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“Consider all measurable subsets of the real interval...”

“Let f be an analytic sequence that converges uniformly...”




“Consider all measurable subsets of the real interval...”

“Let f be an analytic sequence that converges uniformly...”

“How can we automate theorem proving in lean?”
“How can | take advantage of current Al technologies?”

“When will | lose my job?”



Al for Mathematicians

How have mathematicians
used Al? How can they?*

*This wasn’t a planned part of the talk, but the state of the
art has quickly changed!



Two definitions

Al = “using ML = “using
computers for algorithms
problems that that change

people solve” with data”
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Over time...

Al = “using ML = “using
computers for algorithms
problems that that change

people solve” with data”



SAT solvers

SAT solvers, from cstheory.stackexchange.com:

The following question arises out of Ramsey Theory.

Consider a k-coloring of the n-by-m grid graph. A monochromatic rectangle exists
whenever four cells with the same color are arranged as the corners of some rectangle. For
example, (0,0),(0,1),(1,1),and (1,0) form a monochromatic rectangle if they have the same
color. Similarly, (2,2),(2,6),(3,6), and (3,2) form a monochromatic rectangle, if colored with
the same color.

Question: Does there exist a 4-coloring of the 17-by-17 grid graph that does not contain a
monochromatic rectangle? If so, provide the explicit coloring.

Some known facts:

e 16-by-17 is 4-colorable without a monochromatic rectangle, but the known coloring
scheme does not appear to extend to the 17-by-17 case. (I'm omitting the known 16-by-
17 coloring because it would very likely be a red herring for deciding 17-by-17.)

e 18-by-19 is NOT 4-colorable without a monochromatic rectangle.

e 17-by-18 and 18-by-18 are also unknown cases; an answer to these would be interesting
as well.
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SAT solvers

SAT solvers, from cstheory.stackexchange.com:

- This is not really an answer to the question, but I've encoded the 17x17 4-coloring problem as &
4-CNF (in the standard DIMACS format for SAT-solvers) and uploaded it here. If anyone has
13 accesstoa good SAT solver (and a supercomputer!) maybe we can make some progress.

<«  Note: in my encoding, if gridpoint (i, j) is assigned color ¢ € {0,1,2,3}, then the variable
(17i + j + 289c + 1) takes the value 1, and O otherwise.

Mod Share Cite Edit Delete Flag answered Sep 27, 2010 at 13:38

3 Lev Reyzin ¢
121k #13 ®65 @103
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SAT solvers

SAT solvers, from cstheory.stackexchange.com:

- This is not really an answer to the question, but I've encoded the 17x17 4-coloring problem as &
4-CNF (in the standard DIMACS format for SAT-solvers) and uploaded it here. If anyone has
13 accesstoa good SAT solver (and a supercomputer!) maybe we can make some progress.

<«  Note: in my encoding, if gridpoint (i, j) is assigned color ¢ € {0,1,2,3}, then the variable
(17i + j + 289c + 1) takes the value 1, and O otherwise.

Mod Share Cite Edit Delete Flag answered Sep 27, 2010 at 13:38

3 Lev Reyzin ¢
121k #13 ®65 @103

4 @Ley, just a random update: it appears the runtime of the 17x17, even
using the best possible supercomputer and a really fast SAT solver, is
still astronomical. Plus side: it appears within the realm of reason to
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SAT solvers

SAT solvers, from cstheory.stackexchange.com:

13

This is not really an answer to the question, but I've encoded the 17x17 4-coloring problem as &
4-CNF (in the standard DIMACS format for SAT-solvers) and uploaded it here. If anyone has
access to a good SAT solver (and a supercomputer!) maybe we can make some progress.

Note: in my encoding, if gridpoint (i, j) is assigned color ¢ € {0,1,2,3}, then the variable
(17i + j + 289c + 1) takes the value 1, and O otherwise.

Mod Share Cite Edit Delete Flag answered Sep 27, 2010 at 13:38

3 Lev Reyzin ¢
121k »13 #65 @103

4 @Ley, just a random update: it appears the runtime of the 17x17, even
using the best possible supercomputer and a really fast SAT solver, is
still astronomical. Plus side: it appears within the realm of reason to

problem. Personally, after spending a large amount of time marinating
my brain in this problem, I'm willing to hypothesize that there is no
legal 4-coloring of the 17x17 grid. As a result, all of the approaches I'm
personally investigating involve the ability to prove the hypothesis by
(essentially) clever brute-force search. Down side: No approximate
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SAT solvers




SAT solver sucesses

SAT solvers (list from Bernardo Subercaseaux’s talk
on Wedneday):

® (2014) Boolean Erdds Discrepancy Problem
® (2016) Boolean Pythagorean Triples

® (2018) Schur Number 5

® (2019) Keller’s Conjecture

® (2023) Packing Chromatic Number of 7?2

® (2024) Empty Hexagon every 30 Points



Lean with copilot

Al assistants for lean

Lean Copilot: LLMs as Copilots for Theorem Proving in
Lean

Lean Copilot allows large language models (LLMs) to be used in Lean for proof automation, e.g., suggesting
tactics/premises and searching for proofs. You can use our built-in models from LeanDojo or bring your own
models that run either locally (w/ or wjo GPUs) or on the cloud.

X Lean.Copilot.Demo.mp4 ~

v demo.lean:19:0

¥ Tactic state

Mathlib.Data.Set.Basic » All Messages (0)
LeanCopilot

add_abc : YVabc:N, a+b+c=a+c+b:=
intro a b ¢
simp [Nat.add_assoc, Nat.add_comm b]

set_inter_comm (s t : Seta) : snt=tns :=

ext x
simp_all only [Set.mem_inter_iff]
apply Iff.intro
- intro a

simp_all [and_self]
+ intro a

simp_all [and_self]

» 0:00/1:40
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Deep learning + Tree search

AlphaProof

Al achieves silver-medal standard solving
International Mathematical Olympiad problems

Train

7N
/ \\
l
Informal . Formal %@. Formal
problems Formalize problems g Search pI'OOfS
Formalizer Solver
~M network ~100M network

AlphaZero
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LLMs

On the other hand, there are many examples of LLMs like ChatGPT failing at
proofs and other more formal taks, including chess.

Example from Alex Kontorovich’s Wednesday talk:

6 6
5 5
4 4
3 3

Stockfish
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LLM failures at proof

Can you prove that P is contained in SPACE(n)?

Proof Sketch: P C SPACE(n)

o Consider a deterministic Turing machine M that

decides a language in O(n°) time, where ¢ > 1.

e At any step, the machine's configuration can be

represented by:
e The current state (q),

« The position of the tape head (O(n°) differer

possible positions over time),

e The tape contents (limited to the portion of th

input accessed, which is at most O(n¢)).

e Instead of storing the entire tape history, the
machine can recompute prior configurations using
small, constant amount of workspace, effectively
using only O(n) space to simulate the

computation.
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On the other hand...

ChatGPT launched just ~2 years ago, now according to Sam Altman...

({1
We are now confident we know how to build AGI as we have

traditionally understood it. We believe that, in 2025, we may see the
first Al agents “join the workforce” and materially change the output
of companies. We continue to believe that iteratively putting great

tools in the hands of people leads to great, broadly-distributed
outcomes. ”

‘m Sebastien Bubeck & (I
'‘3¥ @SebastienBubeck

This year | turn 40. Would be nice to celebrate half-life with AGlI ...

5:30 PM - Jan 6, 2025 - 38.8K Views
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A positive story

max affine regression uses the maximum of k affine functions in a
d-dimensional space to represent an unknown function.

® known to be NP-hard (to find such functions from data) in
high dimensions, even for k = 2.

® for some research project, | needed it to be NP-hard in low
dimensions for large k.
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Asking ChatGPT

| could probably prove it myself, but | decided to ask ChatGPT.

| want to argue that the maximum of k affine functions in
R”d is computationally hard to compute when k is high,
even for low/constant d when there's noise. Do you have
any suggestions on how to tackle this problem?

Your problem is intriguing, as it touches on computational complexity and
learning theory, especially in the presence of noise. To argue that the
computation is hard, you can use a combination of theoretical reductions,
hardness results from optimization, and examples of noise-influenced decision

boundaries. Here are some concrete suggestions:
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Guiding ChatGPT

can you help me come up with a reduction from k-
means to my problem?

A reduction from k-means clustering to your problem of computing the
maximum of k affine functions in R% is a strong approach because k-means is

known to be NP-hard in the general case. Here's how you might construct such
a reduction:
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Guiding ChatGPT

Eventually it gets to the correct proof...

Transform k-Means to k-Affine Functions

e The squared Euclidean distance can be rewritten in terms of inner products:

|z — pll* = Nl — 262, 1) + sl

|z||? is independent of 5, so for a fixed x, minimizing the

e Here,

distance is equivalent to maximizing:

1
(2,15 = Sl

« Define affine functions f;(z) = (z, ;) — 3|i;|*. Then the cluster

assignment becomes:
i = argmax f;(z).
J

e Thus, the k-means clustering problem reduces to identifying the maximum

of k affine functions for each data point x.
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Testing ChatGPT's
“understanding”

are the f_j's really affine? isn't the term on the \mu's
quadratic?

®  You're absolutely correct! The functions f;(z) = (z, ;) — 3 ||p;]|* are indeed
affine in z, but the term — 2 || ; ||? is a constant with respect to . Let's break it

down clearly to confirm why f;(z) is affine:

We have reached the point where generic LLMs can become useful
research tools. Try ChatGPT-o1 if you don’t believe mel
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What makes math different?

Matus Telgarsky (from his talk on Thursday), proofs are
amenable to Chess techniques. “Our days are numbered”

Al has surpassed humans at a number of tasks and the rate at
which humans are being surpassed at new tasks is increasing

State-of-the-art Al performance on benchmarks, relative to human performance
@ Handwriting recognition @ Speech recognition = Image recognition @ Reading comprehension

{) Language understanding ¢ Common sense completion = Grade school math ¢ Code generation

Human perfomance = 100%

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 20.18 2020 2022



Mathematicians for Al

How can mathematicians improve
Al? (Should we?)

How can we help understand Al?



LLMs

LLMs, like ChatGPT, are next-token predicters, given all previous tokens,
which include the user input, (plus some internal network states).

e.g.
me: Why is 2+2 = 47
ChatGPT: In formal mathematics, natural nu_

To achieve they use a transformer, which is a deep neural network with
certain properties (e.g. self-attention, parallel processing, encoder/decoder).

“Attention Is All You Need”
Vaswani et al. NIPS 2017

ouanbag 224

148334 citations
O theorems

ouanbag 3ab4e)
pPauiys
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How can we help understand
Deep Learning / LLMs?

Why does gradient descent work so well? Why do solutions
reached by gradient descent generalize?

A (XS
S
N

e
e’

Local Minima |
Global Minima

Saddle Point
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How can we help understand
Deep Learning / LLMs?

Why don’t deep neural networks overfit? GPT4 has hundreds of
billions of parameters!

Deep Neural Network

input layer hidden layer 1 hidden layer 2 hidden layer 3
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Figure 12.2 Deep network architecture with multiple layers.

&)

We have some compelling theories, but not nearly as convincing
as eg for more traditional methods like SVM and boosting.
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Understanding + improving
LLMs

® Speeding up training.
® Explainability.
® A mathematical theory of LLM architecture.

® Better optimization techniques?
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Non-LLM example problem 1:
Data reuse

Problem: data sets are often reused, which leads to overfitting.
“false discovery,” “the garden of forking paths,” “p-hacking”

)

Open access, freely available online

Why Most Published Research Findings

Are False

John P.A.loannidis

Summary

There is increasing concern that most
current published research findings are
false.The probability that a research claim
is true may depend on study power and
bias, the number of other studies on the
same question,and, importantly, the ratio
of true to no relationships among the
relationships probed in each scientific
field. In this framework, a research finding
is less likely to be true when the studies
conducted in a field are smaller; when
effect sizes are smaller; when there is a
greater number and lesser preselection
of tested relationships; where there is
greater flexibility in designs, definitions,
outcomes, and analytical modes; when
there is greater financial and other
interest and prejudice; and when more
teams are involved in a scientific field
in chase of statistical significance.
Simulations show that for most study
designs and settings, it is more likely for

factors that influence this problem and
some corollaries thereof.

Modeling the Framework for False
Positive Findings

Several methodologists have

pointed out [9-11] that the high

rate of nonreplication (lack of
confirmation) of research discoveries
is a consequence of the convenient,
yet ill-founded strategy of claiming
conclusive research findings solely on
the basis of a single study assessed by
formal statistical significance, typically
for a pvalue less than 0.05. Research
is not most appropriately represented
and summarized by pvalues, but,
unfortunately, there is a widespread
notion that medical research articles

It can be proven that
most claimed research
findings are false.

is characteristic of the field and can
vary a lot depending on whether the
field targets highly likely relationships
or searches for only one or a few

true relationships among thousands
and millions of hypotheses that may

be postulated. Let us also consider,

for computational simplicity,
circumscribed fields where either there
is only one true relationship (among
many that can be hypothesized) or

the power is similar to find any of the
several existing true relationships. The
pre-study probability of a relationship
being true is R/(R + 1). The probability
of a study finding a true relationship
reflects the power 1 - B (one minus
the Type II error rate). The probability
of claiming a relationship when none
truly exists reflects the Type I error
rate, 0. Assuming that ¢ relationships
are being probed in the field, the
expected values of the 2 x 2 table are
given in Table 1. After a research
finding has been claimed based on

32



The theory

pooled Fully-connected 1

feature maps pooled  featuremaps foature maps
feature maps

measure error/loss validation set
lllllllllllllllllllllllllllll>
#1

Outputs

Input Convolutional Pooling 1 Convol

utional Pooling 2 ‘
layer 1 layer 2

neural net

. maps
. maps
16@19x19 16@9%9
feature maps

measure error/loss

validation set

#2

modified neural net
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The practice

pooled
feature maps pooled  featuremaps foatyre maps
feature maps

Input Convolutional Pooling 1 Convolutional  pooling2
layer 1 layer 2

neural net

f. maps
16@9x9

modified neural net

s

After modification, we have no guarantee that loss will generalize!
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The goal

We want a way to answer queries adaptively on a
fixed dataset but without having to assume:

1. anything about the nature of the adaptivity

2. that the queries come from a class of bounded
complexity (e.g. bounded VC dimension)

35



Adaptive data analysis (ADA)

[Dwork et al. *15]:

1
S a1
d2
Unknown M s -
distribution :
Mechanism Adversary

How many queries can we answer, and how long
does it need to take?

36



Low-sensitivity queries

A query is just a function ¢ : D — R, on which the
mechanism wants to return a value close to ¢(D).

Importantly low-sensitivity queries are specified by a
function ¢ : X™ — R, where for all samples S,5" € X"
that differ on only one element, |¢(S) — ¢(S)| < 1/n .
Then define ¢(D) := Es.p~[q(S)]. [Dwork et al. '06]

37



Adaptive accuracy

A mechanism M is («, #)-accurate on the distribution
D if for all queries ¢;,

Pyalmax|g (D) —ai| <af 21 -0

How many samples does it take to answer k adaptive
queries efficiently with («, 8)-accuracy?

How fast can we accurately answer such queries?

38



Standard machine learning

on query ¢ —»

return ¢(S5) €¢——

But returning the empirical estimate turns out to
be suboptimal for adaptive data analysis!

39



Exploiting adaptivity

The leaderboard takes a hold-out set of n points with
labels y € {0,1}" and for any label prediction
u € {0,1}"™ returns the average 0-1 loss L(u) .

=2

1 Sirish Somanc hi ? 0.9931 276
2 Yuval & nosoun d E‘;’; &) 0.9926 402
3 Bestover fitting i € 0.9767 245
4 yosef huang ) | 0.9766 46
S Overfitting?? Nah. i‘z k & 0.9754 319
6 Marwa_Fatto D | 0.9748 123
7 prd ) | 0.9738 273




Exploiting adaptivity

The leaderboard takes a hold-out set of n points with
labels y € {0,1}" and for any label prediction
u € {0,1}" returns the average 0-1 loss L(u) .

- The boosting attack [Blum-Hardt "15]:

q 1.Pick k vectors Ui,...,UL uniformly at random, and
recelve losses El,...,[,k in response. Call the

l set [ ={1:L; <1/2}.
2.0utput u* = maj({ui 1€ ]}) , applied coordinate-
wise.




Boosting attack

X1 X2 X3 é X4 X5 Xp

uq 0 0 1 0 1 0
w0 o 1 1 o . 1
w3 | 1 0 0 0o 1 .o 0o
w1 T o o 1 . 1
w1 0 0o 1 1 . 0o
w | 101 1 0o 1 . 1
w | 0 1 o o o 1

........................................................................................................................................................
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Boosting attack

X1 X2 X3 é X4 X5 Xp

uq 0 0 1 0 1 0
w0 o 1 1 o . 1
w3 | 1 0 0 0o 1 .o 0o
w1 T o o 1 . 1
w1 0 0o 1 1 . 0o
w | 101 1 0o 1 . 1
w | 0 1 o o o 1

........................................................................................................................................................

.55

.48

.53

.51

.49

.52

A7

43



Boosting attack

xx . ox  x3 x4 X .

0 0 1 1 0 1
1 0 0 1 1 0
1 1 1 0 1 1
0 1 0 0 0 1
0 0 0 1 0 1

.55

.48

.53

.51

.49

.52

A7
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Exploiting without learning

Theorem (Blum and Hardt 2015). With at least constant
probability, the loss is L(u) < 1/2 — ) (\/k/n).

Reported loss

0.48

0.46

0.44

0.42

o

Naive responses

Independent test set

...\"o ® 0\.../.\0

100 200 300 400

Number of queries
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An idea

on query ¢ —>»

return q(5)

“privacy layer around data”

Intuition: an algorithm that cannot learn the data should not overfit!

46



Differential privacy (DP)

Differential privacy is one notion that works:

Definition (Dwork et al. 2006). A mechanism M is
(€, 0)-private if for every two samples S, S’ € X™ differing
by at most one element and every out come z,

PM(S)=2] <e“-PIM(S) =2z2]+6

probability

PrIM(S) = Z]
PrIM(S') = Z]

outcome

47



Reported loss

DP responses against
boosting attack

O . 50 :\..‘/.\.’.'.‘0-0-0. .~./"0/.\.,0\‘/o . .,0'.'.\. .../“O\./.../. .\.,. ./o o
\ ‘® ' °® ; / \ .,0‘./ \./. \ 1
0.48 Naive responses
.
0.46 . . Independent test set
N L Differentially private
0.44 L . mechanism
\'.. ¢ .‘o‘./ \.
0.42
0 100 200 300 400

Number of queries



A mechanism for SQs

[Dwork et al. "15; Bassily et al. "16]

- Given a data set S of size n and a query g, M will:

1
return q(S) + Lap <—> (Laplace noise)
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A mechanism for SQs

[Dwork et al. "15; Bassily et al. "16]

- Given a data set S of size n and a query g, M will:

1
return q(S) + Lap <—> (Laplace noise)

1. This mechanism is: both accurate on the sample and also private.
2. That is sufficient to guarantee accuracy on the distribution (transfer).
3. But it is slow (linear time per query) and it doesn’t reflect what

practitioners sometimes do on real datasets (subsampling).

50



Example result in this field from
my work: a faster mechanism

Theorem [Fish-R-Rubinstein "20]: There is a mechanism
for answering statistical queries with:
o sample complexity n = O (Z—QE) < same as “Laplace”
mechanism

o /=0 (loi(gk)> samples per query

much faster!

~ 2
o O (loiz(k)) time per query.
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Fast mechanism for SQs

- Given a data set S of size n and a query g, M will:

1. Sample ¢ points uniformly at random (with or i
without replacement) and call this sample §)

1

2. Return ¢(Sy) + Lap (Z) (Laplace noise)
€

This corresponds to bootstrapping: on every new query we re-subsample!
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Why does this work?

Our main idea: while subsampling means we have a worse

estimator, sampling also increases the amount of privacy we have.

An straightforward calculation shows that giving an € subsample
to an e-private algorithm yields a log(1+(1+(1-1/n)2)(es-1))-private
algorithm.

We can then prove that the two effects cancel out exactly for our
choice of subsample size!
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A new analysis of SGD

[Fish-R-Rubinstein "20]

1. Pick arbitrary xg € ©
2. Repeat Iy (= X471 — 77V£(S, $t_1)
where each component of V/L(S,x;_1) is given by our

mechanism M for statistical queries:

VLS, zi-1) D = M(VL(S, z,-1)D, S)

Stochastic Gradient
Descent 0

&
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Even more interesting
concerns

There are of course some technical challenges that remain in
adaptive data analysis.

But one interesting recent question is actually why we can reuse
large datasets in practice more than theory tells us we should!

Why do algorithms trained on ImageNet still generalize to the real

world? Are our algorithms more resilient than you might expect?
Is real-world data special?
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Non-LLM example problem 2:
Machine learning reductions

In most cases, engineers would rather make use of subroutines or
libraries than code solutions from scratch.

!"

NLTK ’*J\Z N
Spark theano

TensorFlow
@Xnet
. learn

Scikit-learn Pandas
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Machine learning reductions

This often leads to unprincipled use...

— MIT Technology Review

ARTIFICIAL INTELLIGENCE

Hundreds of Al tools have been built to catch covid. None

of them helped.

Some have been used in hospitals, despite not being properly tested. But the pandemic
could help make medical Al better.

57



Machine learning reductions

Traditional reductions solve one problem using an algorithm
for another problem.

Reduction to Max-Flow

. . . Max Matchisg

bipartite matching L &

reduction to max-flow —

(image from GaTech’s

algorlthms Course) 1_8uil-l a flownetwork where a. g::.l ;:::c.i;::“a,::,,i.
vi=VU{Lsty Oh the network .
E‘’= E USsix LU Rx {t} 3, Return +he edges with
c =1 positive flows as the matching,

We can use the same idea for machine learning.
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PAC Learning

PAC learner

S={(X1,Y1)-.-(Xm,Ym)}

>

“empirical risk
minimization”

hs that works

— “well” on D
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Stochastic contextual bandits

fort=1toT a . Xt

The learner must
compete with the best

function in F: X—>{1...k}

D A 9 in hindsight. Learner’s
% 4 B C D L’ F regret should ideally
L A A A A A scale as O(T*/2) and
2 3 . k2 k1 k logarithmically in |F].

dlstrlbutlons of losses depend on x:
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A bandits to PAC reduction

adversarial

efficient
(poly(T,k,In|F[))

EXP4 ,EXP4.P
[ACFS "00,BLLRS "21]

EXP3
[ACFS "00]

Randomized UCB
IDHKKLRZ 21}

uses a reduction to ERM
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Reinforcement learning (RL)

Markov

decision
process
(MDP)

-1

states are green, actions are orange,

goal is to learn a good “policy” (what to do at each state)
If MDP is known, can solve for optimal policy 6



Reinforcement learning (RL)
!
G ®
®

But the MDP is not known!
Problem is more general than bandits.



A bandit algorithm that fits

adversarial <
.
N
N ~ . .
@ ~
N
L
N

EXP4.P

,,,,, [BLLRS ’21]

EXP3
[ACFS "00]

“|IRandomized UCB

[DHKKLRZ "21]
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Reinforcement learning (RL)

EXP3o

EXP3;

f (s
G et @
®

EXP3>
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Reinforcement learning (RL)

EXP3o

EXP3;

f (s
4 Camer @
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Reinforcement learning (RL)

di,l't

EXP3o

EXP3;

f (s
4 Camer @
a9

EXP3>




Reinforcement learning (RL)

EXP3o




Reinforcement learning (RL)
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Reinforcement learning (RL)

EXP3o




Reinforcement learning (RL)

d1,Yl+1

EXP3o




Reinforcement learning (RL)

EXP3o




Reinforcement learning (RL)

EXP3o




Reinforcement learning (RL)

EXP3o

. |ﬁ| EXP3;

e (ay (20 6

(ag timets2 (81
39

EXP3>




Reinforcement learning (RL)

a1,)/2rt+z
di,lt+2

EXP3
lﬁl EXP3;
(ay (20) 9

@ time t+2 @
Mt+2

(a9
EX§32

do,Yt+2




Reinforcement learning (RL)

EXP3o,

RN )
29
NG




Example result from my work in this
area: an RL to bandits reduction

Theorem [Kash-R-Yu '24]: The algorithm Bandits for MDPs, when run
using EXP3 as the bandit learner, enjoys expected regret of

A [ T2S(S+A)
O ( B3 (1—v)? ﬁ)

where T = total time-steps, S = number of states, A = number of actions per
state, y = discount factor, t = mixing time of MDP, and 6 = bounds mmin.
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Example result from my work in this
area: an RL to bandits reduction

Theorem [Kash-R-Yu '24]: The algorithm Bandits for MDPs, when run
using EXP3 as the bandit learner, enjoys expected regret of

A [ T2S(S+A)
O ( B3 (1—v)? \/T)

where T = total time-steps, S = number of states, A = number of actions per
state, y = discount factor, t = mixing time of MDP, and 6 = bounds mmin.

By making reductions easier and improving their bounds, we could better
deploy algorithms outside their designed scope!
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Discussion

Al, in the broader sense, has long been a tool in our toolkit. Tailored ML
is now clearly useful, e.g. copilot for lean proofs and AlphaProof.

LLMs are reaching the point where they can be useful too. This is all going
in one direction, but how fast? How long will this “golden age” last? (Yes
we are already in the Golden Age — take advantage of it now!)

Deep learning practice is currently way past our understanding. LLMs,
which use it, are even farther past. Mathematics can work to understand
these models, possibly with their help! Theory will likely lag practice.

Mathematics can make progress in other areas, e.g. understanding the
properties of our data, helping deploy current algorithms in new areas,
and of course others that | did not cover.
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