hitting set problem is a tuple (U,S) where U = {u1, . . . , un} is the universe,

and S = {S1, . . . , Sm} is a set of subsets of U . A subset H ⊂ U is called a hitting set if H ∩ Si 6= ∅

for i = 1, . . . ,m. The objective is to find a hitting set of minimum cardinality. The decision version of

the minimum hitting set problem is NP-complete. In the standard version of the minimum hitting set

problem, the input is assumed to be given all at once. This standard version is called the offline minimum

hitting set problem. The online version of the problem is an instance where the input U is given all at

10

once but S = {S1, S2, . . . , Sm} arrives one by one. This can be interpreted as the algorithm seeing the

set Si at time i. As the sets arrive one by one, the algorithm has to update the H but it is not allowed

to delete elements from H which were added in the past. A solution to the online hitting set sequence

of sets H1 ⊂ H2 ⊂ · · · ⊂ Hm such that for all 1 ≤ i ≤ m, Hi is a hitting set for the first i constraints.

The competitive ratio for an online algorithm is the approximation ratio achieved by the algorithm. In

other words, it is the worst-case ratio between the cost of solution obtained by the algorithm to the cost

of an optimal solution. For the online hitting set problem, it is the worst-case value of |Hm|
|HOPT | over all the

instances of the problem where Hm is the solution produced by the algorithm for an instance and HOPT

is the optimal solution in hindsight for the instance.

For the online hitting set problem, let the sets Si be produced by an adversary. There are various

models for the adversary like the oblivious adversary and the adaptive adversary. For a deterministic

algorithm, these models are equivalent. But for a randomized algorithm, the competitive ratio may

depend on the adversary model. Both oblivious adversary and adaptive adversary know the algorithm

completely. The adaptive adversary gets to see the randomization of the algorithm at each step before

giving the next Si. Hence, its Si can depend on the random choices made by the algorithm before time i.

The oblivious adversary does not get to see these random choices. An adaptive adversary is stronger and

hence the competitive ratio for the online hitting set problem against an adaptive adversary is at least the

competitive ratio for the online hitting set problem against an oblivious adversary.

CHAPTER 2

NETWORK VERIFICATION WITH BETWEENNESS ORACLE

This chapter was previously published as Graph Verification using a Betweenness Oracle by Mano

Vikash Janardhanan (Janardhanan, 2017).

2.1 Introduction and previous work

Graph learning and graph verification problems arise in various situations. Consider the internet

graph where vertices correspond to routers and edges correspond to physical connections. It is often the

case that one knows the set of vertices in the network (routers) but does not know the edges (physical

connections). To learn the physical connections, one has to use computer network diagnostic tools (such

as traceroute and mtrace) which give information about the shortest paths in the network. Assume one

has access to the internet graph through such an oracle. A natural question to ask is what is the best

way to use the oracle to find the physical connections between the routers. In other words, what is the

minimum number of queries needed to learn the edge set of the graph?

Graph learning and graph verification problems are well-studied problems in the area of graph

algorithms. In both these problems, there is a hidden graph which one has access to through a black-box

oracle. In graph learning problems, the task is to use this oracle to learn the edge set of the graph. Graph

learning problems are also referred to as the graph reconstruction problems. Graph learning problems has

been studied extensively (Alon and Asodi, 2005a; Alon et al., 2004a; Angluin and Chen, 2008a; Beerliova

et al., 2006; Dall’Asta et al., 2006; Hein, 1989; Reyzin and Srivastava, 2007a).

11

12

In graph verification problems, one is given another input graph and the task is to verify that the

graph one has access to through an oracle is the same as the input graph. Graph verification problems

have received a lot of attention recently (Beerliova et al., 2006; Erlebach et al., 2006; Kannan et al.,

2015; Mathieu and Zhou, 2013; Reyzin and Srivastava, 2007a). Graph verification problems have many

applications for Internet Service Providers (ISPs). The ISPs have knowledge about the structure of the

network based on past information. And at any point of time, they might wish to verify that there is no

fault in the network. In any internet protocol network, fault detection methods are critical for providing

quality of service guarantees.

Some of the oracles studied in literature include the distance oracle by (Kannan et al., 2015),

layered-graph oracle by (Beerliova et al., 2006), edge detection and edge counting oracle by (Reyzin

and Srivastava, 2007a), etc. Among these, the most natural and well-studied one is the distance oracle

(Erlebach et al., 2006; Kannan et al., 2015; Mathieu and Zhou, 2013; Reyzin and Srivastava, 2007c).

The distance oracle takes as input two vertices and returns the distance between the two vertices. This

oracle nicely captures applications in computational biology. One example in computational biology

is the problem of learning evolutionary trees (Hein, 1989; King et al., 2003; Waterman et al., 1977).

Researchers can obtain the distance between two species in an unknown evolutionary tree. This can

be thought of as making a distance query. But each query requires a lot of research effort. Hence the

objective is to learn the evolutionary tree with the minimum number of queries. In general, for both

graph learning and graph verification problems, we assume that making queries is costly. Hence, we are

concerned with optimizing the worst-case query complexity herein.

13

In this paper, we look at the query complexity of the graph verification problem with a betweenness

oracle. The betweenness oracle, introduced by (Abrahamsen et al., 2016), returns whether a given vertex

lies along a shortest path between two other vertices. When the graphs are connected, unweighted,

and have bounded maximum degree ∆, we prove the worst-case query complexity has an upper bound

of n1+o(1). We also prove a lower bound of Ω(n). The betweenness oracle also has many natural

applications in the study of evolutionary trees. For evolutionary trees, the method for calculating

evolutionary distance is error-prone. If we use the betweenness oracle approach, we only need to query

whether one species lies in the shortest path connecting two other species. Such a query is more natural

for evolutionary trees.

Intuitively, the betweenness oracle is expected to be much weaker than the distance oracle. Notice

that a betweenness query can be simulated by three distance queries. Let x, y and z be vertices of a graph

and d(·, ·) denote the distance between two vertices in the graph. Then, d(x, y) + d(y, z) = d(x, z) if

and only if y lies on a shortest path between x and z. Conversely, it is easy to see that in a path graph,

one needs Ω(n) betweenness queries to simulate a single distance query.

For degree-bounded graphs, (Abrahamsen et al., 2016) showed that the graph learning problem with

a betweenness oracle has the same worst-case query complexity as its analogue with a distance oracle.

However, the problem of verifying a graph with a betweenness oracle remained open. In this paper, we

give matching lower and upper bounds for this problem. The main result of (Abrahamsen et al., 2016) is

the following:

Theorem 1. Learning a graph can be done with Õ(n3/2 · ∆4) betweenness queries, where ∆ is the

maximum degree of the graph.

14

2.1.1 The problem

The hidden graph to be verified is denoted as G = (V,E). A 2-element subset of vertices {u, v}

is called a non-edge if {u, v} /∈ E. This can be also denoted as {u, v} ∈ NE where NE is the set of

non-edges of G. Similarly, the given graph Ĝ = (V, Ê) has non-edge set N̂E defined in a similar way.

In graph learning problems, we are given an oracle access to G, and the task is to determine E. In

graph verification problems we are given Ĝ and an oracle access to G, and asked to verify that E = Ê.

Given a subset U ⊂ V , G[U] is the subgraph induced by U . For the rest of the paper, we assume

that the graph is connected, undirected, unweighted and has maximum degree ∆. We have access to G

through a betweenness oracle.

Definition 1. A betweenness query denoted as betG(u, v, w) is true if and only if there exists a shortest

path in G between u and w that passes through v. Often, the subscript will be dropped when G is clear

from context.

We prove matching lower bound and upper bound for the query complexity of the graph verification

problem with a betweenness oracle.

2.2 Lower bound

In this section, we consider an instance of the graph verification problem where the input graph

Ĝ is a caterpillar tree and the hidden graph G is a slight modification of Ĝ. Then, we show that Ω(n)

betweenness queries are required to catch this modification.

Theorem 2. Graph verification requires Ω(n) betweenness queries.

15

Proof. Let Ĝ be the caterpillar tree with spine from v1 to vn/2 and one vertex connected to each vertex

in the spine (Figure 1). |Ĝ| = n− 1 and n is an even number. Consider a new graph H obtained from Ĝ

by doing the following (Figure 2):

• Fix some i ∈ [1, n/2− 1]

• Delete the edge between vi and vi+1

• Add an edge between vn/2+i and vi+1

Suppose the hidden graph G is H (Figure 2). The betweenness queries that give away the difference

between Ĝ and H contain vn/2+i as one of its three arguments in betG(·, ·, ·). There are n/2− 1 vertices

of the form vn/2+i and each query can cover at most 3 of them. This gives the desired lower bound.

vn/2

vn/2 − 1

vn/2 − 2

v1

v2

v3

vn/2+1

vn/2+2

vn/2+3

vn/2+n/2−2

vn/2+n/2−1

Figure 1: Representation of Ĝ for Theorem 2 in Chapter 2

16

vi−1

vi

vi+1

vi+2 vn/2+i+1

vn/2+i

vn/2+i−1

Figure 2: Representation of H for Theorem 2 in Chapter 2

Observation 1. When the target graph G has maximum degree ∆, graph learning requires Ω(n∆ log n)

betweenness queries. This is because the number of connected graphs with maximum degree ∆ is

Ω(nΩ(∆n)) (McKay and Wormald, 1990). Hence, information theoretically, we get the desired lower

bound.

2.3 Definitions

The full generality of the following definitions are not necessary for this paper. But we do it to

maintain consistency with (Abrahamsen et al., 2016).

Definition 2. Let G = (V,E) and v ∈ V . Let Ni(v) denote the set of vertices that are distance i or

less from v. Let N(v) = N1(v). Hence N(v) is the set that contains v and all its neighbours. When

x, y ∈ V , let δ(x, y) denote the distance between x and y in G.

17

Definition 3. Given a graph G = (V,E), a subset X ⊂ V is said to be starshaped with respect to centre

x ∈ X if for all v ∈ X , every shortest path from x to v is entirely contained in X .

Definition 4. Given a graph G = (V,E) and a starshaped set X ⊂ V with centre x ∈ X , a node v ∈ X

is said to be in layer i if δ(x, v) = i. The set of nodes in layer i is denoted L(x)Xi . When X = V , the

superscript is dropped and written as L(x)i.

Definition 5. Given a graph G = (V,E) and a starshaped set X ⊂ V with centre x ∈ X , a subgraph

τ(x)X is a spanning tree with respect to centre x if it is a tree such that for all v ∈ X , τ(x)X contains

a shortest path from x to v. Given a starshaped set X ⊂ V with centre x ∈ X , the subgraph S(x)X

obtained by removing all edges in the same layer L(x)Xi is called the shortest path graph with respect

to centre x.

Definition 6. Given a starshaped set X ⊂ V with centre x ∈ X , if v ∈ L(x)Xi , then u is a parent of v

with respect to centre x if u ∈ N(v) ∩ L(x)Xi−1. This can be written as u ∈ px(v). Note that px(v) is a

set. Given a starshaped set X ⊂ V with centre x ∈ X , if v ∈ L(x)Xi , then u is a child of v with respect

to centre x if u ∈ N(v) ∩ L(x)Xi+1.

Definition 7. The ancestor relation is the transitive closure of the parent relation and the descendant

relation is the transitive closure of the child relation. The set of ancestors of a vertex v with respect to

centre x is denoted Ax(v) and the set of descendants is denoted Dx(v). The subscript is dropped when

the centres x is clear from context.

For Ĝ = (V, Ê), we define δ̂(x, y), N̂i(v), N̂(v), L̂(x)Xi , τ̂(x)X , Ŝ(x)X , p̂x(v), Âx(v) and D̂x(v)

in a similar way.

18

2.4 Main result

The main result is Theorem 3 and its proof proceeds in two steps- edge verification and non-edge

verification. The proof relies on some techniques developed earlier for graph verification with a distance

oracle and graph learning with a betweenness oracle. For edge verification, we use some results from

(Abrahamsen et al., 2016). For non-edge verification, we use some results from (Kannan et al., 2015).

These results are stated without proof before being used.

Theorem 3. Let Ĝ be a connected graph with maximum degree ∆. For graph verification using a between-

ness oracle, there is a deterministic algorithm with a query complexity of n1+O
(√

(log logn+log ∆)/ logn
)

.

When ∆ = no(1), this gives us a query complexity of n1+o(1).

When ∆ = no(1), (Kannan et al., 2015) devised a recursive algorithm that does non-edge verification

using n1+o(1) distance queries. To simulate a distance query, we need Ω(n) betweenness queries. Hence,

a brute force generalization of their approach can not give query complexity better than n2+o(1). The

main contributions of this paper are the following:

• Edge verification can be done using O(n∆2) betweenness queries. This is proved in Lemma 5.

• We prove that the recursive approach for non-edge verification developed in (Kannan et al., 2015)

can be implemented using n1+o(1) betweenness queries.

2.4.1 Edge verification

We start by proving a bound on the number of betweenness queries required for edge verification.

Before doing that, we need the following three results (stated without proof) from (Abrahamsen et al.,

2016).

19

Lemma 1 ((Abrahamsen et al., 2016)). Every starshaped set X with centre x has a node s ∈ X with the

property ⌈ |X|
3∆

⌉
≤ |D(s)| ≤

⌈ |X|
3

⌉

Further, D(s) and (X −D(s)) ∪ {s} are both starshaped with centres s and x respectively.

Lemma 2 ((Abrahamsen et al., 2016)). Let X ⊂ V be a starshaped set with centre x. One can discover

all edges in G[X] using O(|X|2) betweenness queries.

Lemma 3 ((Abrahamsen et al., 2016)). Given a starshaped set X with centre x, and the shortest path

graph of X , one can decide whether or not there exists an edge between any two nodes u and v in the

hidden graph using O(1) betweenness queries.

For doing edge verification, we start by recursively applying Lemma 1 to partition the edge set of a

spanning tree of Ĝ and then apply Lemma 2 to verify that all edges of the spanning tree of Ĝ is present in

G. Then, we use Lemma 4 to show that G and Ĝ have the same layer structure. After this, we only need

to verify edges within the same layer and edges between adjacent layers. These type of edges require

O(1) query per edge.

Lemma 4 (Layer Structure Verification). Let Ĝ = (V, Ê) be a connected graph. Suppose τ̂(x)V is a

spanning tree of Ĝ with respect to centre x and every edge in τ̂(x)V has been verified to be present in G.

Then, n betweenness queries are sufficient to verify that L(x)Vi = L̂(x)Vi for all i.

Proof. To show L(x)Vi = L̂(x)Vi for i ≤ k, we need to establish there is no edge in G going from L̂(x)Vi

to L̂(x)Vi−s for i ≤ k and s > 1. We prove this by induction on k.

20

Query bet(x, p, v) for v ∈ L̂(x)Vk and some p ∈ p̂x(v). Because every edge in τ̂(x)V has been

verified to be present in G, bet(x, p, v) will return false if and only if there is an edge in G from v to

some vertex in L̂(x)Vk−s for s > 1. Hence, it takes |L̂(x)Vk | queries to show there is no edge in G from

L̂(x)Vk to L̂(x)Vi−s for s > 1. Continuing for all layers takes at most n queries.

Lemma 5. Given Ĝ and access to G through a betweenness oracle, verifying all edges of Ĝ are present

in G can be done with O(n∆2) betweenness queries.

Proof. We start by proving that every edge of a spanning tree of Ĝ is present in G. Fix a centre x in Ĝ

and let τ̂(x)V be a spanning tree with respect to centre x. Now, we partition the edge set of τ̂(x)V by

doing the following. Recursively apply Lemma 1 to obtain starshaped sets {S1, S2, . . . , Sh} that satisfy

the following properties:

• k
3∆ ≤ |Si| ≤ k for all i where k = c∆ and c is a constant.

• Every edge of τ̂(x)V is present inside exactly one Si.

In other words, Si’s partition the edge set of τ̂(x)V . Note that the Si’s are sets of vertices that are not

disjoint.

Verifying all edges inside a Si takes O(k2) queries by Lemma 2. The total number of starshaped sets

is h which is at most 3∆n/k. Hence, the total number of queries to verify the edges within every Si is

O(n∆2). Note that we have not verified the shortest path graph as there may be edges from layer i to

layer i+ 1 that are not contained in any starshaped set. However, since every edge of τ̂(x)V is inside

some Si, we have shown that every edge of τ̂(x)V is present in G.

21

Using Lemma 4, we get that G has the same layer structure as Ĝ by making at most n queries. Now,

use Lemma 3 to verify all edges in the same layer using O(1) query per edge. Finally, to verify edges

e = (y, z) from layer i to layer i+ 1, that are not contained in τ̂(x)V , note that bet(x, y, z) is true if and

only if e is present in G. This takes 1 query per edge. The total number of such edges is at most n∆.

Hence, we get the desired bound.

2.4.2 Non-edge verification

The algorithm for non-edge verification proceeds as follows. We start with V and split it into cells

U1, U2, . . . , Uk such that every edge in Ĝ is completely contained in some Ui. These Ui’s are called

extended Voronoi cells and will be defined soon. Using Lemma 7, we can verify (with few queries)

that every edge in G is completely contained in some Ui. Then, we can recursively apply the splitting

technique to each Ui.

Given a cell U , the algorithm for splitting U into extended Voronoi cells first selects a set of centres

{a1, a2, . . . , ak} = A ⊆ V using Algorithm 1. Then, it builds Voronoi cells around these centres.

Definition 8. Given A ⊆ V and w ∈ V , the Voronoi cell of w with respect to A is defined as

ĈA(w) = {v ∈ V : δ̂(w, v) < δ̂(A, v)}

We expand the Voronoi cells slightly so that every edge of Ĝ contained in U is completely contained

in one of the extended Voronoi cells produced by splitting U . Note that the extended Voronoi cells are

not disjoint.

22

Definition 9. Let A ⊆ V be the set of centres and U ⊆ V . Define for each a ∈ A, its extended Voronoi

cell D̂a ⊆ U as

D̂U
a =

(⋃
{ĈA(b) : b ∈ N̂2(a)} ∪ N̂2(a)

)
∩ U

The superscript U is dropped when clear from context. The following lemma as stated in (Kannan et

al., 2015) guarantees that the splitting done using the centres algorithm does not return too many cells

and the size of each cell goes down significantly compared to the size of U .

Lemma 6. Given a graph Ĝ = (V, Ê), a subset of vertices U ⊆ V , and an integer s ∈ [1, n], Algorithm

1 computes a subset of vertices A ⊆ V such that the following conditions hold:

• The expected size of the set A is at most 2s log n

• For every vertex w ∈ V , we have |ĈA(w) ∩ U | ≤ 4|U |/s

Remark 1. Lemma 6 does not hold for arbitrary graphs. The bounded degree condition is necessary for

its proof to go through. One obvious example where the bounded degree condition is not satisfied and the

conclusion of the lemma is not true is the star graph.

Also note that Algorithm 1 is randomized. (Thorup and Zwick, 2001) showed that it is possible to

derandomize it and the running time is still polynomial.

Now, we can recursively apply this technique for each extended Voronoi cellU ∈ {D̂a1 , D̂a2 , . . . , D̂as}.

When applying the centres algorithm recursively, the following definitions are useful. Each node of the

recursion tree is a subset of V . The root is V and it is in level 1 of the recursion. We use Nk to denote

the set of nodes in level k. Hence N1 = {V }. Let U ∈ Ni be a node in level i. If the centres algorithm

23

Function SUBSET-CENTRES(Ĝ, U, s)

A← ∅;

while there exists w ∈ V such that |ĈA(w) ∩ U | > 4|U |/s do

W ← {w ∈ V : |ĈA(w) ∩ U | > 4|U |/s} ;

Add each element of W to A with probability min(s/|W |, 1)

end

return A
Algorithm 1: Finding Centres for a Subset

returns A(U) = {a1, a2, . . . ak} when run on U , then C(U) = {D̂U
a1 , D̂

U
a2 , . . . , D̂

U
ak
} are the children of

U .

Definition 10.

SU{a} = {(a′, p, u) : a′ ∈ N̂2(a), u ∈ U, p ∈ p̂a′(u)}

SUA =
⋃
a∈A

SU{a}

Lemma 7 (Recursion step). Assume that Ê ⊆ E. Let U ∈ Nk and A be the centres returned by the

algorithm on U . If bet(a, u, v) = b̂et(a, u, v) for all (a, u, v) ∈ SUA , then every edge of G contained in

U is contained in some D̂U
ai ∈ C(U).

Proof. Suppose there exists an edge e = (v1, v2) in G that is not completely contained in any of the

C(U). Let v1 ∈ D̂a1 and v2 ∈ D̂a2 . By assumption, v1 /∈ D̂a2 and v2 /∈ D̂a1 .

24

If v1 ∈ N̂2(a1), then bet(v1, p, v2) 6= b̂et(v1, p, v2) for p ∈ p̂v1(v2). Hence, v1 /∈ N̂2(a1). By the

same argument, v2 /∈ N̂2(a2). For the rest of the proof, we assume v1 /∈ N̂2(a1) and v2 /∈ N̂2(a2). The

definitions below are also represented in Figure 3.

1. δ̂(a1, v1) = m1

2. δ̂(a1, v2) = m2

3. δ̂(a2, v1) = l1

4. δ̂(a2, v2) = l2

a1

v2

a2

v1

m1 m2

l1 l2

Figure 3: Pictorial representation of the definitions for Lemma 7 in Chapter 2

Let b be a vertex at distance 2 from a2 in the shortest path from a2 to v1. Then, δ̂(b, v1) ≥ δ̂(a1, v1)

because v1 ∈ D̂a1 and v1 /∈ D̂a2 . Hence, we get l1 − 2 ≥ m1. Similarly, m2 − 2 ≥ l2.

We claim that at least one of the following statements is true:

25

1. v1 ∈ L̂(a1)k and v2 ∈ L̂(a1)k+s for s > 1.

2. v2 ∈ L̂(a2)k and v1 ∈ L̂(a2)k+s for s > 1.

Suppose the first statement is false. Then, m1 − 1 ≤ m2 ≤ m1 + 1. Using l1 ≥ m1 + 2 and

m2 ≥ l2 + 2, we get that l2 + 3 ≤ l1. Hence, the second statement is true.

If statement i is true, then with ai as centre, vi and vj belong to layers that are far apart in Ĝ (where

i ∈ {1, 2}, j 6= i and j ∈ {1, 2}). But they are close in G because there is an edge between vi and vj .

We exploit this to get a contradiction. Let vi ∈ L̂(ai)
V
k and vj ∈ L̂(ai)

V
k+s for s > 1. Because there

is an edge between vi and vj , vj ∈ L(ai)
V
t for some t ≤ k + 1. Hence, with ai as center, the shortest

path to vj has changed in G. This changes the output of some betweenness query in G. In particular,

if P denotes the set of vertices along a shortest path from ai to vj in Ĝ, bet(ai, pv, v) 6= b̂et(ai, pv, v)

for some v ∈ P and pv ∈ p̂ai(v). This contradicts bet(a, u, v) = b̂et(a, u, v) for all (a, u, v) ∈ SUA

concluding the proof.

Finally, we have all the machinery required to prove the main result. We need Lemma 5 for edge

verification and Lemma 7 for recursion.

Proof of Theorem 3. First we do the edge verification using Lemma 5. For non-edge verification, the

proof follows closely the recursive verification analysis done in (Kannan et al., 2015).

Algorithm 2 is the recursive algorithm for non-edge verification. It starts with U = V and queries

every (u, v, w) ∈ SUA where A is the set of centres returned by the centres algorithm. Then, it repeats

the process for each D̂a. The tree interpretation of the recursion process discussed earlier will be useful

26

for the rest of the proof. In Algorithm 2, Q UERY

(
SU{a}

)
means querying every (u, v, w) ∈ SU{a} and Q

UERY(X,Y, Z) means querying every 3-tuple of the form (x, y, z) such that x ∈ X , y ∈ Y and z ∈ Z. If

the queries in Q UERY

(
SU{a}

)
returns the expected result for all a ∈ A(U), by Lemma 7, we conclude that

every edge of G contained in U is contained in some D̂U
ai ∈ C(U). Now, we need to fix the constants in

Algorithm 2 and compute its query complexity.

Procedure VERIFY-SUBGRAPH(Ĝ, U)

if |U | > n0 then

A← SUBSET-CENTRES(Ĝ, U, s)

for a ∈ A do

QUERY
(
SU{a}

)
VERIFY-SUBGRAPH(Ĝ, D̂a)

end

else
QUERY(U,U, U)

end
Algorithm 2: Recursive Verification

Define

k0 =

⌊√
log n

log(log n · 128(∆2 + 1)3)

⌋

27

Define s = n1/k0 , n0 = (4(∆2 + 1))k0 . n0 is going to be a threshold on —U—. If the size of |U |

falls below this, we stop the recursion. If |U | > n0, the number of centres returned by the algorithm is

|A(U)| ≤ 2s log n and for any W ∈ C(U), |W | ≤ (∆2 + 1) ·max(4|U |/s, 1). By induction, we get for

any U ∈ Nk, |U | ≤ n(4(∆2 + 1)/s)k−1 for all 1 ≤ k ≤ k0 + 1.

Consider the queries made by the leaf nodes of the tree (i.e. |U | ≤ n0). The depth of the tree is at most

k0+1 . Hence, there are at most (2s log n)k0 leaves. Each leaf node makes at most |U |3 ≤ (4(∆2+1))3k0

queries. Hence, the total number of queries in this step is at most n(log n · 128(∆2 + 1)3)k0 ≤ n1+1/k0 .

Now consider the recursive calls made by non-leaf nodes (i.e. |U | > n0). Here, k ∈ [1, k0].

For a fixed k, there are at most |Nk| = (2s log n)k−1 calls at level k. Each such call takes at most

|A(U)||SU{a}| = (∆2 + 1)∆|A(U)||U | queries where U ∈ Nk. Hence, the total number of queries for a

fixed k is at most ∆ · n1+1/k0(log n · 8(∆2 + 1))k. Summing over k ∈ [1, k0], we find the total number

of queries made by non-leaf nodes is at most 2∆ · n1+1/k0(log n · 8(∆2 + 1))k0 ≤ 2∆ · n1+2/k0 . This

completes the proof.

2.5 Open problems

For the graph learning problem with a distance oracle, there is an upper bound of Õ(n3/2∆4) for

graphs with constant ∆ and the lower bound is Ω̃(n∆). The main open problem is to find an algorithm

with an upper bound of n1+o(1) · f(∆) where f(∆) is some function of ∆. For the graph verification

problem with a distance oracle, there is an upper bound of n1+O
(√

(log logn+log ∆)/ logn
)

and a lower

bound of Ω(n). It would be interesting to find an algorithm where the dependence on ∆ is of the form

Õ(nf(∆)).

28

For the betweenness oracle, the state of the art for degree-bounded graphs is almost the same as that

of the distance oracle stated above. The main difference comes from the dependence on ∆. Because

betweenness queries are weaker, the dependence on ∆ becomes worse. But the fact that the weaker query

can get us almost the same upper bound gives motivation for improving the upper bounds for distance

oracle. This paper shows how the partitioning technique developed for the graph verification problem in

(Kannan et al., 2015) is robust enough to be extended to a betweenness oracle. It would be interesting to

see if this technique can be extended to other oracles.

CHAPTER 3

NETWORK RECONSTRUCTION WITH ORDERED CONSTRAINTS

This chapter was previously published as Network Reconstruction with Ordered Constraints by Yi

Huang, Mano Vikash Janardhanan and Lev Reyzin (Huang et al., 2017).

3.1 Introduction

In this paper, we study the problem of recovering a network after observing how information

propagates through the network. Consider how a tweet (through “retweeting” or via other means)

propagates through the Twitter network – we can observe the identities of the people who have retweeted

it and the timestamps when they did so, but may not know, for a fixed user, via whom he got the original

tweet. So we see a chain of users for a given tweet. This chain is semi-ordered in the sense that, each

user retweets from some one before him in the chain, but not necessarily the one directly before him.

Similarly, when a virus such as Ebola spreads, each new patient in an outbreak is infected from some one

who has previously been infected, but it is often not immediately clear from whom.

In a graphical social network model with nodes representing users and edges representing links, an

“outbreak” illustrated above is captured exactly by the concept of an ordered constraint which we will

define formally below. One could hope to be able to learn something about the structure of the network

by observing repeated outbreaks, or a sequence of ordered constraints.

Formally we call our problem Network Construction with Ordered Constraints and define it as

follows. Let V = {v1, . . . , vn} be a set of vertices. An ordered constraint O is an ordering on a subset

29

30

of V of size s ≥ 2. The constraint O = (vk1 , . . . , vks) is satisfied if for any 2 ≤ i ≤ s, there exists at

least one 1 ≤ j < i such that the edge e =
{
vkj , vki

}
is included in a solution. Given a collection of

ordered constraints {O1, . . . ,Or}, the task is to construct a set E of edges among the vertices V such

that all the ordered constraints are satisfied and |E| is minimized.

We can see that our newly defined problem resides in a middle ground between path constraints,

which are too rigid to be very interesting, and the well-studied subgraph connectivity constraints (Angluin

et al., 2015; Korach and Stern, 2003; Korach and Stern, 2008), which are more relaxed. The established

subgraph connectivity constraints problem involves getting an arbitrary collection of connectivity con-

straints {S1, . . . , Sr} where each Si ⊂ V and requires vertices in a given constraint to form a connected

induced subgraph; we will occasionally refer to these as unordered or general constraints. The task is

to construct a set E of edges satisfying the connectivity constraints such that |E| is minimized.

We want to point out one key observation relating the ordered constraint to the connectivity constraint

– an ordered constraint O = (vk1 , . . . , vks) is equivalent to s − 1 connectivity constraints S2, . . . , Ss,

where Si = {vk1 , . . . , vki}. We note that this observation plays an important role in several proofs in this

paper which employ previous results on subgraph connectivity constraints – in particular, upper bounds

from the more general case can be used in the ordered case (with some overhead), and our lower bounds

apply to the general problem.

In the offline version of the Network Construction with Ordered Constraints problem, the algorithm

is given all of the constraints all at once; in the online version of the problem, the constraints are given

one by one to the algorithm, and edges must be added to satisfy each new constraint when it is given.

Edges cannot be removed.

31

An algorithm is said to be c-competitive if the cost of its solution is less than c times OPT, where

OPT is the best solution in hindsight (c is also called the competitive ratio). When we restrict the

underlying graph in a problem to be a class of graphs, e.g. trees, we mean all the constraints can be

satisfied, in an optimal solution (for the online case, in hindsight), by a graph from that class.

3.1.1 Past Work

In this paper we study the problem of network construction from ordered constraints. This is an

extension of the more general model where constraints come unordered.

For the general problem, Korach and Stern (Korach and Stern, 2003) had some of the initial results,

in particular for the case where the constraints can be optimally satisfied by a tree, they give a polynomial

time algorithm that finds the optimal solution. In subsequent work, in (Korach and Stern, 2008) Korach

and Stern considered this problem for the even more restricted problem where the optimal solution forms

a tree, and all of the connectivity constraints must be satisfied by stars.

Then, Angluin et al. (Angluin et al., 2015) studied the general problem, where there is no restriction

on structure of the optimal solution, in both the offline and online settings. In the offline case, they gave

nearly matching upper and lower bounds on the hardness of approximation for the problem. In the online

case, they give a O(n2/3 log2/3 n)-competitive algorithm against oblivious adversaries; we show that this

bound can be drastically improved in the ordered version of the problem. They also characterized special

classes of graphs, i.e. stars and paths, which we are also able to do herein for the ordered constraint case.

Independently of that work, Chockler et al. (Chockler et al., 2007) also nearly characterized the offline

general case.

32

In a different line of work Alon et al. (Alon et al., 2006) explore a wide range of network optimization

problems; one problem they study involves ensuring that a network with fractional edge weights has a

flow of 1 over cuts specified by the constraints. Alon et al. (Alon et al., 2009) also study approximation

algorithms for the Online Set Cover problem which have been shown by Angluin et al. (Angluin et al.,

2015) to have connections with Network Construction problems.

In related areas, Gupta et al. (Gupta et al., 2012) considered a network design problem for pairwise

vertex connectivity constraints. Moulin and Laigret (Moulin and Laigret, 2011) studied network con-

nectivity constraints from an economics perspective. Another motivation for studying this problem is

to discover social networks from observations. This and similar problems have also been studied in the

learning context (Angluin et al., 2010c; Angluin et al., 2010a; Gomez-Rodriguez et al., 2012; Saito et al.,

2008).

Finally, in query learning, the problem of discovering networks from connectivity queries has been

much studied (Alon and Asodi, 2005b; Alon et al., 2004b; Angluin and Chen, 2008b; Beigel et al.,

2001; Grebinski and Kucherov, 1998; Reyzin and Srivastava, 2007b). In active learning of hidden

networks, the object of the algorithm is to learn the network exactly. Our model is similar, except the

algorithm only has the constraints it is given, and the task is to output the cheapest network consistent

with the constraints.

3.1.2 Connection to network inference

This model is also known to have connections to network inference (Angluin et al., 2010b; Reyzin,

2009). Let p(u,v) be the a priori probability of an edge appearing between nodes u and v. If pu,v’s are

33

≤ 1/2 and are independent, the maximum likelihood social network given the constraints is a set of

edges E that satisfies all of the constraints and maximises the following quantity

∏
{u,v}∈E

p(u,v)

∏
{u,v}/∈E

(
1− p(u,v)

)
=
∏
{u,v}

(
1− p(u,v)

) ∏
{u,v}∈E

p(u,v)(
1− p(u,v)

)
Taking the logarithm, we want a set of edges E that minimizes the sum

∑
{v,u}∈E

− log

(
p(u,v)(

1− p(u,v)

)).
The assumption that for all u, v, p(u,v) ≤ 1/2 implies that each term, or cost, in the sum is non-negative.

3.1.3 Our results

In Section 3.2, we examine the offline problem, and show that the Network Construction problem

is NP-Hard to approximate within a factor of Ω(log n). A nearly matching upper bound comes from

Theorem 2 of Angluin et al. (Angluin et al., 2015).

In Section 3.3, we study online problem. For problems on n nodes, for r constraints, we give an

O ((log r + log n) log n) competitive algorithm against oblivious adversaries, and an Ω(log n) lower

bound (Section 3.3.1).

Then, for the special cases of stars and paths (Sections 3.3.2 and 3.3.3), we find asymptotic optimal

competitive ratios of 3/2 and 2, respectively. The proof of the latter uses a detailed analysis involving

PQ-trees (Booth and Lueker, 1976). The competitive ratios are asymptotic in n.

34

3.2 The offline problem

In this section, we examine the Network Construction with Ordered Constraints problem in the offline

case. We are able to obtain the same lower bound as Angluin et al. (Angluin et al., 2015) in the general

connectivity constraints case.

Theorem 4. If P6=NP, the approximation ratio of the Network Construction with Ordered Constraints

problem is Ω(log n).

Proof. We prove the theorem by reducing from the Hitting Set problem. Let (U,S) be a hitting set

instance, where U = {u1, . . . , un} is the universe, and S = {S1, . . . , Sm} is a set of subsets of U . A

subset H ⊂ U is called a hitting set if H ∩ Si 6= ∅ for i = 1, . . . ,m. The objective of the Hitting Set

problem is to minimize |H|. We know from (Feige, 1998; Raz and Safra, 1997) that the Hitting Set

problem cannot be approximated by any polynomial time algorithm within a ratio of o(log n) unless

P=NP. Here we show that the Network Construction problem is inapproximable better than an O(log n)

factor by first showing that we can construct a corresponding Network Construction instance to any given

Hitting Set instance, and then showing that if there is a polynomial time algorithm that can achieve an

approximation ratio o(log n) to the Network Construction problem, then the Hitting Set problem can

also be approximated within in a ratio of o(log n), which is a contradiction.

We first define a Network Construction instance, corresponding to a given Hitting Set instance (U,S),

with vertex set U ∪W , where W = {w1, . . . , wnc} for some c > 2. Note that we use the elements of the

universe of hitting set instance as a part of the vertex set of Network Construction instance. The ordered

constraints are the union of the following two sets:

35

• {(ui, uj)}1≤i<j≤n;

• {(Sk, wl)}Sk∈S,1≤l≤nc ,

where by (Sk, wl) we mean an ordered constraint with all vertices except the last one from a subset Sk of

U , while the last vertex wl is an element in W . The vertices from Sk are ordered arbitrarily.

We note that the first set of ordered constraints forces a complete graph on U , and the second set of

ordering demands that there is at least one edge going out from each Sk connecting each element inW . Let

A be an algorithm solving the Network Construction problem, and let El denote the set of edges added by

A incident to wl. Because of the second set of ordered constraints, the set Hl = {u ∈ U | {u,wl} ∈ El}

is a hitting set of S!

Let H ⊂ U be any optimal solution to the hitting set instance, and denote by OPTH the size of H . It

is easy to see the two sets of ordered constraints can be satisfied by putting a complete graph on U and a

complete bipartite graph between H and W . Hence the optimal solution to the Network Construction

instance satisfies

OPT ≤
(
n

2

)
+ nc OPTH,

where OPT is the minimum number of edges needed to solve the Network Construction instance. Let us

assume that there is a polynomial time approximation algorithm to the Network Construction problem

that adds ALG edges. Without loss of generality we can assume that the algorithm adds no edge among

vertices in W , because any edge within W can be removed without affecting the correctness of the

36

solution, which implies that ALG =
(
n
2

)
+
∑nc

l=1 |El|. Now if ALG is o (log n ·OPT), from the fact

that |Hl| = |El|, we get

min
1≤l≤nc

|Hl| ≤
ALG−

(
n
2

)
nc

=
o
(
log n

((
n
2

)
+ nc OPTH

))
−
(
n
2

)
nc

= o (log n ·OPTH) ,

which means by finding the smallest set Hl0 among all the Hls, we get a hitting set that has size within

an o(log n) factor of the optimal solution to the Hitting Set instance, which is a contradiction.

We also observe that the upper bound from the more general problem implies a bound in our ordered

case. We note the upper and lower bounds match when r = poly(n).

Corollary 1 (of Theorem 2 from Angluin et al. (Angluin et al., 2015)). There is a polynomial time

O(log r + log n)-approximation algorithm for the Network Construction with Ordered Constraints

problem on n nodes and r ordered constraints.

Proof. Observing that r ordered constraints imply at most nr unordered constraints on a graph with n

nodes, we can use the O(log nr) upper bound from Angluin et al. (Angluin et al., 2015).

3.3 The online problem

Here, we study the online problem, where constraints come in one at a time, and the algorithm must

satisfy them by adding edges as the constraints arrive.

37

3.3.1 Arbitrary graphs

Theorem 5. There is an O ((log r + log n) log n) upper bound for the competitive ratio for the Online

Network Construction with Ordered Constraints problem on n nodes and r ordered constraints against

an oblivious adversary.

Proof. To prove the statement, we first define the Fractional Network Construction problem, which

has been shown by Angluin et al. (Angluin et al., 2015) to have an O(log n)-approximation algorithm.

The upper bound is then obtained by applying a probabilistic rounding scheme to the fractional solution

given by the approximation. The proof heavily relies on arguments developed by Buchbinder and

Naor (Buchbinder and Naor, 2009), and Angluin et al. (Angluin et al., 2015).

In the Fractional Network Construction problem, we are also given a set of vertices and a set

of constraints {S1, . . . , Sr} where each Si is a subset of the vertex set. Our task is to assign weights

we to each edge e so that the maximum flow between each pair of vertices in Si is at least 1. The

optimization problem is to minimize
∑
we. Since subgraph connectivity constraint is equivalent to

requiring a maximum flow of 1 between each pair of vertices with edge weight we ∈ {0, 1}, the fractional

network construction problem is the linear relaxation of the subgraph connectivity problem. Lemma 2 of

Angluin et al. (Angluin et al., 2015) gives an algorithm that multiplicatively updates the edge weights

until all the flow constraints are satisfied. It also shows that the sum of weights given by the algorithm is

upper bounded by O(log n) times the optimum.

As we pointed out in the introduction, an ordered constraintO is equivalent to a sequence of subgraph

connectivity constraints. So in the first step, we feed the r sequences of connectivity constraints, each

one is equivalent to an ordered constraint, to the approximation algorithm to the fractional network

38

construction problem and get the edge weights. Then we apply a rounding scheme similar to the one

considered by Buchbinder and Naor (Buchbinder and Naor, 2009) to the weights. For each edge e,

we choose t random variables X(e, i) independently and uniformly from [0, 1], and let the threshold

T (e) = minti=1X(e, i). We add e to the graph if we ≥ T (e).

Since the rounding scheme has no guarantee to produce a feasible solution, the first thing we need to

do is to determine how large t should be to make all the ordered constraints satisfied with high probability.

We note that an ordered constraint Oi = {vi1, vi2, . . . , visi} is satisfied if and only if the (si − 1)

connectivity constraints {vi1, vi2}, . . . , {vi1, . . . , visi−1, visi} are satisfied, which is equivalent, in turn,

to the fact that there is an edge that goes across the ({vi1, . . . , vij−1} , {vij}) cut, for 2 ≤ j ≤ si. For

any fixed cut C, the probability the cut is not crossed equals
∏
e∈C(1 − we)t ≤ exp

(
−t∑e∈C we

)
.

By the max-flow min-cut correspondence, we know that
∑

c∈C we ≥ 1 in the fractional solution given

by the approximation algorithm for all cuts C = ({vi1, . . . , vij−1} , {vij}), 1 ≤ i ≤ r, 2 ≤ j ≤ si, and

hence the probability that there exists at least one unsatisfied Oi is upper bounded by rn exp (−t). So

t = c(log n+ log r), for any c > 1, makes the probability that the rounding scheme fails to produce a

feasible solution approaches 0 as n increases.

Because the probability that e is added equals the probability that at least one X(e, i) is less than

we, and hence is upper bounded by wet, we get the expected number of edges added is upper bounded

by t
∑
we by linearity of expectation. Since the fractional solution is upper bounded by O(log n) times

the optimum of the fractional problem, which is upper bounded by any integral solution, our rounding

scheme gives a solution that is O ((log r + log n) log n) times the optimum.

39

Corollary 2. If the number of ordered constraints r = poly(n), then the algorithm above gives an

O
(
(log n)2

)
upper bound for the competitive ratio against an oblivious adversary.

Remark 2. We can generalize Theorem 5 to the weighted version of the Online Network Construction

with Ordered Constraints problem. In the weighted version, each edge e = (u, v) is associated with a

cost ce and the task is to select edges such that the connectivity constraints are satisfied and
∑
cewe is

minimised wherewe ∈ {0, 1} is a variable indicating whether an edge is picked or not and ce is the cost of

the edge. The same approach in the proof of Theorem 5 gives an upper bound of O ((log r + log n) log n)

for the competitive ratio of the weighted version of the Online Network Construction with Ordered

Constraints problem.

For an lower bound for the competitive ratio for the Online Network Construction with Ordered

Constraints problem against an oblivious adversary, we study the Online Permutation Hitting Set

problem defined below: Let k be a positive integer, and let π be a permutation on [k]. Define sets

P iπ = {π(1), π(2), . . . , π(i)} for i = 1, . . . , k,

Definition 11 (Online Permutation Hitting Set). Let π be a permutation on [k] and let
(
P kπ , P

k−1
π , . . . , P 1

π

)
arrive one at a time. A solution to the Online Permutation Hitting Set problem is a sequence of set

H1 ⊂ H2 ⊂ · · · ⊂ Hk such that Hi ∩ P k+1−i
π 6= ∅ for i = 1, . . . , k.

Lemma 8. The expected size of Hk for any algorithm that solves the Online Permutation Hitting Set

problem over the space of all permutations on [k] under the uniform distribution is lower bounded by

hk =
∑k

i=1
1
i .

40

Proof. We first show that the lower bound is achieved by a randomized algorithm A0, and then we show

that no other randomized algorithm could do better than A0.

We start by describing A0. Upon seeing P k+1−i
π , A0 sets Hi using the following rule:

Hi =

Hi−1 if Hi−1 ∩ P k+1−i

π 6= ∅

Hi−1 ∪ {a} if Hi−1 ∩ P k+1−i
π = ∅

,

where a is a random point in P k+1−i
π . Let Ei denote the expected size of the final output of A0 on

permutations on [i] for all i = 1, . . . , k. By symmetry, without loss of generality, we assume that A0 add

1 upon receiving P kπ = [k], then we have

Ek = 1 +

k∑
i=1

EiP (π(i) = 1) = 1 +
1

k

k−1∑
i=1

Ei

The first equality is because A0 doesn’t need to add more points until it receives P k−iπ if π(i) = 1,

and the second equality is because that all i has the same probability to be mapped to 1. To show that

Ek = hk, we first verify that the harmonic series satisfies the same recursive relation. In fact, we have

1 +
1

k

k−1∑
i=1

hi =
1

k

k +

k−1∑
i=1

i∑
j=1

1

j

 =
1

k

(
k +

k−1∑
i=1

(k − i) · 1

i

)

=
1

k

(
k +

k−1∑
i=1

(
k · 1

i
− 1

))
=

1

k

(
1 + k

k−1∑
i=1

1

i

)
= hk.

Since E1 = h1 = 1, we have Ek = hk for all k ∈ N+.

41

Next, we show that A0 is in fact the best randomized algorithm in expectation. To this end, we need

to show two things:

i. when Hi−1 ∩ P k+1−i
π 6= ∅, adding point(s) is counter-productive;

ii. when Hi−1 ∩ P k+1−i
π = ∅, adding more than one points is counter-productive.

To show i., let us assume that Hi−1 ∩ P k+1−i
π 6= ∅ and j is the smallest integer in 1 ≤ j ≤ k + 1− i

such that π(j) is contained in Hi−1. We show that adding one more point hurts the expectation, and

the proof for adding more than one points follows the same fashion. A0 will wait till P j−1
π and add a

random point from {π(1), π(2), . . . , π(j − 1)}. Hence, A0 does not assign probabilities to any point in

{π(j + 1), . . . , π(k + 1− i)}. We note that adding any point in {π(j + 1), . . . , π(k + 1− i)} wouldn’t

help. Hence, any algorithm that assigns non-zero probabilities to {π(j + 1), . . . , π(k + 1− i)} will do

worse than A0 in expectation.

To show ii., for simplicity, we show that adding two points upon seeing P kπ hurts the expectation, and

the proof for adding more than two points follows the same fashion. We show this by induction assuming

that A0 is the best algorithm in expectation for all i < k. By symmetry, without loss of generality, we

assume that H1 = {1, 2}. We have

E (|Hk||H1 = {1, 2})

= 2 +
(∑

E
(
|Hk||π−1(1) < π−1(2)

))
P
(
π−1(1) < π−1(2)

)
+
(∑

E
(
|Hk||π−1(1) > π−1(2)

))
P
(
π−1(1) > π−1(2)

)
≥ 2 + 2 · 1

2

(
1

k − 1

k−2∑
i=1

Ei

)
= 2 +

1

k − 1

k−2∑
i=1

Ei = 1 + Ek−1 > Ek,

42

where the first inequality follows from i. and the inductive hypothesis.

With the help of Lemma 8, we can prove the following lower bound.

Theorem 6. There exists an Ω(log n) lower bound for the competitive ratio for the Online Network

Construction with Ordered Constraints problem against an oblivious adversary.

Proof. The adversary divides the vertex set into two parts U and V , where |U | = √n and |V | = n−√n,

and gives the constraints as follows. First, it forces a complete graph in U by giving the constraint

{ui, uj} for each pair of vertices ui, uj ∈ U . At this stage both the algorithm and optimal solution will

have a clique in U , which costs Θ(n).

Then, for each v ∈ V , first fix a random permutation πv on U and give the ordered constraints

O(v,i) = (πv(1), πv(2), . . . , πv(i), v) for i = 1, . . . ,
√
n.

First note that all these constraints can be satisfied by adding ev = {πv(1), v} for each v ∈ V which

costs Θ(n). However, the adversary gives constraints in the following order:

O(v,
√
n),O(v,

√
n−1), . . . ,O(v,1).

To satisfy O(v,i), any algorithm just need to make sure that at least one point in P iπ is chosen to connect

to v, and hence the algorithm is in fact solving an instance of the Online Permutation Hitting Set problem

on input π at this stage. By Proposition 8, we know that all algorithm solving the Online Permutation

43

Hitting Set problem will add Ω (log
√
n) points in expectation, and this shows that any algorithm to the

Online Network Construction with Ordered Constraints problem needs to add Ω(n+ n log n) edges in

expectation in total. This gives us the desired result because OPT = O(n).

Now we study the online problem when it is known that an optimal graph can be a star or a path.

These special cases are challenging in their own right and are often studied in the literature to develop

more general techniques (Angluin et al., 2015).

3.3.2 Stars

Theorem 7. The optimal competitive ratio for the Online Network Construction with Ordered Con-

straints problem when the algorithm knows that the optimal solution forms a star is asymptotically

3/2.

Proof. For the lower bound, we note that the adversary can simply give Oi = (v1, v2, vi) for all

i = 3, . . . , n obliviously for the first n− 2 rounds. Then an algorithm, besides adding {v1, v2} in the first

round, can only choose from adding either {v1, vi} or {v2, vi}, or both in each round. Note that v1 or v2

have to be the center since the first constraint ensures that {v1, v2} is an edge. After the first n−2 rounds,

the adversary counts the number of v1 and v2’s neighbors, and chooses the one with fewer neighbors, say

v1, to be the center by giving the constraints (v1, vi) for all i = 3, . . . , n where no edge (v1, vi) exists.

Since the algorithm has to add at least d(n− 2)/2e edges that are unnecessary in the hindsight, we get

an asymptotic lower bound 3/2.

For the upper bound, assume that either v1 or v2 is the center and the first ordered constraint is O1 is

(v1, v2, . . .), the algorithm works as follows:

44

1. It adds {v1, v2} in the first round.

2. For any constraint (including the first) that starts with v1 and v2, the algorithm always adds edges

of the form (v1, vk) or (v2, vk) where k 6= 1, 2 in such a way that the following two conditions

hold:

• Degree of v1 and degree of v2 differ by at most 1.

• The degree of vk is 1 for k 6= 1, 2

3. Upon seeing a constraint that does not start with v1 and v2, which reveals the center of the star, it

connects the center to all vertices that are not yet connected to the center.

Since the algorithm adds, at most n/2− 1 edges to the wrong center, this gives us an asymptotic upper

bound 3/2, which matches the lower bound.

3.3.3 Paths

In the next two theorems, we give matching lower and upper bounds (in the limit) for path graphs.

Theorem 8. The Online Network Construction with Ordered Constraints problem when the algorithm

knows that the optimal solution forms a path has an asymptotic lower bound of 2 for the competitive

ratio.

Proof. Let us name the vertices v1, v2, v3, . . . , vn. For 3 ≤ i ≤ n, define the pre-degree of a vertex vi

to be the number of neighbors vi has in {v1, v2, v3, . . . , vi−1}. Algorithm 3 below is a simple strategy

45

Give ordered constraint O = (v1, v2, v3, . . . , vn) to the algorithm;

for i = 3 to n do

if the pre-degree of vi is at least 2 then

continue;

else

pick a path on {v1, v2, v3, . . . , vi−1} (say Pi) that satisfies all the constraints up to this round (the

existence of Pi follows by induction) and an endpoint u of the path that is not connected to vi,

and give the algorithm the constraint (vi, u);

end if

end for
Algorithm 3: Forcing pre-degree to be at least 2

the adversary can take to force v3, . . . , vn to all have pre-degree at least 2. Since any algorithm will add

at least 2n− 3 edges, this gives an asymptotic lower bound of 2.

Suppose Pi was the path picked in round i (i.e. Pi satisfies all constraints up to round i). Then, Pi

along with the edge (vi, u) is a path that satisfies all constraints up to round i+ 1. Hence by induction,

for all i, there is a path that satisfies all constraints given by the adversary up to round i.

46

Theorem 9. The competitive ratio for the Online Network Construction with Ordered Constraints

problem when the algorithm knows that the optimal solution forms a path has an asymptotic upper bound

of 2.

Proof. For our algorithm matching the upper bound, we use the PQ-trees, introduced by Booth and

Lueker (Booth and Lueker, 1976), which keep track all consistent permutations of vertices given

contiguous intervals of vertices, since vertices in any ordered constraint form a contiguous interval if the

underlying graph is a path. Our analysis is based on ideas from Angluin et al. (Angluin et al., 2015), who

also use PQ-trees for analyzing the general problem.1

A PQ-tree is a tree whose leaf nodes are the vertices and each internal node is either a p-node or a

q-node.

• A p-node has two or more children of any type. The children of a p-node form a contiguous

interval that can be in any order.

• A q-node has three or more children of any type. The children of a q-node form a contiguous

interval, but can only be in the given order or its reverse.

Every time a new interval constraint comes, the tree updates itself by identifying any of the eleven

patterns, P0, P1,. . . , P6, and Q0, Q1, Q2, Q3, of the arrangement of nodes and replacing it with each

correspondent replacement. The update fails when it cannot identify any of the patterns, in which case

1Angluin et al. (Angluin et al., 2015) have a small error in their argument because their potential function fails
to explicitly consider the number of p-nodes, which creates a problem for some of the PQ-tree updates. We fix this,
without affecting their asymptotic bound. For the ordered constraints case, we are also able to obtain a much finer
analysis.

47

the contiguous intervals fail to produce any consistent permutation. We refer readers to Section 2 of

Booth and Lueker (Booth and Lueker, 1976) for a more detailed description of PQ-trees.

Pattern Replacement

P2 vk

vk

P3

P4(1)
vk

vk

P4(2)
vk

vk

P5

P6(1)
vk

vk

P6(2)
vk

vk

Q2
vk

vk

48

TABLE I: Specific patterns and replacements that appear through the algorithm. P4(1) denotes the case of

P4 where the top p-node is retained in the replacement and P4(2) denotes the case where the top p-node

is deleted. The same is true for P6. P0, P1, Q0, and Q1 are just relabelling rules, and we have omitted

them because no edges need to be added. We use the same shapes to represent p-nodes, q-nodes, and

subtrees as in Booth and Lueker’s paper for easy reference, and we use diamonds to represent leaf nodes.

The reason we can use a PQ-tree to guide our algorithm is because of an observation made in

Section 3.1 that each ordered constraint (v1, v2, v3, . . . , vk−1, vk) is equivalent to k − 1 connectivity

constraints S2, . . . , Sk, where Si = {v1, . . . , vi}. Note that each connectivity constraint corresponds to

an interval in the underlying graph. So upon seeing one ordered constraints, we reduce the PQ-tree with

the equivalent interval constraints, in order. Then what our algorithm does is simply to add edge(s) to the

graph every time a pattern is identified and replaced with its replacement, so that the graph satisfies all

the seen constraints. Note that to reduce the PQ-tree with one interval constraint, there may be multiple

patterns identified and hence multiple edges may be added.

Before running into details of how the patterns determine which edge(s) to add, we note that, without

loss of generality, we can assume that the algorithm is in either one of the following two stages.

• The PQ-tree is about to be reduced with {v1, v2}.

• The PQ-tree is about to be reduced with {v1, . . . , vk}, when the reductions with {v1, v2} · · · , {v1, . . . , vk−1}

have been done.

49

Because of the structure of constraints discussed above, we do not encounter all PQ-tree patterns

in their full generality, but in the special forms demonstrated in Table I. Based on this, we make three

important observations which can be verified by carefully examining how a PQ-tree evolves along with

our algorithm.

1. The only p-node that can have more than two children is the root.

2. At least one of the two children of a non-root p-node is a leaf node.

3. For all q-nodes, there must be at least one leaf node in any two adjacent children. Hence, Q3

doesn’t appear.

Now we describe how the edges are going to be added. Note that a PQ-tree inherently learns edges

that appear in the optimum solution even when those edges are not forced by constraints. Apart from

adding edges that are necessary to satisfy the constraints, our algorithm will also add any edge that the

PQ-tree inherently learns. For all the patterns except Q2 such that a leaf node vk is about to be added as

a child to a different node, we can add one edge joining vk to vk−1. For all such patterns except Q2, it

is obvious that this would satisfy the current constraint and all inherently learnt edges are also added.

For Q2, the PQ-tree could learn two edges. The first edge is (vk, vk−1). The second one is an edge

between the leftmost subtree of the daughter q-node (call Tl) and the node to its left (call vl). Based on

Observation 3, vl is a leaf. But based on the algorithm, one of these two edges is already added. Hence,

we only need to add one edge when Q2 is applied. For P5, we add the edge as shown in Table I.

50

∑
p∈P c(p) |P | |Q| −∆Φ number of edges added

P2 1 1 0 −a− b 1

P3 −2 −1 1 2a+ b− c 0

P4(1) −1 0 0 a 1

P4(2) −2 −1 0 2a+ b 1

P5 −2 −1 0 2a+ b 1

P6(1) −1 0 −1 a+ c 1

P6(2) −2 −1 −1 2a+ b+ c 1

Q2 0 0 −1 c 1

Q3 0 0 −2 2c 1

TABLE II: How the terms in the potential function:
∑

p∈P c(p), |P |, and |Q| change according to the

updates.

Let us denote by P and Q the sets of p-nodes and q-nodes, respectively, and by c(p) the number of

children node p has. And let potential function φ of a tree T be defined as

φ(T) = a
∑
p∈P

c(p) + b|P |+ c|Q|,

where a, b, and c are coefficients to be determined later.

We want to upper bound the number of edges added for each pattern by the drop of potential function.

We collect the change in the three terms in the potential function that each replacement causes in Table II,

51

and we can solve a simple linear system to get that choosing a = 2, b = −3, and c = 1 is sufficient. For

ease of analysis, we add a dummy vertex vn+1 that does not appear in any constraint. Now, the potential

function starts at 2n− 1 (a single p-node with n+ 1 children) and decreases to 2 when a path is uniquely

determined. Hence, the number of edges added by the algorithm is 2n − 3, which gives the desired

asymptotic upper bound.

CHAPTER 4

DETECTING NETWORK ANOMALIES VIA NON-LOCAL CURVATURES

This chapter is based on the preprint How did the shape of your network change? (On detecting

anomalies in static and dynamic networks via change of non-local curvatures) by DasGupta, Bhaskar and

Janardhanan, Mano Vikash and Yahyanejad, Farzaneh (DasGupta et al., 2018).

4.1 Introduction

Useful insights for many complex systems are often obtained by representing them as networks

and analyzing them using graph-theoretic and combinatorial algorithmic tools (DasGupta and Liang,

2016; Newman, 2010; Albert and l. Barabási, 2002). In principle, we can classify these networks into

two major classes:

. Static networks that model the corresponding system by one fixed network. Examples of such

networks include biological signal transduction networks without node dynamics, and most social

networks.

. Dynamic networks where elementary components of the network (such as nodes or edges) are

added and/or removed as the network evolves over time. Examples of such networks include

biological signal transduction networks with node dynamics, causal networks reconstructed from

DNA microarray time-series data, biochemical reaction networks and dynamic social networks.

Typically, such networks may have so-called critical (elementary) components whose presence or

absence alters some significant non-trivial non-local property of these networks. For example:

52

53

. For a static network, there is a rich history in finding various types of critical components dating

back to quantifications of fault-tolerance or redundancy in electronic circuits or routing networks.

Recent examples of practical application of determining critical and non-critical components in the

context of systems biology include quantifying redundancies in biological networks (Kolb and

Whishaw, 1996; Tononi et al., 1999; Albert et al., 2011) and confirming the existence of central

influential neighborhoods in biological networks (Albert et al., 2014).

. For a dynamic network, critical components may correspond to a set of nodes or edges whose addi-

tion and/or removal between two time steps alters a significant topological property of the network.

Popularly also known as the anomaly detection or change-point detection (Aminikhanghahi and

Cook, 2017; Kawahara and Sugiyama, 2009) problem, these types of problems have been studied

over the last several decades in data mining, statistics and computer science mostly in the context

of time series data with applications to areas such as medical condition monitoring (Yang et al.,

2006; Bosc et al., 2003), weather change detection (Ducre-Robitaille et al., 2003; Reeves et al.,

2007) and speech recognition (Chowdhury et al., 2011; Rybach et al., 2009).

In this paper we seek to address research questions of the following generic nature:

“Given a static or dynamic network, identify the critical components of the network that

“encode” significant non-trivial global properties of the network”.

To identify critical components, one first needs to provide details for following four specific items:

(i) network model selection,

(ii) network evolution rule for dynamic networks,

54

(iii) definition of elementary critical components, and

(iv) network property selection (i.e., the global properties of the network to be investigated).

The specific details for these items for this paper are as follows:

(i) Network model selection: Our network model will be undirected graphs.

(ii) Network evolution rule for dynamic networks: Our dynamic networks follow the time series

model and are given as a sequence of networks over discrete time steps, where each network is

obtained from the previous one in the sequence by adding and/or deleting some nodes and/or edges.

(iii) Critical component definition: Individual edges are elementary members of critical compo-

nents.

(iv) Network property selection: The network measure for this paper will be appropriate notions

of “network curvature”. More specifically, we will use (a) Gromov-hyperbolic combinatorial

curvature based on the properties of exact and approximate geodesics distributions and higher-

order connectivities and (b) geometric curvatures based on identifying network motifs with

geometric complexes (“geometric motifs” in systems biology jargon) and then using Forman’s

combinatorializations.

4.1.1 Some basic definitions and notations

For an undirected unweighted graph G = (V,E) of n nodes v1, . . . , vn, the following notations

related to G are used throughout:

I vi1 ↔ vi2 ↔ vi3 ↔ · · · ↔ vik−1
↔ vik denotes a path of length k − 1 consisting of the edges

{vi1 , vi2}, {vi2 , vi3}, . . . ,
{
vik−1

, vik
}

.

55

I u, v and distG(u, v) denote a shortest path and the distance (i.e., number of edges in u, v) between

nodes u and v, respectively.

I diam(G) = maxvi,vj {distG(vi, vj)} denotes the diameter of G.

I G \ E′ denotes the graph obtained from G by removing the edges in E′ from E.

A ε-approximate solution (or simply an ε-approximation) of a minimization (resp., maximization)

problem is a solution with an objective value no larger than (resp., no smaller than) ε times (resp., 1/ε

times) the value of the optimum; an algorithm of performance or approximation ratio ε produces an

ε-approximate solution. A problem is ε-inapproximable under a certain complexity-theoretic assumption

means that the problem does not admit a polynomial-time ε-approximation algorithm assuming that

the complexity-theoretic assumption is true. We will also use other standard definitions from structural

complexity theory as readily available in any graduate level textbook on algorithms such as (Vazirani,

2001).

4.1.2 Why use network curvature measures?

Prior researchers have proposed and evaluated a number of established network measures such

as degree-based measures (e.g., degree distribution), connectivity-based measures (e.g., clustering

coefficient), geodesic-based measures (e.g., betweenness centrality) and other more novel network

measures (Colizza et al., 2006; Latora and Marchior, 2007; Albert et al., 2011; Bassett et al., 2011) for

analyzing networks. The network measures considered in this paper are “appropriate notions” of network

curvatures. As provably demonstrated in published research works such as (Albert et al., 2014; Weber

et al., 2016a; Weber et al., 2016b; Samal et al., 2018), these network curvature measures saliently

encode non-trivial higher-order correlation among nodes and edges that cannot be obtained by other

56

popular network measures. Some important characteristics of these curvature measures that we consider

are (Albert et al., 2014, Section (III))(Jonckheerea et al., 2011):

I These curvature measures depend on non-trivial global network properties, as opposed to measures

such as degree distributions or clustering coefficients that are local in nature or dense subgraphs

that use only pairwise correlations.

I These curvature measures can mostly be computed efficiently in polynomial time, as opposed to

measures such as community decompositions, cliques or densest-k-subgraphs.

I When applied to real-world biological and social networks, these curvature measures can explain

many phenomena one frequently encounters in real network applications that are not easily

explained by other measures such as:

I paths mediating up- or down-regulation of a target node starting from the same regulator

node in biological regulatory networks often have many small crosstalk paths, and

I existence of congestions in a node that is not a hub in traffic networks.

Further details about the suitability of our curvature measures for real biological or social networks

are provided in Section 4.2.1.1 for Gromov-hyperbolic curvature and Section 4.2.2.3 for geometric

curvatures.

Curvatures are very natural measures of anomaly of higher dimensional objects in mainstream physics

and mathematics (Bridson and Haefliger, 1999; Berger, 2012). However, networks are discrete objects

that do not necessarily have an associated natural geometric embedding. Our paper seeks to adapt the

definition of curvature from the non-network domains in a suitable way for detecting network anomalies.

57

For example, in networks with sufficiently small Gromov-hyperbolicity and sufficiently large diameter a

suitably small subset of nodes or edges can be removed to stretch the geodesics between two distinct parts

of the network by an exponential amount leading to extreme implications on the expansion properties

of such networks (Benjamini, 1998; DasGupta et al., 2018), which is akin to the characterization of

singularities (an extreme anomaly) by geodesic incompleteness (i.e., stretching all geodesics passing

through the region infinitely) (Hawking and Penrose, 1996). It is our hope that research works in this

paper will stimulate further research concerning the exciting interplay between curvatures from network

and non-network domains, a much desired goal in our opinion.

4.1.2.1 Scalar vs. vector curvature

In this paper, we consider a scalar curvature measure C
def
= C(G) : G→ R. The standard Gromov-

hyperbolic curvature measure is always a scalar value. Geometric curvatures however could also be

defined by a vector by looking at local curvatures at all elementary components (e.g., nodes or edges) of

a network, and defining the overall curvature as a vector of these values. We leave algorithmic analysis

of such geometric vector curvatures, which seems to require considerably different combinatorial and

optimization tools, for future research. Both scalar and vector versions of curvatures are used in physics

and mathematics to study higher-dimensional objects with their own pros and cons. For example, for a

two-dimensional curve, the standard curvature as defined by Cauchy is a scalar curvature whereas the

normal vector used in the study of differential geometry of curves is a vector curvature. Even though a

casual glance may seem to suggest that the scalar curvature is a weak concept with inadequate influence

on the global geometry of the higher-dimensional object that is being studied, there exists non-trivial

58

results (e.g., the positive mass theorem of Schoen, Yau and Witten) that suggest that this may not be the

case.

4.1.3 Why only the edge-deletion model?

In this paper we add or delete edges from a network while keeping the node set the same. This

scenario captures a wide variety of applications such as inducing desired outcomes in disease-related

biological networks via gene knockout (Saadatpour et al., 2011; Zanudo and Albert, 2015), inference

of minimal biological networks from indirect experimental evidences or gene perturbation data (Albert

et al., 2007; Albert et al., 2008; Wagner, 2002), and finding influential nodes in social and biological

networks (Albert et al., 2011), to name a few. However, the node addition/deletion model or a mixture of

node/edge addition/deletion model is also significant in many other applications. Although some of our

complexity results can be easily extended for bounded-degree graphs to the node deletion model, we do

not outline these generalizations here but leave it as a separate future research topic.

4.1.4 Two examples in which curvature measures detect anomaly where other simpler measures do not

It is obviously practically impossible to compare our curvatures measures for anomaly detection with

respect to every possible other network measure that has been used in prior research works. However,

we do still provide two illustrative examples of comparing our curvature measures to the well-known

densest subgraph measure which is defined as follows. Given a graph G = (V,E), the densest subgraph

measure find a subgraph (S,ES) induced by a subset of nodes ∅ ⊂ S ⊆ V that maximizes the ratio

(density) ρ(S)
def
= |ES |

|S| . Let ρ(G)
def
= max∅⊂S⊆V {ρ(S)} denote the density of a densest subgraph of G.

An efficient polynomial time algorithm to compute ρ(G) using a max-flow technique was first provided

59

by Goldberg (Goldberg, 1984). We urge the readers to review the definitions of the relevant curvature

measures (in Section 4.2) and the anomaly detection problems (in Section 4.3) in case of any confusion

regarding the examples we provide.

4.1.4.1 Extremal anomaly detection for a static network

Consider the extremal anomaly detection problem (Problem Eadp in Section 4.3.1) for a network

G = (V,E) of 10 nodes and 20 edges as shown in Fig. 4 using the geometric curvature C2
3 as defined

by Equation (Equation 4.1). It can be easily verified that C2
3(G) = 6 and ρ(G) = 9/4. Let Ẽ = E and

suppose that we set our targeted decrease of the curvature or density value to be 75% of the original

value, i.e., we set γ = 3/4× C2
3(G) = 9/2 for the geometric curvature measure and γ = 3/4× ρ(G) =

27/16 for the densest subgraph measure. It is easily verified that C2
3(G \ {e1}) = 0, thus showing

OPTEadpC23

(G, Ẽ, γ) = 1. However, many more than just one edge will need to be deleted from G to

bring down the value of ρ(G) to 27/16.

Figure 4: Toy example of extremal anomaly detection discussed in Section 4.1.4.1.

60

4.1.4.2 Targeted anomaly detection for a dynamic biological network

x1x1x1 x2x2x2 x3x3x3 x4x4x4
t = 2t = 2t = 2
δ = 0δ = 0δ = 0 G2G2G2

x1x1x1 x2x2x2 x3x3x3 x4x4x4
t = 3t = 3t = 3
δ = 1δ = 1δ = 1 G1G1G1

x1(0) = x2(0) = x3(0) = x4(0) = 0x1(0) = x2(0) = x3(0) = x4(0) = 0x1(0) = x2(0) = x3(0) = x4(0) = 0

∀ t = 0, 1, 2,∀ t = 0, 1, 2,∀ t = 0, 1, 2,

x2(t + 1) = x2(t) + 0.8x1(t)x2(t + 1) = x2(t) + 0.8x1(t)x2(t + 1) = x2(t) + 0.8x1(t)

x3(t + 1) = x3(t) + 0.8x2(t)x3(t + 1) = x3(t) + 0.8x2(t)x3(t + 1) = x3(t) + 0.8x2(t)

x4(t + 1) = x4(t) + 0.8x3(t)x4(t + 1) = x4(t) + 0.8x3(t)x4(t + 1) = x4(t) + 0.8x3(t)

+
0.4x1(t)

1 + e−3.66 t+11
+

0.4x1(t)

1 + e−3.66 t+11+
0.4x1(t)

1 + e−3.66 t+11

microarray output

> 0.60 ⇒> 0.60 ⇒> 0.60 ⇒ ON (1)

< 0.55 ⇒< 0.55 ⇒< 0.55 ⇒ OFF (0)

δ =δ =δ = value of Gromov curvature

ttt 222 333

x1(t)x1(t)x1(t) 1.001.001.00 1.001.001.00

x2(t)x2(t)x2(t) 0.800.800.80 0.800.800.80

x3(t)x3(t)x3(t) 0.640.640.64 0.640.640.64

x4(t)x4(t)x4(t) 0.520.520.52 0.900.900.90

Figure 5: Toy example of targeted anomaly detection discussed in Section 4.1.4.2.

Consider the targeted anomaly detection problem (Problem Tadp in Section 4.3.2) for a dynamic

biological network of 4 variables x1, x2, x3, x4 as shown in Fig. 5, where x1 affects x4 with a delay, using

the Gromov-hyperbolic curvature (Definition 12). Suppose that the network inference from microarray

data is done by incorporating a time delay of two in the hitting-set approach of Krupa (Jarrah et al., 2007).

It can be easily verified that CGromov(G1) = ρ(G1) = 1, CGromov(G2) = 0, and ρ(G2) = 1/2. Since

CGromov(G1 \ {x1, x4}) = 0 it follows that OPTTadpCGromov

(G1, G2) = 1; however, 2 edges will need

to be deleted from G1 to bring down the value of ρ(G1) to ρ(G2).

61

4.1.5 Algebraic approaches for anomaly detection

In contrast to the combinatorial/geometric graph-property based approach investigated in this paper

and elsewhere, an alternate approach for anomaly detection is the algebraic tensor-decomposition

based approach studied in the contexts of dynamic social networks (Sun et al., 2006) and pathway

reconstructions in cellular systems and microarray data integration from several sources (Alter and Golub,

2005; Omberg et al., 2007). This approach is quite different from the ones studied in this paper with its

own pros and cons.

4.1.6 Remarks on the organization of our proofs

Many of our proofs in Sections 4.4–4.5 are long, complicated and/or involve tedious calculations.

For easier understanding and to make the paper more readable, when appropriate we have included a

subsection generically titled “Proof techniques and relevant comments regarding Theorem ” before

providing the actual detailed proofs. The reader is cautioned however that these brief subsections are

meant to provide some general idea and subtle points behind the proofs and should not be considered as

a substitution for more formal proofs.

4.2 Two notions of graph curvature

For this paper, a curvature for a graph G is a scalar-valued function C
def
= C(G) : G→ R. There are

several ways in which network curvature can be defined depending on the type of global properties the

measure is desired to affect; in this paper we consider two such definitions as described subsequently.

4.2.1 Gromov-hyperbolic curvature

This measure for a metric space was first suggested by Gromov in a group theoretic context (Gromov,

1987). The measure was first defined for infinite continuous metric space (Bridson and Haefliger, 1999),

62

but was later also adopted for finite graphs. Usually the measure is defined via geodesic triangles as

stated in Definition 12. For this definition, it would be useful to consider the given graph G as a metric

graph, i.e., we identify (by an isometry) any edge {u, v} ∈ E with the real interval [0, 1] and thus any

point in the interior of the edge {u, v} can also be thought as a (virtual) node of G. Define a geodesic

triangle ∆u,v,w to be an ordered triple of three shortest paths (u, v, u,w and v, w) for the three nodes

u, v, w in G.

Definition 12 (Gromov-hyperbolic curvature measure via geodesic triangles). For a geodesic trian-

gle ∆u,v,w, let CGromov(∆u,v,w) be the minimum number such that u, v lies in a CGromov(∆u,v,w)-

neighborhood of u,w ∪ v, w, i.e., for every node x on u, v, there exists a node y on u,w or v, w such

that distG(x, y) ≤ CGromov(∆u,v,w). Then the graph G has a Gromov-hyperbolic curvature (or Gromov

hyperbolicity) of CGromov
def
= CGromov(G) where CGromov(G) = min

u,v,w∈V
{CGromov(∆u,v,w)}.

An infinite collection G of graphs belongs to the class of CGromov-Gromov-hyperbolic graphs if

and only if any graph G ∈ G has a Gromov-hyperbolic curvature of CGromov. Informally, any infinite

metric space has a finite value of CGromov if it behaves metrically in the large scale as a negatively curved

Riemannian manifold, and thus the value of CGromov can be related to the standard scalar curvature of a

hyperbolic manifold. For example, a simply connected complete Riemannian manifold whose sectional

curvature is below α < 0 has a value of CGromov = O
(√−α) (see (Roe, 1996)). This is a major

justification of using CGromov as a notion of curvature of any metric space.

For an n-node graph G, CGromov(G) and a 2-approximation of CGromov(G) can be computed in

O
(
n3.69

)
and in O

(
n2.69

)
time, respectively (Fournier et al., 2015). It is easy to see that if G is a

tree then CGromov(G) = 0. Other examples of graph classes for which CGromov(G) is a small constant

63

include chordal graphs, cactus of cliques, AT-free graphs, link graphs of simple polygons, and any class

of graphs with a fixed diameter. A small value of Gromov-hyperbolicity is often crucial for algorithmic

designs; for example, several routing-related problems or the diameter estimation problem become easier

for networks with small CGromov values (Chepoi and Estellon, 2007; Chepoi et al., 2008; Chepoi et al.,

2012; Gavoille and Ly., 2005). There are many well-known measures of curvature of a continuous surface

or other similar spaces (e.g., curvature of a manifold) that are widely used in many branches of physics

and mathematics. It is possible to relate Gromov-hyperbolic curvature to such other curvature notions

indirectly via its scaled version, e.g., see (Jonckheere et al., 2007; Narayan and Saniee, 2011; Jonckheere

et al., 2011).

4.2.1.1 Is Gromov-hyperbolic curvature a suitable statistically significant measure for real-world networks ?

Recently, there has been a surge of empirical works measuring and analyzing the Gromov curvature

CGromov of networks, and many real-world networks (e.g., preferential attachment networks, networks

of high power transceivers in a wireless sensor network, communication networks at the IP layer

and at other levels) were observed to have a small constant value of CGromov (Narayan and Saniee,

2011; Papadopoulos et al., 2010; Jonckheere and Lohsoonthorn, 2004; Jonckheere et al., 2007; Ariaei

et al., 2008). The authors in (Albert et al., 2014) analyzed 11 well-known biological networks and 9

well-known social networks for their CGromov values and found all but one network had a statistically

significant small value of CGromov. These references also describe implications of range of CGromov

on the actual real-world applications of these networks. As mentioned in the following subsection,

64

the Gromov-hyperbolicity measure is fundamentally different from the commonly used topological

properties for a graph.

4.2.1.2 Some clarifying remarks regarding Gromov-hyperbolicity measure

As pointed out in details by the authors in (DasGupta et al., 2018, Section 1.2.1), the Gromov-

hyperbolicity measure CGromov enjoys many non-trivial topological characteristics. In particular, the

authors in (DasGupta et al., 2018, Section 1.2.1) point out the following:

. CGromov is not a hereditary or monotone property.

. CGromov is not necessarily the same as tree-width measure (see also (de Montgolfier et al., 2011;

Albert et al., 2014)), or other standard combinatorial properties (e.g., betweenness centrality,

clustering coefficient, dense sub-graphs) that are commonly used in the computer science literature.

. “Close to hyperbolic topology” is not necessarily the same as “close to tree topology”.

4.2.2 Geometric curvatures

In this section, we describe generic geometric curvatures of graphs by using correspondence with

topological objects in higher dimension.

4.2.2.1 Some basic topological concepts

We first review some basic concepts from topology; see introductory textbooks such as (Henle,

1994; Gamelin and Greene, 1999) for further information. Although not necessary, the reader may find it

useful to think of the underlying metric space as the r-dimensional real space Rr be for some integer

r > 1.

65

I A subset S ⊆ Rr is convex if and only if for any x, y ∈ S, the convex combination of x and y is

also in S.

I A set of k + 1 points x0, . . . , xk ∈ Rr are called affinely independent if and only if for all

α0, . . . , αk ∈ R
∑k

j=0 αjxj = 0 and
∑k

j=0 αj = 0 implies α0 = · · · = αk = 0.

I The k-simplex generated by a set of k + 1 affinely independent points x0, . . . , xk ∈ Rr is the

subset S
(
x0, . . . , xk

)
of Rr generated by all convex combinations of x0, . . . , xk.

. Each (` + 1)-subset
{
xi0 , . . . , xi`

}
⊆
{
x0, . . . , xk

}
defines the `-simplex S

(
xi0 , . . . , xi`

)
that is called a face of dimension ` (or a `-face) of S

(
x0, . . . , xk

)
. A (k − 1)-face, 1-face

and 0-face is called a facet, an edge and a node, respectively.

I A (closed) halfspace is a set of points satisfying
∑r

j=1 ajxj ≤ b for some a1, . . . , ar, b ∈ R. The

convex set obtained by a bounded non-empty intersection of a finite number of halfspaces is called

a convex polytope (convex polygon in two dimensions).

. If the intersection of a halfspace and a convex polytope is a subset of the halfspace then it is

called a face of the polytope. Of particular interests are faces of dimensions r − 1, 1 and 0,

which are called facets, edges and nodes of the polytope, respectively.

I A simplicial complex (or just a complex) is a topological space constructed by the union of

simplexes via topological associations.

4.2.2.2 Geometric curvature definitions

Informally, a complex is “glued” from nodes, edges and polygons via topological identification.

We first define k-complex-based Forman’s combinatorial Ricci curvature for elementary components

66

(such as nodes, edges, triangles and higher-order cliques) as described in (Forman, 2003; Weber et

al., 2016a; Weber et al., 2016b), and then obtain a scalar curvature that takes an appropriate linear

combination of these values (via Gauβ-Bonnet type theorems (Bloch, 2014)) that correspond to the

so-called Euler characteristic of the complex that is topologically associated with the given graph. In

this paper, we consider such Euler characteristics of a graph to define geometric curvature.

To begin the topological association, we (topologically) associate a q-simplex with a (q + 1)-clique

Kq+1; for example, 0-simplexes, 1-simplexes, 2-simplexes and 3-simplexes are associated with nodes,

edges, 3-cycles (triangles) and 4-cliques, respectively. Next, we would also need the concept of an “order”

of a simplex for more non-trivial topological association. Consider a p-face fp of a q-simplex. An order

d association of such a face, which we will denote by the notation fpd with the additional subscript d, is

associated with a sub-graph of at most d nodes that is obtained by starting with Kp+1 and then optionally

replacing each edge by a path between the two nodes. For example,

• f0
d is a node of G for all d ≥ 1.

• f1
2 is an edge, and f1

d for d > 2 is a path having at most d nodes between two nodes adjacent in G.

• f2
3 is a triangle (cycle of 3 nodes or a 3-cycle), and f2

d for d > 3 is obtained from 3 nodes by

connecting every pair of nodes by a path such that the total number of nodes in the sub-graph is at

most d.

67

Naturally, the higher the values of p and q are, the more complex are the topological associations. Let

Fkd be the set of all fkd ’s in G that are topologically associated. With such associations via p-faces of

order d, the Euler characteristics of the graph G = (V,E) and consequently the curvature can defined as

Cpd(G)
def
=

p∑
k=0

(−1)k
∣∣∣Fkd ∣∣∣ (4.1)

It is easy to see that both C0
d(G) and C1

d(G) are too simplistic to be of use in practice. Thus, we consider

the next higher value of p in this paper, namely when p = 2. Letting C(G) denote the number of cycles

of at most d+ 1 nodes in G, we get the measure

C2
d(G) = |V | − |E|+ |C(G)|

4.2.2.3 Are geometric curvatures a suitable measure for real-world networks ?

The usefulness of geometric curvatures for real-world networks was demonstrated in publications

such as (Weber et al., 2016a; Weber et al., 2016b; Samal et al., 2018).

4.3 Formalizations of two anomaly detection problems on networks

In this section, we formalize two versions of the anomaly detection problem on networks. An

underlying assumption on the behind these formulations is that the graph adds/deletes edges only while

keeping the same set of nodes.

4.3.1 Extremal anomaly detection for static networks

The problems in this subsection are motivated by a desire to quantify the extremal sensitivity of

static networks. The basic decision question is: “is there a subset among a set of prescribed edges

68

whose deletion may change the network curvature significantly?”. This directly leads us to the following

decision problem:

Problem name: Extremal Anomaly Detection Problem (EadpC(G, Ẽ, γ))

Input: • A curvature measure C : G→ R

• A connected graph G = (V,E), an edge subset Ẽ ⊆ E such that

G \ Ẽ is connected and a real number γ < C(G) (resp., γ > C(G))

Decision question: is there an edge subset Ê ⊆ Ẽ such that C(G \ Ê) ≤ γ

(resp., C(G \ Ê) ≥ γ) ?

Optimization question: if the answer to the decision question is “yes” then minimize |Ê|

Notation: if the answer to the decision question is “yes” then

the minimum possible value of |Ê| is denoted by OPTEadpC
(G, Ẽ, γ)

The following comments regarding the above formulation should be noted:

. For the case γ < C(G) (resp., γ > C(G)) we allow C(G \ Ẽ) > γ (resp., C(G \ Ẽ) < γ), thus Ê = Ẽ

need not be a feasible solution at all.

. The curvature function is only defined for connected graphs, thus we require G \ Ẽ to be connected.

. The edges in E \ Ẽ can be thought of as “critical” edges needed for the functionality of the network.

For example, in the context of inference of minimal biological networks from indirect experimental

evidences (Albert et al., 2007; Albert et al., 2008), the set of critical edges represent direct biochemical

interactions with concrete evidence.

69

4.3.2 Targeted anomaly detection for dynamic networks

These problems are primarily motivated by change-point detections between two successive discrete

time steps in dynamic networks (Aminikhanghahi and Cook, 2017; Kawahara and Sugiyama, 2009), but

they can also be applied to static networks when a subset of the final desired network is known. Fig. 5

illustrates targeted anomaly detection for a dynamic biological network.

Problem name: Targeted Anomaly Detection Problem (TadpC(G1, G2))

Input: • Two connected graphs G1 = (V,E1) and G2 = (V,E2) with E2 ⊂ E1

• A curvature measure C : G→ R

Valid solution: a subset of edges E3 ⊆ E1 \ E2 such that C(G1 \ E3) = C(G2).

Objective: minimize |E3|.

Notation: the minimum value of |E3| is denoted by OPTTadpC
(G1, G2)

4.4 Computational complexity of extremal anomaly detection problems

4.4.1 Geometric curvatures: exact and approximation algorithms for EadpC2
d

The following theorem is stated without proof as it also appears in (Yahyanejad, 2019).

Theorem 10.

(a) The following statements hold for EadpC2
d
(G, Ẽ, γ) when γ > C2

d(G):

(a1) We can decide in polynomial time the answer to the decision question (i.e., if there exists any

feasible solution Ê or not).

(a2) If a feasible solution exists then the following results hold:

(a2-1) Computing OPTEadp
C2
d

(G, Ẽ, γ) is NP-hard for all d that are multiple of 3.

70

(a2-2) If γ is sufficient larger than C2
d(G) then we can design an approximation algorithm that

approximates both the cardinality of the minimal set of edges for deletion and the absolute

difference between the two curvature values. More precisely, if γ ≥ C2
d(G)+

(
1
2 + ε

)
(2|Ẽ|−

|E|) for some ε > 0, then we can find in polynomial time a subset of edges E1 ⊆ Ẽ such that

|E1| ≤ 2OPTEadp
C2
d

(G, Ẽ, γ) and
C2
d(G \ E1)− C2

d(G)

γ − C2
d(G)

≥ 4ε

1 + 2ε

(b) The following statements hold for EadpC2
d
(G, Ẽ, γ) when γ < C2

d(G):

(b1) We can decide in polynomial time the answer to the decision question (i.e., if there exists any

feasible solution Ê or not).

(b2) If a feasible solution exists and γ is not too far below C2
d(G) then we can design an approximation

algorithm that approximates both the cardinality of the minimal set of edges for deletion and the

absolute difference between the two curvature values. More precisely, letting ∆ denote the number

of cycles of G of at most d+ 1 nodes that contain at least one edge from Ẽ, if γ ≥ C2
d(G)− ∆

1+ε

for some ε > 0 then we can find in polynomial time a subset of edges E1 ⊆ Ẽ such that

|E1| ≤ 2OPTEadp
C2
d

(G, Ẽ, γ) and
C2
d(G \ E1)− C2

d(G)

γ − C2
d(G)

≤ 1− ε

(b3) If γ < C2
d(G) then, even if γ = C2

d(G \ Ẽ) (i.e., a trivial feasible solution exists), computing

OPTEadp
C2
d

(G, Ẽ, γ) is at least as hard as computing TadpC2
d
(G1, G2) and therefore all the

hardness results for TadpC2
d
(G1, G2) in Theorem 12 also apply to OPTEadp

C2
d

(G, Ẽ, γ).

71

4.4.2 Gromov-hyperbolic curvature: computational complexity of EadpCGromov

Theorem 11. The following statements hold for EadpCGromov
(G, Ẽ, γ) when γ > CGromov(G):

(a) Deciding if there exists a feasible solution is NP-hard.

(b) Even if a trivial feasible solution exists, it is NP-hard to design a polynomial-time algorithm to

approximate OPTEadpCGromov

(G, Ẽ, γ) within a factor of c n for some constants c > 0, where n

is the number of nodes in G and m is the number of edges in G.

4.4.2.1 Proof techniques and relevant comments regarding Theorem 11

From a high level point of view, Theorem 11 is proved by suitably modifying the reductions used in

the proof of Theorem 13.

4.4.2.2 Proof of Theorem 11

To prove (a) we will use a simpler version of the proof of Theorem 13 reusing the same notations.

Our graph G will be the same as the graph G1 in that proof, except that we do not add the complete graph

K|V ′′| on the nodes w0, w1, . . . , w|V ′′|−1 and consequently we also do not have the edge {u,w0}. We set

Ẽ = E′ and γ = n
2 + 1. The proof of Theorem 13 shows that CGromov(G) < γ, CGromov(G \ E′) ≤ γ

for any subset of edges E′ ⊆ Ẽ, and CGromov(G \ E′) = γ for a subset of edges ∅ ⊂ E′ ⊂ Ẽ if and

only if the given cubic graph has a Hamiltonian path between the two specified nodes, thereby showing

NP-hardness of the feasibility problem.

To prove (b) the same construction in the proof of Theorem 13 works: G is the same as the graph

G1 in that proof, γ = n
2 + 1, Ẽ is the set of edges whose deletion produced G2 from G1, and the trivial

72

feasible solution isG2. Note that the proof of Theorem 13 shows CGromov(G) < γ, CGromov(G\E′) ≤ γ

for any subset of edges ∅ ⊂ E′ ⊆ Ẽ and CGromov(G2) = γ.

4.5 Computational complexity of targeted anomaly detection problems

4.5.1 Geometric curvatures: computational hardness of TadpC2
d
(G1, G2)

For two functions f(n) and g(n) of n, we say f(n) = O∗(g(n)) if f(n) = O(g(n)nc) for some

positive constant c. In the sequel we will use the following two complexity-theoretic assumptions:

the unique games conjecture (Ugc) (Khot, 2002; Trevisan, 2012), and the exponential time hypothesis

(Eth) (Impagliazzo and Paturi, 2001; Impagliazzo et al., 2001; Woeginger, 2003).

Theorem 12.

(a) Computing OPTTadp
C23

(G1, G2) is NP-hard.

(b) There are no algorithms of the following type for TadpC2
d
(G1, G2) for 4 ≤ d ≤ o(n) when G1 and

G2 are n-node graphs:

(b1) a polynomial time (2− ε)-approximation algorithm for any constant ε > 0 assuming Ugc is true,

(b2) a polynomial time (10
√

5 − 21 − ε) ≈ 1.36-approximation algorithm for any constant ε > 0

assuming P6= NP,

(b3) a O∗
(
2o(n)

)
-time exact computation algorithm assuming Eth is true, and

(b4) a O∗
(
no(κ)

)
-time exact computation algorithm if OPTTadpC23

(G1, G2) ≤ κ assuming Eth is

true.

73

4.5.1.1 Proof techniques and relevant comments regarding Theorem 12

I To prove (a), we prove the results by reducing the triangle deletion problem (Tdp) to that of solving

TadpC2
3
. Tdp was shown to be NP-hard by Yannakakis in (Yannakakis, 1978).

I To prove (b), we provide suitable approximation-preserving reductions from Mnc.

I (on proofs in (b3) and (b4)) For these proofs, the idea is to start with an instance of 3-Sat, use

“sparsification lemma” in (Impagliazzo et al., 2001) to generate a family of Boolean formulae, reduce

each of these formula to Mnc, and finally reduce each such instance of Mnc to a corresponding

instance of TadpC2
d
.

4.5.1.2 Proof of Theorem 12

The goal of the minimum node cover problem (Mnc) for a graph G is to select a subset of nodes of

minimum cardinality such that at least one end-point of every edge has been selected; let OPT Mnc(G)

denote the cardinality of the subset of nodes that is an optimal solution of Mnc. The (standard) Boolean

satisfiability problem is denoted by Sat, and its restricted case when every clause has exactly k literals

will be denoted by k-Sat (Garey and Johnson, 1979). Consider Sat or k-Sat and let Φ be an input instance

(i.e., a Boolean formula in conjunctive normal form) of it. The following inapproximability results are

known for Mnc:

74

(?Mnc) There exists a polynomial time algorithm that transforms a given instance Φ of Sat to an input

instance graph G = (V,E) of Mnc such that the following holds for any constant 0 < ε < 1
4 ,

assuming Ugc to be true (Khot and Regev, 2008a):

if Φ is satisfiable then OPT Mnc(G) ≤
(

1
2 + ε

)
|V |

if Φ is not satisfiable then OPT Mnc(G) ≥ (1− ε) |V |

(??Mnc) There exists a polynomial time algorithm that transforms a given instance Φ of Sat to an input

instance graph G = (V,E) of Mnc such that the following holds for any constant 0 < ε <

16− 8
√

5 and for some 0 < α < 2|V |, assuming P6=NP (Dinur and Safra, 2005a):

if Φ is satisfiable then OPT Mnc(G) ≤
(√

5−1
2 + ε

)
α

if Φ is not satisfiable then OPT Mnc(G) ≥
(

71−31
√

5
2 − ε

)
α

(note that
(

71−31
√

5
2

)
/
(√

5−1
2

)
= 10

√
5− 21 ≈ 1.36).

(???Mnc) There exists a polynomial time algorithm (e.g., see (Garey and Johnson, 1979, page 54)) that

transforms a given instance Φ of 3-Sat of n variable and m clauses to to an input instance graph

G = (V,E) of Mnc with |V | = 3n+ 2m nodes and |E| = n+m edges such that such that Φ is

satisfiable if and only if OPT Mnc(G) = n+ 2m.

Proofs of (a) We will prove the results by reducing the triangle deletion problem to that of computing

TadpC2
3
. The triangle deletion problem (Tdp) can be stated as follows: Given G find the minimum number

75

of edges (which we will denote by OPTTdp(G)) to be deleted from G to make it triangle-free. Tdp was

shown to be NP-hard by Yannakakis in (Yannakakis, 1978).

Consider an instance G = (V,E) of Tdp where V = {u1, . . . , un} and E = {e1, . . . , em}. We

create an instance G1 = (V ′, E1) and G2 = (V ′, E2) (with ∅ ⊂ E2 ⊂ E1) of TadpC2
3

in the following

manner:

. For each ui ∈ V , we create a node vi ∈ V ′. There are n such nodes in V ′.

. If {ui, uj} ∈ E, then we add the edge {vi, vj} to E1. We call these edges as “original” edges. Let

Ed be the set of all original edges; note that |Ed| = m.

. To ensure that G2 is a connected graph, we add two new nodes w1
i , w

2
i in V ′ corresponding to each

node vi ∈ V ′ for i = 1, 2, . . . , n−1, and add three new edges
{
vi, w

1
i

}
,
{
w1
i , w

2
i

}
and

{
w2
i , vi+1

}
in E1. This step adds 2n− 2 new nodes and 3n− 3 new edges to V1 and E1, respectively. We call

the new edges added in this step as “connectivity” edges.

. For each {ui, uj}) ∈ E, we create a new node vi,j in V ′ and add two new edges {ui, vij} and

{vij , uj} to E1. This step creates a new triangle corresponding to each original edge. We call the

new edges added in this step as “triangle-creation” edges. This step adds m new nodes and 2m

new edges to V1 and E1, respectively, and exactly m new triangles.

Define E2 = E1 \ Ed. Thus, we have |V ′| = 3n+m− 2, |E1| = 3n+ 3m− 3, |E2| = 3n+ 2m− 3,

and G2 contains no triangles. Let ∆ is the number of triangles in G1 created using only original

edges (the “original triangles”); note that ∆ is also equal to the number of triangles in G. Then,

76

C2
3(G1) = |V ′| − (3m + 3n − 3) + (∆ + m) and C2

3(G2) = |V ′| − (2m + 3n − 3). The following

lemma completes our NP-hardness proof.

Lemma 9. OPTTdp(G) = OPTTadp
C23

(G1, G2).

Proof. Proof of OPTTdp(G) ≥ OPTTadp
C23

(G1, G2).

Let Eopt ⊂ E be an optimum solution of Tdp on G, E′opt = {{vi, vj} | {ui, uj} ∈ E} ⊆ Ed,

and consider the graph G3 = (V ′, E1 \ E′opt). Note that G3 has no original triangles and has exactly

m− |E′opt| triangles involving triangle-creation edges, and thus

C2
3(G3) = |V ′| − (3n+ 3m− 3− |E′opt|) + (m− |E′opt|) = C2

3(G2)

and therefore OPTTadp
C23

(G1, G2) ≤ |E′opt| = |Eopt| = OPTTdp(G).

Proof of OPTTdp(G) ≤ OPTTadp
C23

(G1, G2).

Suppose that E′opt ⊂ Ed is an optimum solution of q edges of TadpC2
3

on G1 and G2, let G3 =

(V ′, E1 \ E′opt) be the graph obtained from G1 by removing the edges in E′opt, and let

E′ =
{
{ui, uj} | {vi, vj} ∈ E′opt

}
⊆ E. Let q = |E′opt|, e′1, e′2, . . . , e′q be an arbitrary ordering of the

edges in E′opt and δ′i (for i = 1, 2, . . . , q) is the number of triangles in G1 that contains the edge e′i but

none of the edges e′1, . . . , e
′
i−1. Note that, for each i, exactly δ′i − 1 triangles out of the δ′i triangles are

77

original triangles. Let ∆′ ≤ ∆ be the number of original triangles removed by removing the edges in

E′opt; thus, ∆′ =
∑q

i=1 (δ′i − 1). Simple calculations now show that

C2
3(G3) = |V ′| − (3n+ 3m− 3− |E′opt|) +

(
∆ +m−

q∑
i=1

δi

)

= |V ′| − (3n+ 3m− 3− |E′opt|) +

(
∆ +m− q −

q∑
i=1

(δi − 1)

)

= |V ′| − (3n+ 3m− 3− |E′opt|) +
(
∆ +m− |E′opt| −∆′

)
= |V ′| − (3n+ 2m− 3) + (∆−∆′)

Consequently, C2
3(G3) = C2

3(G2) implies ∆′ = ∆ and E′ is a valid solution of Tdp on G. This implies

OPTTdp(G) ≤ |E′| = |E′opt| = OPTTadp
C23

(G1, G2).

Proofs of (b1) and (b2)

Consider an instance graphG = (V,E) of Mnc with n nodes andm edges where V = {v1, v2, . . . , vn}

and E = {e1, e2, . . . , em}. Let ∅ ⊂ V Mnc ⊂ V be an optimal solution of OPT Mnc(G) = |V Mnc|

nodes for this instance of Mnc. We then create an instance G1 = (V ′, E1) and G2 = (V ′, E2) (with

∅ ⊂ E2 ⊂ E1) of TadpC2
d

for a given d ≥ 4 in the following manner:

• For each vi ∈ V , we create d new nodes
{
v1
i , v

2
i , . . . , v

d
i

}
in V ′, and a d-cycle containing the edges{

v1
i , v

2
i

}
,
{
v2
i , v

3
i

}
,. . . ,

{
vd−1
i , vdi

}
,
{
vdi , v

1
i

}
in E1. We call the cycles generated in this step as

the “node cycles”. This creates a total of dn nodes in V ′ and dn edges in E1.

• For each edge {vi, vj} ∈ E, we do the following:

– Create d− 4 new nodes u1
i,j,1,u1

i,j,2,. . . ,u1
i,j,d d−4

2 e and u2
i,j,1,u2

i,j,2,. . . ,u2
i,j,b d−4

2 c in V ′.

78

– Add
⌈
d−2

2

⌉
new edges

{
v1
i , u

1
i,j,1

}
,
{
u1
i,j,1, u

1
i,j,2

}
, . . . ,

{
u1
i,j,d d−4

2 e−1
, u1

i,j,d d−4
2 e

}
,
{
u1
i,j,d d−4

2 e, v
1
j

}
and

⌊
d−2

2

⌋
new edges

{
v2
i , u

2
i,j,1

}
,
{
u2
i,j,1, u

2
i,j,2

}
, . . . ,

{
u2
i,j,b d−4

2 c−1
, u2

i,j,b d−4
2 c

}
,
{
u2
i,j,b d−4

2 c, v
2
j

}
in E1. Note that these edges create a d-cycle involving the two edges

{
v1
i , v

2
i

}
and

{
v1
j , v

2
j

}
;

we refer to this cycle as an “edge cycle”.

These steps create a total of (d− 4)m additional nodes in V ′ and (d− 2)m additional edges in E1.

• Let E2 = E1 \
{{
v1
i , v

2
i

}
| 1 ≤ i ≤ n

}
.

Thus, |V ′| = dn+ (d− 4)m, |E1| = dn+ (d− 2)m and |E2| = (d− 1)n+ (d− 2)m. To verify that

the reduction is possible for any d in the range of values as claimed in the theorem, note that

d ≤ o(|V ′|) ≡ d/|V ′| ≤ o(1) ⇐ n−1 ≤ o(1)

and the last inequality is trivially true. By (?Mnc) and (??Mnc), the proof is complete once we prove the

following lemma.

Lemma 10. OPT Mnc(G) = OPTTadp
C2
d

(G1, G2).

Proof. Let Ed = E1 \ E2. Let f be the total number of cycles of at most d edges in G1; thus

C2
d(G1) = |V ′| − |E1|+ f = −2m+ f

Note that any cycle of at most d edges containing an edge from Ed must be either a node cycle or an

edge cycle since a cycle containing an edge from Ed that is neither a node cycle nor an edge cycle has a

79

number of edges that is at least 2 + 2×
⌊
d−2

2

⌋
+
⌈
d−2

2

⌉
= d+

⌊
d−2

2

⌋
> d since d ≥ 4. Since removing

all the edges in Ed removes every node and every edge cycle,

C2
d(G2) = |V ′| − |E2|+ (f − n−m) =

(
|V ′| − |E1|+ f

)
−m = C2

d(G1)−m

Given an optimal solution V Mnc ⊂ V of Mnc on G of OPT Mnc(G) nodes, consider the graph G3 =

(V ′, E3) where E3 = E1 \ E′d and E′d =
{{
v1
i , v

2
i

}
| vi ∈ V Mnc

}
⊆ Ed. Since every edge of G is

incident on one or more nodes in V Mnc, every edge cycle and exactly |E′d| = OPT Mnc(G) node cycles

of G1 are removed in G3, and thus

C2
d(G3) = |V ′| − (|E1| − OPT Mnc(G)) + (f − OPT Mnc(G)−m) = C2

d(G1)−m = C2
d(G2)

This shows that OPTTadp
C2
d

(G1, G2) ≤ OPT Mnc(G). Conversely, consider an optimal solution

E′d ⊆ Ed of TadpC2
d

for G1 and G2, and let G3 = (V ′, E3) where E3 = E1 \ E′d. Note that exactly

|E′d| = OPTTadp
C2
d

(G1, G2) node cycles of G1 are removed in G3. Let m′ be the number of edge

cycles of G1 removed in G3. Then,

C2
d(G3) = |V ′| − (|E1| − |E′d|) + (f − |E′d| −m′) = C2

d(G1)−m′

and consequently m′ must be equal to m to satisfy the constraint C2
d(G3) = C2

d(G1)−m, which implies

that G3 contains no edge cycles. This implies that, for every edge cycle involving the two edges
{
v1
i , v

2
i

}
and

{
v1
j , v

2
j

}
in G1, at least one of these two edges must be in E′′d , which in turn implies that the

80

set of nodes V ′′ =
{
vi |
{
v1
i , v

2
i

}
∈ E′d

}
in G contains at least one of the nodes vi or vj for every

edge {vi, vj} ∈ E. Thus, V ′′ is a valid solution of Mnc on G and OPT Mnc(G) ≤ |V ′′| = |E′′d | =

OPTTadp
C2
d

(G1, G2).

Proof of (b3)

We describe the proof for d = 4 only; the proof for d > 4 is very similar. Suppose, for the sake

of contradiction, that one can in fact compute OPTTadp
C24

(G1, G2) in O∗
(
2o(n)

)
time where each of

G1 and G2 has n nodes. We start with an instance Φ of 3-Sat having n variables and m clauses. The

“sparsification lemma” in (Impagliazzo et al., 2001) proves the following result:

for every constant ε > 0, there is a constant c > 0 such that there exists a O
(
2 εn
)
-time

algorithm that produces from Φ a set of t instances Φ1, . . . ,Φt of 3-Sat on these n variables

with the following properties:

• t ≤ 2 εn,

• each Φj is an instance of 3-Sat with nj ≤ n variables and mj ≤ cn clauses, and

• Φ is satisfiable if and only if at least one of Φ1, . . . ,Φt is satisfiable.

For each such above-produced 3-Sat instance Φj , we now use the reduction mentioned in (???Mnc)

to produce an instance Gj = (Vj , Ej) of Mnc of |Vj | = 3nj + 2mj ≤ (3 + 2c)n nodes and |Ej | = nj +

mj ≤ (1+c)n edges such that Φj is satisfiable if and only if OPT Mnc(Gj) = nj+2mj . Now, using the

reduction as described in the proof of parts (b1) and (b2) of this theorem and Lemma 10 thereof, we obtain

an instance G1,j = (V ′j , E1,j) and G2,j = (V ′j , E2,j) of TadpC2
3

such that |V ′j | = 4|Vj | < (12+8c)n. By

81

assumption, we can compute OPTTadp
C23

(G1,j , G2,j) in O∗
(
2o(n)

)
, and consequently OPT Mnc(Gj) in

O∗
(
2o(n)

)
time, which in turn leads us to decide in O∗

(
2o(n)

)
time if Φj is satisfiable for every j. Since

t ≤ 2 εn for every constant ε > 0, this provides a O∗
(
2o(n)

)
-time algorithm for 3-Sat, contradicting Eth.

Proof of (b4)

The proof is very similar to that in (b3) except that now we start with the following lower bound

result on parameterized complexity (e.g., see (Cygan et al., 2015, Theorem 14.21)):

assuming Eth to be true, if OPT Mnc(G) ≤ k then there is no O∗
(
no(k)

)
-time algorithm for

exactly computing OPT Mnc(G).

4.5.2 Gromov-hyperbolic curvature: computational hardness of TadpCGromov

Theorem 13. It is NP-hard to design a polynomial-time algorithm to approximate TadpCGromov
(G1, G2)

within a factor of c n for some constant c > 0, where n is the number of nodes in G1 or G2 and m is the

number of edges in G1.

4.5.2.1 Proof techniques and relevant comments regarding Theorem 13

I The reduction is from the Hamiltonian path problem for cubic graphs (Cubic-Hp), and shown

schematically in Fig. 6. On a high level, the idea is to amplify the different between Hamiltonian

and non-Hamiltonian paths to a large size difference of “geodesic” triangles (cf. Definition 12) such

that application of known results such as (Rodrı́guez and Tourı́s, 2004, Lemma 2.1) can lead to a

large difference of the corresponding Gromov-hyperbolicity values. To get the maximum possible

amplification (maximum gap in lower bound) we need to make very careful and precise arguments

82

regarding the Gromov-hyperbolicities of classes of graphs. The reader should note that Gromov-

hyperbolicity value is not necessarily related to the circumference of a graph, and thus the reduction

cannot rely simply on presence or absence of long paths or long cycles in the constructed graph.

I The inapproximability reduction necessarily requires some nodes with large (close to linear) degrees

even though with start with Cubic-Hp in which every node has degree exactly 3. We conjecture that

our large inapproximability bounds do not hold when the given graphs have nodes of bounded degree,

but have been unable to prove it so far.

4.5.2.2 Proof of Theorem 13

We will prove our inapproximability result via a reduction from the Hamiltonian path problem for

cubic graphs (Cubic-Hp) which is defined as follows: “given a cubic (i.e., a 3-regular) graph G = (V,E)

and two specified nodes u, v ∈ V , does G contain a Hamiltonian path between u and v, i.e., a path

between u and v that visits every node ofG exactly once”? Cubic-Hp is known to be NP-complete (Garey

et al., 1976).

Consider an instance G = (V,E) and v1, vn ∈ V of Cubic-Hp of n nodes and m = 3n/2 edges

where V = {v1, v2, . . . , vn}, E = {e1, e2, . . . , em} and the goal is to determine if there is a Hamiltonian

path between v1 and vn (see Fig. 6 (a)). We first introduce three new nodes v0, vn+1 and vn+2, and

connect them to the nodes in G by adding three new edges {v0, v1}, {vn, vn+1} and {vn+1, vn+2},

resulting in the graph G′ = (V ′, E′) (see Fig. 6 (b)). It is then trivial to observe the following:

• G has a Hamiltonian path between v1 and vn if and only if G′ has a Hamiltonian path between v0

and vn+2.

83

v1v1v1

v2v2v2

v3v3v3

v4v4v4

v5v5v5

v6v6v6

G=(V,E)G=(V,E)G=(V,E)

n= |V |= 6n= |V |= 6n= |V |= 6

(a)

G′′=(V ′′, E′′)G′′=(V ′′, E′′)G′′=(V ′′, E′′)

G′=(V ′, E′)G′=(V ′, E′)G′=(V ′, E′)

bc

bc

bc

bc

bc

bc
bc

bc
bc

bc

bc
bc

bc
bc

bc

bcbcbcbcbc
bcbcbcbcbc
bc

bc
bc

bc
bc

bc
bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

path
of =

4
n/2+

1

=
4

n/2+
1

=
4

n/2+
1

edges

v0v0v0

v1v1v1

v2v2v2

v3v3v3

v4v4v4

v5v5v5

v6v6v6

v7v7v7

v8v8v8

uuu

w9w9w9

K(n2+5n+8)/2 = K37K(n2+5n+8)/2 = K37K(n2+5n+8)/2 = K37

w0w0w0

G1=(V ′′′, E1)G1=(V ′′′, E1)G1=(V ′′′, E1)

(b)

bc

bc

bc

bc

bc

bc
bc

bc
bc

bc

bc
bc

bc
bc

bc

bcbcbcbcbc
bcbcbcbcbc
bc

bc
bc

bc
bc

bc
bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

v0v0v0

v1v1v1

v2v2v2

v3v3v3

v4v4v4

v5v5v5

v6v6v6

v7v7v7

v8v8v8

uuu

G2=(V ′′′, E2)G2=(V ′′′, E2)G2=(V ′′′, E2)

(c)

bc

bc

bc

bc

bc

bc
bc

bc
bc

bc

bc
bc

bc
bc

bc

bc bc bc bc bc
bc bc bc bc bc
bc

bc
bc

bc
bc

bc
bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

w0w0w0

w1w1w1

w2w2w2

w3w3w3

w4w4w4

w5w5w5

w6w6w6

w7w7w7

w8w8w8

w9w9w9

w10w10w10

w11w11w11

w12w12w12

w13w13w13

w14w14w14

w15w15w15

sub-graph H = ({w0, w1, . . . , w36},A)H = ({w0, w1, . . . , w36},A)H = ({w0, w1, . . . , w36},A)

bc

bc

bc

bc

bc

bc
bc

bc
bc

bc

bc
bc

bc
bc

bc

bcbcbcbcbc
bcbcbcbcbc
bc

bc
bc

bc
bc

bc
bc

bc
bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

v0v0v0

v1v1v1

v2v2v2

v3v3v3

v4v4v4

v5v5v5

v6v6v6

v7v7v7

v8v8v8

uuu

G′
2 = G1 \EdG′
2 = G1 \EdG′
2 = G1 \ Ed

(d)

K(n2+5n+8)/2 = K37K(n2+5n+8)/2 = K37K(n2+5n+8)/2 = K37

w0w0w0

Figure 6: Illustration of the reduction in Theorem 13. (a) The input graphG = (V,E) for the Hamiltonian

path problem for cubic graphs (Cubic-Hp). (b) and (c) The graphsG1 = (V ′′, E1) andG2 = (V ′′, E2) for

the generated instance of TadpCGromov
(G1, G2). The graph G′ = (V ′, E′) obtained from the given graph

G′ by adding three extra nodes and three extra edges. (d) An optimal solutionG′2 for TadpCGromov
(G1, G2)

if G contains a Hamiltonian path between v1 and vn.

84

• If G′ does have a Hamiltonian path then such a path must be between the two nodes v0 and vn+2.

Note that |V ′| = n+ 3 and |E′| = (3n/2) + 3. We next create the graph G′′ = (V ′′, E′′) from G′ in the

following manner (see Fig. 6 (b)):

• We add a set of 1+(n2 + 3n)/2 new nodes u, v0,1, . . . , v0,n/2, v1,1, . . . , v1,n/2, . . . , vn+2,1, . . . , vn+2,n/2.

For notational convenience, we set u def
= vi,0 for all i ∈ {0, 1, . . . , n+ 2} and vj

def
= vj,(n/2)+1 for

all j ∈ {0, 1, . . . , n+ 2}.

• We add a set of n+ 3 disjoint paths (each of length n
2 + 1) P0,P1, . . . ,Pn+2 where Pj def

= vj,0 ↔

vj,1 ↔ vj,2 ↔ · · · ↔ vj,n
2

+1.

Note that |V ′′| = n+ 4 + n2+3n
2 = n2+5n

2 + 4 and |E′′| = 3n
2 + 3 + (n+ 3)

(
n
2 + 1

)
= n2

2 + 4n+ 6. We

now create an instance G1 = (V,E1) and G2 = (V,E2) (with ∅ ⊂ E2 ⊂ E1) of TadpCGromov
(G1, G2)

from G′′ in the following manner (see Fig. 6 (b)–(c)):

• The graph G1 = (V ′′′, E1) is obtained by modifying G′′ as follows:

– Add a complete graph K|V ′′| on |V ′′| = n2+5n
2 + 4 nodes w0, w1, . . . , w|V ′′|−1 and the edge

{u,w0}. This step adds |V ′′| new nodes and
(|V ′′|

2

)
+ 1 new edges.

Thus, we have |V ′′′| = 2 |V ′′| = n2 + 5n+ 8, and

|E1| = |E′′|+
(|V ′′|

2

)
+ 1 =

n4 + 10n3 + 43n2 + 102n+ 104

8

85

• The graphG2 = (V ′′′, E2) is obtained fromG1 as follows. LetA be the set of edges of a sub-graph

of the graph K|V ′′| (added in the previous step) that is isomorphic to the graph (V ′′, Ê) where

Ê =
(
E′′ \ E

)⋃{
{vj , vj+1} | j ∈ {0, 1, . . . , n+ 1}

}

and the node w0 is mapped to the node u in the isomorphism. Such a sub-graph can be trivially

found in polynomial time. For notational convenience we number the nodes in this sub-graph

such that the order of the nodes in the largest cycle (having 2n + 4 edges) of this sub-graph is

w0, w1, . . . , w2n+3 (see Fig. 6 (c)). We then set E2 = E′′ ∪A ∪ {u,w0}. Thus,

|E2| = |E′′|+ |A|+ 1 = |E′′|+ |Ê|+ 1 = |E′′|+
(
|E′′| − |E|+ n+ 2

)
+ 1 = n2 +

15n

2
+ 12

We first need to prove some bounds on the hyperbolicities of various graphs and sub-graphs that appear

in our reduction. It is trivial to see that CGromov(K|V ′′|) = 0. Define ∆̃u,v,w(G) be a geodesic triangle

which contributes to the minimality of the value of CGromov(G), i.e., one of the shortest paths, say u, v,

lies in a CGromov(∆̃u,v,w(G))-neighborhood of the union u,w ∪ v, w of the other two shortest paths, but

u, v does not lie in a δ-neighborhood of u,w ∪ v, w for any δ < CGromov(∆̃u,v,w(G)). The following

two facts are well-known.

Fact 1. For any geodesic triangle ∆u,v,w, from the definition of CGromov(∆u,v,w) (cf. Definition 12) it

follows that CGromov(∆u,v,w) ≤ max {bdistG(u,v)/2c , bdistG(v,w)/2c , bdistG(u,w)/2c}.

86

Fact 2 ((Rodrı́guez and Tourı́s, 2004, Lemma 2.1)). We may assume that ∆̃u,v,w(G) is a simple geodesic

triangle, i.e., the three shortest paths u, v, u,w and v, w do not share any nodes other than u, v or w.

Let H denote the (node-induced) sub-graph ({w0, w1, . . . , w|V ′′|−1},A) of G2.

Lemma 11. CGromov(G2) = CGromov(H) = n
2 + 1.

Proof. By Fact 2 ∆̃p,q,r(G2) must be a simple geodesic triangle and therefore can only include edges

in A. Since the diameter of the sub-graph H is n + 2, for any geodesic triangle ∆p,q,r of H we have

max {bdistG(p,q)/2c , bdistG(q,r)/2c , bdistG(p,r)/2c} ≤ n + 2 and thus by Fact 1 we have CGromov(G2) =

CGromov(H) = CGromov(∆̃p,q,r(G2)) ≤ n
2 + 1. Thus, it suffices we provide a simple geodesic triangle

∆p,q,r of H for some three nodes p, q, r of H such that CGromov(∆p,q,r(H)) = n
2 + 1. Consider the

simple geodesic triangle ∆w0,wn
2 +1,w 3n

2 +3
of H consisting of the three shortest paths Q1

def
= w0 ↔

w1 ↔ w2 ↔ · · · ↔ wn
2
↔ wn

2
+1, Q2

def
= wn

2
+1 ↔ wn

2
+2 ↔ wn

2
+3 ↔ · · · ↔ w 3n

2
+2 ↔ w 3n

2
+3

and Q3
def
= w 3n

2
+3 ↔ w 3n

2
+4 ↔ w 3n

2
+5 ↔ · · · ↔ w2n+3, w0, and consider the node wn+2 that is the

mid-point of the shortest path Q2 (see Fig. 6 (c)). It is easy to verify that the distance of the node wn+2

from the union of the two shortest paths Q1 and Q3 is n
2 + 1.

Now, suppose that we can prove the following two claims:

(completeness) if G has a Hamiltonian path between v1 and vn thenOPTTadpCGromov

(G1, G2) ≤ n
2 + 1

(soundness) if G has no Hamiltonian paths between v1 and vn then

OPTTadpCGromov

(G1, G2) ≥ n3+3n2+2n
2

87

Note that this proves the theorem since
n3+3n2+2n

2
n
2

+1 > n2

5 = Ω (|V ′′′|).

Proof of completeness

Suppose that G has a Hamiltonian path between v1 and vn, say v1 ↔ v2 ↔ v3 ↔ · · · ↔ vn−1 ↔ vn.

Thus, G′′ has a Hamiltonian path v0 ↔ v1 ↔ v2 ↔ v3 ↔ · · · ↔ vn−1 ↔ vn ↔ vn+1 ↔ vn+2

between v0 and vn+2. We remove the n
2 + 1 edges in Ed = E′′ \

{
{vj , vj+1} | j = 0, 1, . . . , n + 1

}
that are not in this Hamiltonian path resulting in the graph G′2 = G1 \ Ed (see Fig. 6 (d)). To show that

CGromov(G′2) = CGromov(G2), note that by Fact 2 ∆̃p,q,r(G
′
2) must be a simple geodesic triangle and

therefore

CGromov(G′2) = max
{
CGromov(G′′ \ Ed), CGromov(K|V ′′|)

}
= max

{
CGromov(G′′ \ Ed), 0

}
= CGromov(G′′ \ Ed)

Since G′′ \ Ed is isomorphic to H , by Lemma 11 CGromov(G′′ \ Ed) = CGromov(H) = CGromov(G2).

Proof of soundness

Assume that G has no Hamiltonian paths between v1 and vn, and let Ed ⊆ E1 \ E2 be the optimal set

of edges that need to be deleted to obtain the graph G′2 = (V ′′′, E1 \ Ed) such that CGromov(G′2) =

CGromov(G). By Fact 2, ∆̃p,q,r(G
′
2) must be a simple geodesic triangle and therefore

CGromov(G′2) = max
{
CGromov(G′′ \ Ed), CGromov(K|V ′′| \ Ed)

}
= CGromov(G2) =

n

2
+ 1 (4.2)

88

Lemma 12. CGromov(G′′ \ Ed) ≤ n
2 .

Proof. Since G has no Hamiltonian paths between v1 and vn, diam(G′ \ Ed) ≤ n + 1. Assume,

for the sake of contradiction, that CGromov(G′′ \ Ed) ≥ n
2 + 1. By Fact 1, CGromov(G′′ \ Ed) =

CGromov(∆̃p,q,r(G
′′ \ Ed)) ≤ max {bdistG′′\Ed

(p,q)/2c , bdistG′′\Ed
(q,r)/2c , bdistG′′\Ed

(p,r)/2c}, and thus at

least one of the three distances in the left-hand-side of the above inequality, say distG′′\Ed
(p, q), must

be at least n + 2. Let L(C(H)) and L(H) denote the length (number of edges) of a (simple) cycle C

and the length of the longest (simple) cycle of a graph H . Since CGromov(∆̃p,q,r(G
′′ \ Ed)) > 0 and

∆̃p,q,r(G
′′ \ Ed) must be a simple geodesic triangle, there must be at least one cycle, say C, in G′′ \ Ed

containing p, q and r. Now, note that

L(C(G′′ \ Ed)) ≤ L(G′′ \ Ed) ≤ 2
(n

2
+ 1
)

+ diam(G′ \ Ed) ≤ 2n+ 3

and therefore distG′′\Ed
(p, q) ≤

⌊
2n+3

2

⌋
= n+ 1, which provides the desired contradiction.

By Lemma 12 and Equation (Equation 4.2) it follows that CGromov(K|V ′′| \ Ed) = n
2 + 1.

Lemma 13. If CGromov(K|V ′′| \ Ed) ≥ n
2 + 1 then |Ed| ≥ n3+3n2+2n

2 .

Proof. Since CGromov(K|V ′′| \ Ed) = CGromov(∆̃p,q,r(K|V ′′| \ Ed)) = n
2 + 1, by Fact 1 at least one of

the three distances distK|V ′′|\Ed
(p, q), distK|V ′′|\Ed

(q, r) or distK|V ′′|\Ed
(p, r), say distK|V ′′|\Ed

(p, q),

must be at least n+ 2. This implies that K|V ′′| \ Ed must contain a shortest path of length n+ 2, say

Q def
= w0 ↔ w1 ↔ w2 ↔ · · · ↔ wn+1 ↔ wn+2. We now claim that no node from the set W1 ={

wn+3, wn+4, . . . , w|V ′′|−1

}
is connected to more than 3 nodes from the set W2 = {w0, w1, . . . , wn+2}

inK|V ′′|\Ed. To show this by contradiction, suppose that some node wi ∈W1 is connected to four nodes

89

wj , wk, w`, wr ∈ W2 with j < k < ` < r. Then r ≥ j + 3 which implies distK|V ′′|\Ed
(wj , wr) ≤ 2,

contradicting the fact that Q is a shortest path. It thus follows that

|Ed| ≥
(
(n+ 3)− 3

)
|W1| = n(|V ′′| − (n+ 3)) = n

(
n2 + 3n

2
+ 1

)
=
n3 + 3n2 + 2n

2

The above lemma obviously completes the proof of soundness of our reduction.

4.6 Conclusion and future research

Notions of curvatures of higher-dimensional geometric shapes and topological spaces play a fun-

damental role in physics and mathematics in characterizing anomalous behaviours of these higher

dimensional entities. However, using curvature measures to detect anomalies in networks is not yet very

common due to several reasons such as lack of preferred geometric interpretation of networks and lack

of experimental evidences that may lead to specific desired curvature properties. In this paper we have

attempted to formulate and analyze curvature analysis methods to provide the foundations of systematic

approaches to find critical components and anomaly detection in networks by using two measures of

network curvatures, namely the Gromov-hyperbolic combinatorial curvature and the geometric curvature

measure. This paper must not be viewed as uttering the final word on appropriateness and suitability

of specific curvature measures, but rather should be viewed as a stimulator and motivator of further

theoretical or empirical research on the exciting interplay between notions of curvatures from network

and non-network domains.

There is a plethora of interesting future research questions and directions raised by the topical

discussions and results in this paper. Some of these are stated below.

90

. For geometric curvatures, we considered the first-order non-trivial measure C2
d. It would be of interest

to investigate computational complexity issues of anomaly detection problems using Cpd for p > 2.

We conjecture that our algorithmic results for extremal anomaly detection using C2
d (Theorem 10(a2-

2)&(b2)) can be extended to C3
d.

. There are at least two more aspects of geometric curvatures that need further careful investigation.

Firstly, the topological association of elementary components to higher-dimensional objects as de-

scribed in this paper is by no means the only reasonable topological association possible. But, more

importantly, other suitable notions of geometric curvatures are quite possible. As a very simple

illustration, assuming that smaller dimensional simplexes edges in the discrete network setting cor-

respond to vectors or directions in the smooth context, an analogue of the Bochner-Weitzenböck

formula developed by Forman for the curvature for a simplex s can be given by the formula (Forman,

2003; Samal et al., 2018):

F(s) = ws

(∑
s≺s′

ws
ws′

+
∑
s′≺s

ws′

ws

)
–
∑
s′‖s

∣∣∣ ∑
s,s′≺g

√
wsws′

wg
+
∑
g≺s,s′

wg√
wsws′

∣∣∣

where a ≺ b means a is a face of b, a ‖ b means a and b have either a common higher-dimensional

face or a common lower-dimensional face but not both, and w is a function that assigns weights to

simplexes. One can then either modify the Euler characteristics as
∑p

k=0(−1)k F(fkd) or by combining

the individual F(fkd) values using curvature functions defined by Bloch (Bloch, 2014).

. Our inapproximability results for the Gromov-hyperbolic curvature require a high average node degree.

Thus, for real-world networks such as scale-free networks the inapproximability bounds may not apply.

91

We hypothesize that the anomaly detection problems using Gromov-hyperbolic curvatures is much

more computationally tractable than what our results depict for networks with bounded average degree.

Acknowledgements

We thank Anastasios Sidiropoulos and Nasim Mobasheri for very useful discussions. This research

work was partially supported by NSF grants IIS-1160995 and IIS-1814931.

CITED LITERATURE

[Abrahamsen et al. , 2016]Abrahamsen, M., Bodwin, G., Rotenberg, E., and Stöckel, M.: Graph reconstruc-
tion with a betweenness oracle. 47, 2016.

[Albert et al. , 2007]Albert, R., DasGupta, B., Dondi, R., Kachalo, S., Sontag, E., Zelikovsky, A., and West-
brooks, K.: A novel method for signal transduction network inference from indirect experimental
evidence. Journal of Computational Biology, 14(7):927–949, 2007.

[Albert et al. , 2008]Albert, R., DasGupta, B., Dondi, R., and Sontag, E.: Inferring (biological) signal
transduction networks via transitive reductions of directed graphs. Algorithmica, 51(2):129–159,
2008.

[Albert et al. , 2011]Albert, R., DasGupta, B., Gitter, A., Gürsoy, G., Hegde, R., Pal, P., Sivanathan, G. S., and
Sontag, E. D.: A new computationally efficient measure of topological redundancy of biological
and social networks. Physical Review E, 84(3):036117, 2011.

[Albert et al. , 2014]Albert, R., DasGupta, B., and Mobasheri, N.: Topological implications of negative
curvature for biological and social networks. Physical Review E, 89(3):032811, 2014.

[Albert and l. Barabási, 2002]Albert, R. and l. Barabási, A.: Statistical mechanics of complex networks.
Reviews of Modern Physics, 74(1):47–97, 2002.

[Alon and Asodi, 2005a]Alon, N. and Asodi, V.: Learning a hidden subgraph. SIAM Journal on Discrete
Mathematics, 18(4):697–712, 2005.

[Alon and Asodi, 2005b]Alon, N. and Asodi, V.: Learning a hidden subgraph. SIAM Journal on Discrete
Mathematics, 18(4):697–712, 2005.

[Alon et al. , 2009]Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., and Naor, J.: The online set cover
problem. SIAM J. Comput., 39(2):361–370, 2009.

[Alon et al. , 2006]Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., and Naor, J. S.: A general approach to
online network optimization problems. ACM Transactions on Algorithms (TALG), 2(4):640–660,
2006.

92

93

[Alon et al. , 2004a]Alon, N., Beigel, R., Kasif, S., Rudich, S., and Sudakov, B.: Learning a hidden matching.
SIAM Journal on Computing, 33(2):487–501, 2004.

[Alon et al. , 2004b]Alon, N., Beigel, R., Kasif, S., Rudich, S., and Sudakov, B.: Learning a hidden matching.
SIAM Journal on Computing, 33(2):487–501, 2004.

[Alter and Golub, 2005]Alter, O. and Golub, G. H.: Reconstructing the pathways of a cellular system from
genome-scale signals by using matrix and tensor computations. PNAS, 102(49):17559–17564,
2005.

[Aminikhanghahi and Cook, 2017]Aminikhanghahi, S. and Cook, D. J.: A survey of methods for time series
change point detection. Knowledge and Information Systems, 51(2):339–367, 2017.

[Angluin, 1988]Angluin, D.: Queries and concept learning. Machine Learning, 2(4):319–342, Apr 1988.

[Angluin et al. , 2010a]Angluin, D., Aspnes, J., and Reyzin, L.: Inferring social networks from outbreaks. In
International Conference on Algorithmic Learning Theory, pages 104–118. Springer, 2010.

[Angluin et al. , 2010b]Angluin, D., Aspnes, J., and Reyzin, L.: Inferring social networks from outbreaks. In
ALT, pages 104–118, 2010.

[Angluin et al. , 2010c]Angluin, D., Aspnes, J., and Reyzin, L.: Optimally learning social networks with
activations and suppressions. Theor. Comput. Sci., 411(29-30):2729–2740, 2010.

[Angluin et al. , 2015]Angluin, D., Aspnes, J., and Reyzin, L.: Network construction with subgraph connec-
tivity constraints. Journal of Combinatorial Optimization, 29(2):418–432, 2015.

[Angluin and Chen, 2008a]Angluin, D. and Chen, J.: Learning a hidden graph using o(log n) queries per
edge. Journal of Computer and System Sciences, 74(4):546–556, 2008.

[Angluin and Chen, 2008b]Angluin, D. and Chen, J.: Learning a hidden graph using o (logn) queries per
edge. Journal of Computer and System Sciences, 74(4):546–556, 2008.

[Ariaei et al. , 2008]Ariaei, F., Lou, M., Jonckeere, E., Krishnamachari, B., and Zuniga, M.: Curvature
of sensor network: clustering coefficient. EURASIP Journal on Wireless Communications and
Networking, 213185, 2008.

[Arora and Barak, 2009]Arora, S. and Barak, B.: Computational Complexity: A Modern Approach. New
York, NY, USA, Cambridge University Press, 1st edition, 2009.

94

[Bassett et al. , 2011]Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson, J. M., and Grafton,
S. T.: Dynamic reconfiguration of human brain networks during learning. PNAS, 108(18):7641–
7646, 2011.

[Beerliova et al. , 2006]Beerliova, Z., Eberhard, F., Erlebach, T., Hall, A., Hoffmann, M., Mihal’ak, M., and
Ram, L. S.: Network discovery and verification. IEEE Journal on selected areas in communications,
24(12):2168–2181, 2006.

[Beigel et al. , 2001]Beigel, R., Alon, N., Kasif, S., Apaydin, M. S., and Fortnow, L.: An optimal procedure for
gap closing in whole genome shotgun sequencing. In Proceedings of the fifth annual international
conference on Computational biology, pages 22–30. ACM, 2001.

[Benjamini, 1998]Benjamini, I.: Expanders are not hyperbolic. Israel Journal of Mathematics, 108:33–36,
1998.

[Berger, 2012]Berger, M.: A Panoramic View of Riemannian Geometry. Springer, 2012.

[Bloch, 2014]Bloch, E.: Combinatorial ricci curvature for polyhedral surfaces and posets. preprint, [math.CO],
2014.

[Booth and Lueker, 1976]Booth, K. S. and Lueker, G. S.: Testing for the consecutive ones property, interval
graphs, and graph planarity using pq-tree algorithms. Journal of Computer and System Sciences,
13(3):335–379, 1976.

[Borodin and El-Yaniv, 1998]Borodin, A. and El-Yaniv, R.: Online Computation and Competitive Analysis.
New York, NY, USA, Cambridge University Press, 1998.

[Bosc et al. , 2003]Bosc, M., Heitz, F., Armspach, J. P., Namer, I., Gounot, D., and Rumbach, L.: Auto-
matic change detection in multimodal serial mri: application to multiple sclerosis lesion evolution.
Neuroimage, 20(2):643–656, 2003.

[Bridson and Haefliger, 1999]Bridson, M. R. and Haefliger, A.: Metric Spaces of Non-Positive Curvature.
Springer, 1999.

[Buchbinder and Naor, 2009]Buchbinder, N. and Naor, J.: The design of competitive online algorithms via
a primal: dual approach. Foundations and Trends® in Theoretical Computer Science, 3(2–3):93–
263, 2009.

95

[Chepoi et al. , 2008]Chepoi, V., Dragan, F. F., Estellon, B., Habib, M., and Vaxès, Y.: Diameters, centers,
and approximating trees of δ-hyperbolic geodesic spaces and graphs. In proceedings of the 24th
Annual Symposium on Computational geometry, pages 59–68, 2008.

[Chepoi et al. , 2012]Chepoi, V., Dragan, F. F., Estellon, B., Habib, M., Vaxès, Y., and Xiang, Y.: Additive
spanners and distance and routing labeling schemes for δ-hyperbolic graphs. Algorithmica, 62(3-
4):713–732, 2012.

[Chepoi and Estellon, 2007]Chepoi, V. and Estellon, B.: Packing and covering δ-hyperbolic spaces by balls.
In Lecture Notes in Computer Science 4627, eds. M. Charikar, K. Jansen, O. Reingold, and J. D. P.
Rolim, pages 59–73. Springer, 2007.

[Chockler et al. , 2007]Chockler, G., Melamed, R., Tock, Y., and Vitenberg, R.: Constructing scalable overlays
for pub-sub with many topics. In Proceedings of the twenty-sixth annual ACM symposium on
Principles of distributed computing, pages 109–118. ACM, 2007.

[Chowdhury et al. , 2011]Chowdhury, M. F. R., Selouani, S. A., and O’Shaughnessy, D.: Bayesian on-line
spectral change point detection: a soft computing approach for on-line asr. International Journal of
Speech Technology, 15(1):5–23, 2011.

[Colizza et al. , 2006]Colizza, V., Flammini, A., Serrano, M. A., and Vespignani, A.: Detecting rich-club
ordering in complex networks. Nature Physics, 2:110–115, 2006.

[Cygan et al. , 2015]Cygan, M., Fomin, F., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk,
M., and Saurabh, S.: Parameterized Algorithms. Springer, 2015.

[Dall’Asta et al. , 2006]Dall’Asta, L., Alvarez-Hamelin, I., Barrat, A., Vázquez, A., and Vespignani, A.:
Exploring networks with traceroute-like probes: Theory and simulations. Theoretical Computer
Science, 355(1):6–24, 2006.

[DasGupta et al. , 2018]DasGupta, B., Karpinski, M., Mobasheri, N., and Yahyanejad, F.: Effect of gromov-
hyperbolicity parameter on cuts and expansions in graphs and some algorithmic implications.
Algorithmica, 80(2):772–800, 2018.

[DasGupta and Liang, 2016]DasGupta, B. and Liang, J.: Models and Algorithms for Biomolecules and
Molecular Networks. Inc, John Wiley & Sons, 2016.

[DasGupta et al. , 2018]DasGupta, B., Janardhanan, M. V., and Yahyanejad, F.: How did the shape of your
network change? (on detecting anomalies in static and dynamic networks via change of non-local
curvatures). Submitted, arXiv:1808.05676, 2018.

96

[de Montgolfier et al. , 2011]de Montgolfier, F., Soto, M., and Viennot, L.: Treewidth and hyperbolicity of
the internet. In proceedings of the 10th IEEE International Symposium on Networking Computing
and Applications, pages 25–32, 2011.

[Dinur and Safra, 2005a]Dinur, I. and Safra, S.: On the hardness of approximating minimum vertex cover.
Annals of Mathematics, 162(1):439–485, 2005.

[Dinur and Safra, 2005b]Dinur, I. and Safra, S.: On the hardness of approximating minimum vertex cover.
Annals of Mathematics, 162(1):439–485, 2005.

[Ducre-Robitaille et al. , 2003]Ducre-Robitaille, J. F., Vincent, L. A., and Boulet, G.: Comparison of tech-
niques for detection of discontinuities in temperature series. International Journal of Climatology,
23(9):1087–1101, 2003.

[Erlebach et al. , 2006]Erlebach, T., Hall, A., Hoffmann, M., and Mihal’ák, M.: Network discovery and
verification with distance queries. In Italian Conference on Algorithms and Complexity, pages
69–80. Springer, 2006.

[Feige, 1998]Feige, U.: A threshold of ln n for approximating set cover. Journal of the ACM (JACM),
45(4):634–652, 1998.

[Forman, 2003]Forman, R.: Bochner’s method for cell complexes and combinatorial ricci curvature. Discrete
and Computational Geometry, 29(3):323–374, 2003.

[Fournier et al. , 2015]Fournier, H., Ismail, A., and Vigneron, A.: Computing the gromov hyperbolicity of a
discrete metric space. Information Processing Letters, 115(6-8):576–579, 2015.

[Gamelin and Greene, 1999]Gamelin, T. W. and Greene, R. E.: Introduction to Topology. Dover publications,
1999.

[Garey and Johnson, 1979]Garey, M. R. and Johnson, D. S.: Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

[Garey et al. , 1976]Garey, M. R., Johnson, D. S., and Tarjan, R. E.: The planar hamiltonian circuit problem
is np-complete. SIAM Journal of Computing, 5:704–714, 1976.

[Garey and Johnson, 1990]Garey, M. R. and Johnson, D. S.: Computers and Intractability; A Guide to the
Theory of NP-Completeness. New York, NY, USA, W. H. Freeman & Co., 1990.

97

[Gavoille and Ly., 2005]Gavoille, C. and Ly., O.: Distance labeling in hyperbolic graphs. In Lecture Notes in
Computer Science 3827, eds. X. Deng and D. z. Du, pages 1071–1079. Springer, 2005.

[Goldberg, 1984]Goldberg, A. V.: Finding a maximum density subgraph. Technical report, 1984.

[Gomez-Rodriguez et al. , 2012]Gomez-Rodriguez, M., Leskovec, J., and Krause, A.: Inferring networks of
diffusion and influence. ACM Transactions on Knowledge Discovery from Data (TKDD), 5(4):21,
2012.

[Grebinski and Kucherov, 1998]Grebinski, V. and Kucherov, G.: Reconstructing a hamiltonian cycle by query-
ing the graph: Application to dna physical mapping. Discrete Applied Mathematics, 88(1):147–165,
1998.

[Gromov, 1987]Gromov, M.: Hyperbolic groups. Essays in group theory, 8:75–263, 1987.

[Gupta et al. , 2012]Gupta, A., Krishnaswamy, R., and Ravi, R.: Online and stochastic survivable network
design. SIAM Journal on Computing, 41(6):1649–1672, 2012.

[Hawking and Penrose, 1996]Hawking, S. and Penrose, R.: The Nature of Space and Time. Princeton Uni-
versity Press, 1996.

[Hein, 1989]Hein, J. J.: An optimal algorithm to reconstruct trees from additive distance data. Bulletin of
mathematical biology, 51(5):597–603, 1989.

[Henle, 1994]Henle, M.: A Combinatorial Introduction to Topology. Dover publications, 1994.

[Huang et al. , 2017]Huang, Y., Janardhanan, M. V., and Reyzin, L.: Network construction with ordered
constraints. FSTTCS, 2017.

[Huang, 2017]Huang, Y.: Problems in Learning under Limited Resources and Information. Doctoral
dissertation, University of Illinois at Chicago, 2017.

[Impagliazzo and Paturi, 2001]Impagliazzo, R. and Paturi, R.: On the complexity of ksat. Journal of
Computer and System Sciences, 62:367–375, 2001.

[Impagliazzo et al. , 2001]Impagliazzo, R., Paturi, R., and Zane, F.: Which problems have strongly exponential
complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.

[Janardhanan, 2017]Janardhanan, M. V.: Graph verification using a betweenness oracle. Algorithmic
Learning Theory, 2017.

98

[Jarrah et al. , 2007]Jarrah, A. S., Laubenbacher, R., Stigler, B., and Stillman, M.: Reverse-engineering
polynomial dynamical systems. Advances in Applied Mathematics, 39(4):477–489, 2007.

[Jonckheere et al. , 2011]Jonckheere, E., Lohsoonthorn, P., and Ariaei, F.: Scaled gromov four-point condition
for network graph curvature computation. Internet Mathematics, 7(3):137–177, 2011.

[Jonckheere et al. , 2007]Jonckheere, E., Lohsoonthorn, P., and Bonahon, F.: Scaled gromov hyperbolic
graphs. Journal of Graph Theory, 57(2):157–180, 2007.

[Jonckheere and Lohsoonthorn, 2004]Jonckheere, E. A. and Lohsoonthorn, P.: Geometry of network security.
American Control Conference, 2:976–981, 2004.

[Jonckheerea et al. , 2011]Jonckheerea, E., Loua, M., Bonahona, F., and Baryshnikova, Y.: Euclidean versus
hyperbolic congestion in idealized versus experimental networks. Internet Mathematics, 7(1):1–27,
2011.

[Kannan et al. , 2015]Kannan, S., Mathieu, C., and Zhou, H.: Near-linear query complexity for graph
inference. pages 773–784, 2015.

[Kawahara and Sugiyama, 2009]Kawahara, Y. and Sugiyama, M.: Sequential change-point detection based on
direct density-ratio estimation. In SIAM International Conference on Data Mining, pages 389–400,
2009.

[Khot, 2002]Khot, S.: On the power of unique 2-prover 1-round games. In 34th ACM Symposium on Theory
of Computing, pages 767–775, 2002.

[Khot and Regev, 2008a]Khot, S. and Regev, O.: Vertex cover might be hard to approximate to within 2-ε.
Journal of Computer and System Sciences, 74(3):335–349, 2008.

[Khot and Regev, 2008b]Khot, S. and Regev, O.: Vertex cover might be hard to approximate to within
2. Journal of Computer and System Sciences, 74(3):335 – 349, 2008. Computational Complexity
2003.

[King et al. , 2003]King, V., Zhang, L., and Zhou, Y.: On the complexity of distance-based evolutionary
tree reconstruction. In Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 444–453. Society for Industrial and Applied Mathematics, 2003.

[Kolb and Whishaw, 1996]Kolb, B. and Whishaw, I. Q.: Fundamentals of Human Neuropsychology. New
York, Freeman, 1996.

99

[Korach and Stern, 2003]Korach, E. and Stern, M.: The clustering matroid and the optimal clustering tree.
Mathematical Programming, 98(1-3):385–414, 2003.

[Korach and Stern, 2008]Korach, E. and Stern, M.: The complete optimal stars-clustering-tree problem.
Discrete Applied Mathematics, 156(4):444–450, 2008.

[Latora and Marchior, 2007]Latora, V. and Marchior, M.: A measure of centrality based on network efficiency.
New Journal of Physics, 9:188, 2007.

[Mathieu and Zhou, 2013]Mathieu, C. and Zhou, H.: Graph Reconstruction via Distance Oracles, pages 733–
744. Berlin, Heidelberg, Springer Berlin Heidelberg, 2013.

[McKay and Wormald, 1990]McKay, B. D. and Wormald, N. C.: Asymptotic enumeration by degree sequence
of graphs of high degree. European Journal of Combinatorics, 11(6):565 – 580, 1990.

[Mohri et al. , 2012]Mohri, M., Rostamizadeh, A., and Talwalkar, A.: Foundations of Machine Learning. The
MIT Press, 2012.

[Moulin and Laigret, 2011]Moulin, H. and Laigret, F.: Equal-need sharing of a network under connectivity
constraints. Games and Economic Behavior, 72(1):314–320, 2011.

[Narayan and Saniee, 2011]Narayan, D. and Saniee, I.: Large-scale curvature of networks. Physical Review
E, 84:066108, 2011.

[Newman, 2010]Newman, M. E. J.: Networks: An Introduction. Oxford University Press, 2010.

[Omberg et al. , 2007]Omberg, L., Golub, G. H., and Alter, O.: A tensor higher-order singular value decompo-
sition for integrative analysis of dna microarray data from different studies. PNAS, 104(47):18371–
18376, 2007.

[Papadimitriou and Steiglitz, 1982]Papadimitriou, C. and Steiglitz, K.: Combinatorial Optimization:
Algorithm and Complexity. Prentice Hall, 1982.

[Papadopoulos et al. , 2010]Papadopoulos, F., Krioukov, D., Boguna, M., and Vahdat, A.: Greedy forwarding
in dynamic scale-free networks embedded in hyperbolic metric spaces. In IEEE Conference on
Computer Communications, pages 1–9, 2010.

[Raz and Safra, 1997]Raz, R. and Safra, S.: A sub-constant error-probability low-degree test, and a sub-
constant error-probability pcp characterization of np. In Proceedings of the twenty-ninth annual
ACM symposium on Theory of computing, pages 475–484. ACM, 1997.

100

[Reeves et al. , 2007]Reeves, J., Chen, J., Wang, X. L., Lund, R., and Lu., Q. Q.: A review and comparison of
changepoint detection techniques for climate data. Journal of Applied Meteorological Climatology,
46(6):900–915, 2007.

[Reyzin, 2009]Reyzin, L.: Active Learning of Interaction Networks. Doctoral dissertation, Yale University,
New Haven, Connecticut, 2009.

[Reyzin and Srivastava, 2007a]Reyzin, L. and Srivastava, N.: Learning and verifying graphs using queries
with a focus on edge counting. In International Conference on Algorithmic Learning Theory, pages
285–297. Springer, 2007.

[Reyzin and Srivastava, 2007b]Reyzin, L. and Srivastava, N.: Learning and verifying graphs using queries
with a focus on edge counting. In International Conference on Algorithmic Learning Theory, pages
285–297. Springer, 2007.

[Reyzin and Srivastava, 2007c]Reyzin, L. and Srivastava, N.: On the longest path algorithm for reconstructing
trees from distance matrices. Information processing letters, 101(3):98–100, 2007.

[Rodrı́guez and Tourı́s, 2004]Rodrı́guez, J. M. and Tourı́s, E.: Gromov hyperbolicity through decomposition
of metric spaces. Acta Mathematica Hungarica, 103:53–84, 2004.

[Roe, 1996]Roe, J.: Index theory, coarse geometry, and topology of manifolds. Conference Board of the
Mathematical Sciences Regional Conference, Series, 90, 1996.

[Rybach et al. , 2009]Rybach, D., Gollan, C., Schluter, R., and Ney, H.: Audio segmentation for speech
recognition using segment features. In Speech and, ed. I. I. C. on Acoustics, pages 4197–4200.
Signal Processing, 2009.

[Saadatpour et al. , 2011]Saadatpour, A., Wang, R. S., Liao, A., Liu, X., Loughran, T. P., Albert, I., and
Albert, R.: Dynamical and structural analysis of a t cell survival network identifies novel candidate
therapeutic targets for large granular lymphocyte leukemia. PLoS Computational Biology, 7, 2011.

[Saito et al. , 2008]Saito, K., Nakano, R., and Kimura, M.: Prediction of information diffusion probabilities
for independent cascade model. In International Conference on Knowledge-Based and Intelligent
Information and Engineering Systems, pages 67–75. Springer, 2008.

[Samal et al. , 2018]Samal, A., Sreejith, R. P., Gu, J., Liu, S., Saucan, E., and Jost, J.: Comparative analysis
of two discretizations of ricci curvature for complex networks. Scientific Reports, 8, 2018.

101

[Stoer and Wagner, 1997]Stoer, M. and Wagner, F.: A simple min-cut algorithm. Journal of the ACM (JACM),
44(4):585–591, 1997.

[Sun et al. , 2006]Sun, J., Tao, D., and Faloutsos, C.: Beyond streams and graphs: Dynamic tensor anal-
ysis. In 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 374–383, 2006.

[Thorup and Zwick, 2001]Thorup, M. and Zwick, U.: Compact routing schemes. In Proceedings of the
thirteenth annual ACM symposium on Parallel algorithms and architectures, pages 1–10. ACM,
2001.

[Tononi et al. , 1999]Tononi, G., Sporns, O., and Edelman, G. M.: Measures of degeneracy and redundancy
in biological networks. PNAS, 96:3257–3262, 1999.

[Trevisan, 2012]Trevisan, L.: On khot’s unique games conjecture. Bulletin of the American Mathematical
Society, 49(1):91–111, 2012.

[Valiant, 1984]Valiant, L. G.: A theory of the learnable. Commun. ACM, 27(11):1134–1142, November
1984.

[van Lint et al. , 2001]van Lint, J., Wilson, R., and Wilson, R.: A Course in Combinatorics. A Course in
Combinatorics. Cambridge University Press, 2001.

[Vazirani, 2001]Vazirani, V.: Approximation Algorithms. Springer, 2001.

[Wagner, 2002]Wagner, A.: Estimating coarse gene network structure from large-scale gene perturbation data.
Genome Research, 12:309–315, 2002.

[Waterman et al. , 1977]Waterman, M. S., Smith, T. F., Singh, M., and Beyer, W.: Additive evolutionary trees.
Journal of theoretical Biology, 64(2):199–213, 1977.

[Weber et al. , 2016a]Weber, M., Jost, J., and Saucan, E.: Forman-ricci flow for change detection in large
dynamic data sets. In International Conference on Information and Computational Science, 2016.

[Weber et al. , 2016b]Weber, M., Saucan, E., and Jost, J.: Can one see the shape of a network?. [math.CO],
2016.

[Woeginger, 2003]Woeginger, G.: Exact algorithms for NP-hard problems: A survey. You Shrink!, 2570,
185-207, Springer-Verlag, in Combinatorial Optimization – Eureka, 2003.

102

[Yahyanejad, 2019]Yahyanejad, F.: Curvature Analysis in Complex Networks: Theory and Application.
Doctoral dissertation, University of Illinois at Chicago, 2019.

[Yang et al. , 2006]Yang, P., Dumont, G., and Ansermino, J. M.: Adaptive change detection in heart rate trend
monitoring in anesthetized children. IEEE Transactions on Biomedical Engineering, 53(11):2211–
2219, 2006.

[Yannakakis, 1978]Yannakakis, M.: Node- and edge-deletion np-complete problems. In 10th Annual ACM
Symposium on Theory of Computing, pages 253–264, 1978.

[Zanudo and Albert, 2015]Zanudo, J. G. T. and Albert, R.: Cell fate reprogramming by control of intracellular
network dynamics. PLOS Computational Biology, 11, 2015.

APPENDIX

This appendix contains publication agreements signed by the authors and reproductions of statements

from the publishers websites detailing the use policies that allow the original publications and preprints

to be reproduced in this thesis.

103

104

Publication Agreement

This is a publication agreement1 (“this agreement”) regarding a written
manuscript currently entitled

(“the article”) to be published in PMLR (“the proceedings”). The parties to this
Agreement are:

(name of corresponding author who signs on behalf of any other authors, collec-
tively “you”) and PMLR, (“the publisher”).

1. By signing this form, you warrant that you are signing on behalf of all
authors of the article, and that you have the authority to act as their agent
for the purpose of entering into this agreement.

2. You hereby grant a Creative Commons copyright license in the article to
the general public, in particular a Creative Commons Attribution 4.0 Inter-
national License, which is incorporated herein by reference and is further
specified at http://creativecommons.org/licenses/by/4.0/legalcode (human
readable summary at http://creativecommons.org/licenses/by/4.0).

3. You agree to require that a citation to the original publication of the article
in the proceedings as well as a hyperlink to the PMLR web site linking to
the original paper be included in any attribution statement satisfying the
attribution requirement of the Creative Commons license of paragraph 2.

4. You retain ownership of all rights under copyright in all versions of the
article, and all rights not expressly granted in this agreement.

5. To the extent that any edits made by the publisher to make the article
suitable for publication in the proceedings amount to copyrightable works
of authorship, the publisher hereby assigns all right, title, and interest in
such edits to you. The publisher agrees to verify with you any such edits
that are substantive. You agree that the license of paragraph 2 covers such
edits.

1The language of this publication agreement is based on Stuart Shieber’s model open-access
journal publication agreement, version 1.2, available at http://bit.ly/1m9UsNt.

1

Graph Verification with a Betweenness Oracle

Mano Vikash Janardhanan

105

6. You further warrant that:

1. The article is original, has not been formally published in any other
peerreviewed journal or in a book or edited collection, and is not
under consideration for any such publication.

2. You are the sole author(s) of the article, and that you have a complete
and unencumbered right to make the grants you make.

3. The article does not libel anyone, invade anyone’s copyright or other-
wise violate any statutory or common law right of anyone, and that
you have made all reasonable e�orts to ensure the accuracy of any
factual information contained in the article. You agree to indemnify
the publisher against any claim or action alleging facts which, if
true, constitute a breach of any of the foregoing warranties or other
provisions of this agreement, as well as against any related damages,
losses, liabilities, and expenses incurred by the publisher.

7. This is the entire agreement between you and the publisher, and it may
be modified only in writing. It will be governed by the laws of the
Commonwealth of Massachusetts. It will bind and benefit our respective
assigns and successors in interest, including your heirs. It will terminate if
the publisher does not publish, in any medium, the article within one year
of the date of your signature.

I HAVE READ AND AGREE FULLY WITH THE TERMS OF THIS AGREE-
MENT.

• Corresponding Author:
– Signed:
– Date:

2

08/15/2017

Mano Vikash Janardhanan

106

LIPIcs – Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik

Dagstuhl Publishing

http://www.dagstuhl.de/lipics

Event: 37th IARCS Annual Conference on Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS 2017)
Editors: Satya Lokam and R. Ramanujam

Title of contribution (named ’contribution’ in the following)

Authors (named ’author’ in the following)

Corresponding author’s name, address, a�liation and email

Name:

Address:

A�liation:

E-Mail:

The corresponding author hereby certifies that (s)he has the right to grant the licenses mentioned below.
The author hereby authorizes the editors and Schloss Dagstuhl to organize the publication of the
contribution in the Proceedings of the 37th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 2017) in electronic and printed form. The

publication of the contribution will be protected by the Creative Commons Attribution 3.0 Unported license (CC-BY
3.0). For details, see http://creativecommons.org/licenses/by/3.0/. In brief, this license authorizes each and
everybody to share (to copy, distribute and transmit) the work under the following conditions, without impairing or
restricting the authors’ moral rights:

– Attribution: The work must be attributed to its authors.

The proceedings are published OpenAccess in electronic form as a volume in the series LIPIcs – Leibniz International
Proceedings in Informatics (ISSN 1868-8969) that is maintained by Schloss Dagstuhl – Leibniz-Zentrum für Informatik
GmbH, Germany; see http://www.dagstuhl.de/lipics.
The author hereby grants to Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH

– the non-exclusive license to archive and make accessible (online and free of charge) for the public the contribution,
along with any associated metadata provided,

– to edit the contribution especially with regard to typesetting and language for reaching established publication
standards,

– to notify digital archive systems thereof, and
– to convert the contribution for the purpose of archiving.

The author warrants that this publication will not infringe any rights of third parties. The author retains all rights
to use in future works all or parts of the contribution.
In case that the author submits supplementary electronic material (software, benchmark data, . . .) to be published
along with the publication, the author warrants that the supplementary material will not infringe any rights of third
parties.
To support the editors and Schloss Dagstuhl in preparing the proceedings, the author hereby agrees to provide all
source material (LaTeX files, graphics, . . .) as well as detailed meta data (full names of the authors, title of the
contribution, contact author, e-mail address of the contact author, keywords, classification (ACM 1998), and abstract
of the contribution).

Date, City Signature of the corresponding author

mjanar2@uic.edu

Network construction with ordered constraints

University of Illinois at Chicago

Yi Huang, Mano Vikash Janardhanan and Lev Reyzin

851 S Morgan Street, Chicago, IL 60608

18/10/2017, Kyoto

Mano Vikash Janardhanan

107

We gratefully acknowledge support from
the Simons Foundation and member institutions.

arXiv.org > help
Search or Article ID

All fields

(Help | Advanced search)
Help Table of Contents | Search arXiv Help

arXiv License Information
arXiv is a repository for scholarly material, and perpetual access is necessary to maintain the scholarly
record. As such, arXiv keeps a permanent record of every submission and replacement announced.

arXiv does not ask that copyright be transferred. However, we require sufficient rights to allow us to
distribute submitted articles in perpetuity. In order to submit an article to arXiv, the submitter must either:

grant arXiv.org a non-exclusive and irrevocable license to distribute the article, and certify that he/she
has the right to grant this license;
certify that the work is available under one of the following Creative Commons licenses and that he/she
has the right to assign this license:

Creative Commons Attribution license (CC BY 4.0)
Creative Commons Attribution-ShareAlike license (CC BY-SA 4.0)
Creative Commons Attribution-Noncommercial-ShareAlike license (CC BY-NC-SA 4.0);

or dedicate the work to the public domain by associating the Creative Commons Public Domain
Dedication (CC0 1.0) with the submission.

In the most common case, authors have the right to grant these licenses because they hold copyright in their
own work.

We currently support three of the Creative Commons licenses. If you wish to use a different CC license, then
select arXiv's non-exclusive license to distribute in the arXiv submission process and indicate the desired
Creative Commons license in the actual article.

Note: if you intend to submit, or have submitted, your article to a journal then you should verify that the
license you select during arXiv submission does not conflict with the journal's license or copyright transfer
agreement. Many journal agreements permit submission to arXiv using the non-exclusive license to
distribute, which arXiv has used since 2004. Yet the CC BY and CC BY-SA licenses permit commercial
reuse and may therefore conflict with some journal agreements.

Authority to submit, publisher PDFs, etc.

108

arXiv cannot accept papers that contain material for which the depositor does not have the authority to submit
or to agree to the license terms. This would include comments by referees (which may have separate
copyright protection) and, of course, plagiarized material. Note that any single co-author normally has all
needed authority to submit a paper to arXiv. Once publicly available, articles cannot be entirely removed,
either at the request of the submitting author or of any co-author.

It is usually the case that PDFs found on publisher websites or supplied as proofs are the property of the
publisher, which often owns the copyright and/or licenses their use. Even if the author retains copyright or
permissions in the article, arXiv cannot accept PDFs that have been downloaded from a publisher's website
unless arXiv has a blanket agreement with the publisher (it would be too costly in administrative time to track
individual permissions).

Licenses granted are irrevocable
Authors should take care to upload an article only if they are certain that they will not later wish to publish it
in a journal that prohibits prior distribution on an e-print server. arXiv will not remove an announced article
to comply with such a journal policy -- the license granted on submission is irrevocable. However, granting
rights for arXiv to distribute an article does not preclude later copyright assignment. Authors are thus free to
publish submissions that already appear on arXiv. Authors may wish to inform the journal publisher that a
prior non-exclusive license exists before transferring copyright or granting a publication license. Please check
the policies of any potential publication venue before uploading to arXiv. (For the policy information of
many publishers, see the SHERPA/RoMEO site.)

Copyright notices
If you have permission from a publisher to upload content to arXiv provided that you include a special
copyright statement with the paper, the correct place for that statement is the first page of the text of the
submission. Copyright notices should not be included in the separate metadata and will be removed.

If you have any additional questions about arXiv's copyright and licensing policies, please contact the arXiv
administrators directly.

Contact

If you have a disability and are having trouble accessing information on this website or need materials in an
alternate format, contact web-accessibility@cornell.edu for assistance.

VITA

NAME Mano Vikash Janardhanan

EDUCATION PhD, Mathematics, University of Illinois at Chicago,
Chicago, Illinois, 2019
MS, Mathematics, Indian Institute of Science Education and Research,
Thiruvananthapuram, 2014.
BS, Mathematics, Indian Institute of Science Education and Research,
Thiruvananthapuram, 2014.

PUBLICATIONS Mohsen Aliabadi and Mano Vikash Janardhanan. “On matchable subsets in
abelian groups and their linear analogues”. arXiv:1808.01376

Bhaskar DasGupta, Mano Vikash Janardhanan and Farzaneh Yahyanejad.
“Why did the shape of your network change? (On detecting network anomalies
via non-local curvatures)”. arXiv:1808.05676

Mohsen Aliabadi and Mano Vikash Janardhanan. “On local matching prop-
erty in groups and vector spaces”. In: Australasian Journal of Combinatorics
70 (Jan. 2017).

Mano Vikash Janardhanan. “Graph Verification using a Betweenness Oracle”.
In: Algorithmic Learning Theory (2017).

Yi Huang, Mano Vikash Janardhanan and Lev Reyzin. “Network Construc-
tion with Connectivity Constraints”. In: FSTTCS (2017)

Mano Vikash Janardhanan and Sujith Vijay. “Ramsey Functions for General-
ized Progressions”. In: Integers 15 (2015).

Mano Vikash Janardhanan. “Topics in Ramsey Theory”. In: arXiv:1404.7348
(MS Thesis)

109

	to1 Introduction
	 Complexity theory
	 Learning theory
	 Preliminaries
	 Complexity of graph theoretic problems
	 Query learning of graphs
	 Offline and online problems

	to2 Network Verification with Betweenness Oracle
	 Introduction and previous work
	 The problem

	 Lower bound
	 Definitions
	 Main result
	 Edge verification
	 Non-edge verification

	 Open problems

	to3 Network Reconstruction with Ordered Constraints
	 Introduction
	 Past Work
	 Connection to network inference
	 Our results

	 The offline problem
	 The online problem
	 Arbitrary graphs
	 Stars
	 Paths

	to4 Detecting network anomalies via non-local curvatures
	 Introduction
	 Some basic definitions and notations
	 Why use network curvature measures?
	 Scalar vs. vector curvature

	 Why only the edge-deletion model?
	 Two examples in which curvature measures detect anomaly where other simpler measures do not
	 Extremal anomaly detection for a static network
	 Targeted anomaly detection for a dynamic biological network

	 Algebraic approaches for anomaly detection
	 Remarks on the organization of our proofs

	 Two notions of graph curvature
	 Gromov-hyperbolic curvature
	 Is Gromov-hyperbolic curvature a suitable statistically significant measure for real-world networks ?
	 Some clarifying remarks regarding Gromov-hyperbolicity measure

	 Geometric curvatures
	 Some basic topological concepts
	 Geometric curvature definitions
	 Are geometric curvatures a suitable measure for real-world networks ?

	 Formalizations of two anomaly detection problems on networks
	 Extremal anomaly detection for static networks
	 Targeted anomaly detection for dynamic networks

	 Computational complexity of extremal anomaly detection problems
	 Geometric curvatures: exact and approximation algorithms for EadpC2d
	 Gromov-hyperbolic curvature: computational complexity of EadpCGromov
	 Proof techniques and relevant comments regarding Theorem 11
	 Proof of Theorem 11

	 Computational complexity of targeted anomaly detection problems
	 Geometric curvatures: computational hardness of TadpC2d(G1,G2)
	 Proof techniques and relevant comments regarding Theorem 12
	 Proof of Theorem 12

	 Gromov-hyperbolic curvature: computational hardness of TadpCGromov
	 Proof techniques and relevant comments regarding Theorem 13
	 Proof of Theorem 13

	 Conclusion and future research

	to CITED LITERATURE
	to APPENDIX
	to VITA

