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Abstract— Motivated by problems modeling the spread of
infections in networks, in this paper we explore which bipartite
graphs are most resilient to widespread infections under various
parameter settings. Namely, we study bipartite networks with
a requirement of a minimum degree d on one side under
an independent infection, independent transmission model. We
completely characterize the optimal graphs in the case d =
1, which already produces non-trivial behavior, and we give
extremal results for the more general cases. We show that in
the case d = 2, surprisingly, the optimally resilient set of graphs
includes a graph that is not one of the two “extremes” found
in the case d = 1.

Then, we briefly examine the case where we force a connectiv-
ity requirement instead of a one-sided degree requirement and
again, we find that the set of the most resilient graphs contains
more than the two “extremes.” We also show that determining
the subgraph of an arbitrary bipartite graph most resilient to
infection is NP-hard for any one-sided minimal degree d ≥ 1.

I. INTRODUCTION

The goal of our work is to study the resilience of bipartite
networks to the spread of diseases, viruses, or other conta-
gion. In our case, the bipartite networks will represent an
interaction between two types of agents. Examples of such
networks include clients and servers or persons and drinking
wells. In the former, one may need to connect clients to
servers in order to minimize the propagation of computer
viruses; in the latter, one may want to direct people to
drinking wells as to minimize the spread of infections.

Our main motivation, however, comes from the study of
the spread of sexually transmitted diseases in heterosexual
contact networks. This problem has been studied in the
economics community, with the assumption that each gender
has some (possibly asymmetric) partner distribution. An
influential paper in economics [1] shows that in a mean-
field model of HIV infection, strategic behavior on the part
of individuals can lead to two extreme equilibria, one in
which all individuals have a moderate number of partners
and one in which some individuals have very few partners
and other individuals have very many partners. We study the
same problem in the setting of finite networks.

Namely, the model we employ has been used by
Blume et al. [2], [3] to study the network resilience problem
in uniform-degree graphs, though we note that related models
have been recently considered, e.g. [4]. In a variant of the
Blume et al. model, vertices represent agents in the network
and edges represent pairwise interactions among the agents.
Each agent has an independent probability of being initially

*Department of Mathematics, Statistics, and Computer Science, Uni-
versity of Illinois at Chicago, Chicago, IL, 60607 United States.
{sheine4,willp,lreyzin}@uic.edu

infected and can further infect neighboring agents with some
probability (see Section II for details).

Moreover, to correspond to the motivation above, we
require the interaction graph to be bipartite as well as have
minimum degree on one side of the bipartition. The degree
restriction is weaker than that of Blume et al. [3] and allows
for a larger class of graphs.

We study extremal and computational aspects of the
model. Among our results, we show the following:
• We extend the analysis of the susceptibility of networks

to infection to the bipartite case, motivated by problems
in which there are two types of agents, such as computer
terminals/servers, human sexual networks, and maps of
shared resources.

• We show that the objective function, the expected frac-
tion of infected individuals in the network, corresponds
for specific choices of parameters to the expectation of
natural functions under independent edge percolation, a
widely studied model in probability and combinatorics.

• We characterize optimal graphs when one side of the
bipartition has uniform degree 1 and for higher degree
give optimal graphs for extremal choices of parameters.
(Theorems 1 and 2).

• We show that the two optimally resilient “extreme”
graphs in the d = 1 case are not sufficient in the d = 2
case (Theorem 3).

• We show that if we instead force a connectivity re-
quirement in lieu of a one-sided degree requirement,
we again find that the two obvious “extremes” are not
sufficient.

• We show that finding an optimal subnetwork of an
arbitrary graph is NP-hard even when the one-sided
degree restriction is d = 1. (Theorem 4).

II. MODEL

In this work, we are concerned with balanced bipartite
graphs on 2n nodes. In a balanced bipartite graph G =
(V,E), we have V = L∪R, with |L| = |R| = n. Our graphs
will also have the following asymmetric degree restriction:
all vertices in R have degree at least1 d > 0.

On such a graph G, the following infection process occurs.
Each node v becomes infected independently at random with
probability µ ‘by nature’. Then, infected nodes spread their
infections independently to adjacent uninfected nodes with
probability p. As each new node becomes infected, they

1For the task of finding structures most resilient to the spread of
infections, the optimal graphs will have the property that all vertices in
R will have degree exactly d.
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have one chance to infect their uninfected neighbors. This is
known as the independent cascade model in the literature [5].

Given that the above is a random process, we analyze
the expected number of infected nodes for a given choice
of n, µ, p, and graph G. The goal of our work is to
examine which networks among all bipartite graphs of a
minimal degree on one side are most resilient to the spread of
infections, i.e. which networks have the fewest infected nodes
in expectation. We also consider the computational hardness
of determining the optimal subnetwork of one-sided minimal
degree d of an arbitrary bipartite graph.

Blume et al. [2] study this model with respect to a
cost/benefit analysis. They consider strategic vertices who
receive utility for each link formed but are penalized if they
become infected. They show a gap between the optimal
graphs with respect to social welfare and graphs which
satisfy conditions for strategic equilibria. In this work we
are solely concerned with socially optimal graphs and do
not consider strategic behavior.

One way to interpret the model and the quantity we are
minimizing is with respect to independent edge percolation.
For a fixed graph G on n vertices, let each edge be present
independently with probability p. Let |C(v)| denote the size
of the (random) connected component containing the vertex
v. Then, one can easily calculate that

I(G) := 1− 1

n
E

[∑
v∈G

(1− µ)|C(v)|

]
(1)

is exactly the expected fraction of infected nodes in the (µ, p)
model.

Independent edge percolation on finite graphs is widely
studied in probability and combinatorics. If G is the complete
graph on n vertices, the model is the Erdős-Rényi random
graph. Edge percolation on regular lattices is the topic of
percolation theory in probability, and edge percolation on
more general graphs has also been studied [6], [7], [8], but
typically in the context of strong conditions (the ‘triangle
condition,’ conditions on expansion) that ensure certain be-
havior at the phase transition.

One topic in this field that has not been considered in depth
is extremal graphs with respect to percolation properties.
Network design to minimize the spread of infections is one
example of such a problem, but many more can be imagined.
In fact, several other quantities can be interpreted with regard
to the spread of infections. For example, let the random
variable

S(G) =
1

n

∑
v

|C(v)| (2)

be the average component size of a graph after p-edge
percolation. This quantity, known as the susceptibility, is
fundamental in the study of random graphs (e.g. [7],[9]). It is
not hard to show that the graph in a family of n-vertex graphs
that minimizes E[S(G)] also minimizes the expected number
of infected individuals in a single-origin model of infection
in which one vertex at random is infected by nature, and
then the infection spreads across edges with probability p.

In a different model, that of general thresholds as studied
in [3], half-regular bipartite graphs are already extremely
rich. It can be shown that for d = 1 every possible graph
can be optimal under some choice of settings (Proposition 1
in Section V).

III. INDEPENDENT CASCADE ON BIPARTITE GRAPHS

As in the work of Blume et al. [3], we solve the problem
of finding the optimal network satisfactorily for the smallest
non-trivial degree bound (d = 1 for half-regular bipartite
graphs, d = 2 for regular graphs), and for higher d we exhibit
two graphs that can be optimal.

First we characterize the d = 1 case, which is the
simplest case for this model. We first show that, depending
on the settings of µ and p, different graph structures become
optimal. Moreover, we can characterize the set of optimal
solutions – namely, the network structure that minimizes
I(G), the expected fraction of infected nodes, must always
be a matching or a star. Finally, we will point out that despite
the optimality of one of the two extreme cases, there is non-
monotonic behavior with respect to the size of the star.

A. Half-regular graphs with d=1

Theorem 1: For d = 1, all n, and all settings of µ and p,
either the perfect matching or an n-star (with n− 1 isolated
vertices) minimizes I(G).

Proof: We observe that each feasible graph is a
collection of stars with (possibly) some isolated vertices in
L. We therefore compute the expected fraction of infected
individuals in the union of a k-star and k−1 isolated vertices,
call this E[Ik]:

E[Ik] =
Lk + (k − 1)L0 + kRk

2k
, (3)

where Lj is the probability that a vertex of degree j in L is
infected, and Rj is the probability that a vertex in R joined
to a vertex of degree j is infected. Note that the expected
fraction of infected individuals in a perfect matching is
exactly E[I1] and the expected fraction in an n-star with
n− 1 isolated vertices in L is E[In]. We will show that for
k ∈ [1, n], E[Ik] is minimized at either k = 1 or k = n, and
since any feasible graph is a union of stars, this shows that
either the perfect matching or n-star is optimal.

We calculate

Lj = 1− (1− µ)(1− µp)j

and

Rj = µ+ p− µp− (1− µ)2p(1− µp)j−1,

giving

E[Ik] =
1− (1− µ)(1− µ)k + (k − 1)µ

2k

+
µ+ p− µp− (1− µ)2p(1− µp)k−1

2
.
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Now define

Q(k) :=
2(E[Ik]− E[I1])

1− µ
+ 2µp− p

=
1− (1− µp)k

k
− (1− µ)p(1− µp)k−1

=
1− αk

k
− βαk,

where we define α = 1− µp and β = (1−µ)p
1−µp .

We will show that whenever dQ
dk ≥ 0, d2Q

dk2 < 0, which
shows that Q is a unimodal function of k on the interval
[1, n] for any n, and in particular takes its minimum at one
of its endpoints. Because Q is a linear function of E[Ik],
this shows that E[Ik] takes its minimum at either k = 1 or
k = n. We can assume µ ∈ (0, 1) and p > 0, since otherwise
all E[Ik] is equal for all k.

We compute

dQ

dk
= − (1− αk) + k(1 + βk)αk logα

k2

and

d2Q

dk2
=

2(1− αk) + 2kαk log(α)− k2(1 + βk)αk log2 α

k3
(4)

and so

2k2
dQ

dk
+ k3

d2Q

dk2
= −αkk2 logα(2β + logα+ βk logα).

Since logα < 0, this is negative when 2β + log(α) +
βk log(α) is negative, i.e. when k > − 2

logα −
1
β , and so

for such k we have that whenever dQ
dk ≥ 0, d2Q

dk2 < 0. If
− 2

logα −
1
β < 1, then we are done, since we need Q to be

unimodal on [1, n].
Otherwise, for 2β + log(α) + βk log(α) ≥ 0, we show

directly that d2Q
dk2 is negative. From (4), we see that if

H(k) := 2(1− αk) + 2kαk log(α)− k2(1 + βk)αk log2 α

< 0,

then d2Q
dk2 < 0. We compute H(0) = 0 and

dH

dk
= −k2αk log2 α(3β + log(α) + bk log(α)),

which is negative when k > 0 and 3β+log(α)+bk log(α) >
0, which is true by assumption for this range of k since
β > 0.
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Fig. 1. Average infection probability as a function of the degree of a star,
for µ = 0.55 and p = 0.4.

Note that for n large enough, the matching is better than
the star if and only if µ < 1/2. However, there are already
surprising effects in the d = 1 case – for instance, while a star
can be better than a matching, a decomposition into smaller
stars can be worse than either. In Figure 1, for the fixed
parameters µ = .55, p = .4, we plot the expected fraction of
infected vertices in a k-star with k − 1 isolated vertices for
various values of k.

B. Half-regular graphs with d ≥ 2

For d ≥ 2, we first show two possibilities for optimal
graphs. We will prove the following proposition by solving
appropriate extremal percolation problems:

Theorem 2: Both a collection of Kd,d’s and Kd,n with
n−d isolated vertices can be optimal d-half-regular bipartite
graphs. In particular,

1) For any p and any d ≥ 1, for large enough n, there
exists µ close enough to 1 so that Kd,n with n − d
isolated vertices is optimal.

2) For any d and large enough n, there is a µ close enough
to 0, there exist p’s close enough to 0 and to 1 so that
a collection of Kd,d’s is optimal.

Proof: We prove the two parts separately:

1. If we set µ = 1− n−2, the RHS in Equation 1 becomes

1− n−3E[X0(G)] +O(n−4), (5)

where X0(G) is the number of isolated vertices after
p-edge percolation (each edge of the graph is deleted
independently with probability 1 − p). So for large enough
n, minimizing I(G) becomes equivalent to maximizing
the expected number of isolated vertices in a graph after
p-edge percolation. Since every vertex in R has the same
probability of being isolated due to the degree restriction,
we wish to maximize the fraction of vertices in L which are
isolated. The Kd,n configuration has n − d vertices which
are isolated with probability 1, and for n large enough the
contribution of the remaining d vertices becomes negligible.

2. Set µ = n−2. Then I(G) in Equation 1 becomes

n−3E

[∑
v

|C(v)|

]
+O(n−3),

and so minimizing I(G) becomes equivalent to minimizing
E[S(G)] from Equation 2. For p = 1, we keep all the edges
and so we need to minimize∑

v

|C(v)| =
∑
C

|C|2 ≤
∑
C∈CR

|C|2,

where the first sum is over all vertices, the second over all
components, and the third over all components containing a
vertex in R. Since a collection of Kd,d’s has no isolated ver-
tices in L, showing that such a graph minimizes

∑
C∈CR |C|

2

suffices. Considering all components containing a vertex in
R, we note that each component has at least d vertices from
L, and the sum of the number of vertices from R in all
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components equals n. Under these conditions, minimizing
with Lagrange multipliers gives each component of size 2d,
which is the Kd,d configuration.

For p→ 0, set µ = n−3, p = n−2. A similar calculation to
the above shows that minimizing I(G) in this case is equiv-
alent to minimizing

∑
C |E(C)|2, where the sum is over all

connected components and |E(C)| is the number of edges in
a component C. Again we can relax the minimization since
Kd,d’s will have no isolated L vertices, and show that a
collection of Kd,d’s minimizes

∑
C∈CR |E(C)|2. There are

at most n/d components in CR, and the total number of
edges is nd. Therefore n/d components of d2 edges each
minimizes

∑
|E(C)|2, which completes the proof.
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Fig. 2. The graphs are for d = 1 (left), d = 2 (center), and d = 3 (right),
for n → ∞. The x-axes are values of µ, and the y-axes are values of p.
The colored regions are where a Kd,d decomposition has a lower average
infection rate than Kd,n with n− d isolated vertices.

In Figure 2, after solving the cases exactly, we indicate
the regions in the parameter space for which Kd,d and
Kd,n are better than one another in the large n limit. It is
straightforward to show that as d→∞, the cut-off for p = 1
tends to 0, and for p→ 0 the cut-off tends to 1.

Given the results above, we might conjecture that for all
d ≥ 1 and 0 ≤ µ, p ≤ 1, either a Kd,d decomposition or Kd,n

with n − d isolated vertices would be the optimal d-half-
regular, balanced bipartite graph on 2n vertices. Presently,
however, we disprove such a conjecture.

Theorem 3: For d = 2, there exist 2-half-regular graphs
on 2n nodes that are more resilient than either a K2,2

decomposition or a K2,n with n− 2 isolated vertices.
Proof: We take n = 4 and consider the 2-half-regular

graph on 8 vertices composed of a union of a K3,2 and a
K1,2, with the degree requirement satisfied by the 3 vertices
on one side of the partition in the K3,2 together with the 1
vertex in the K1,2.

For the values µ = .302 and p = .801, this graph is
more resilient than either two copies of K2,2 or the K2,4

with two isolated vertices. For these parameter settings,
the average infection probabilities for the three graphs are
approximately2 .7197, .7207, and .7199, respectively. This
counterexample graph was discovered via a careful computer
search, using Equation 1, over all half-regular graphs and a
chosen set of settings for the parameters µ and p.

C. A note on connected graphs
We now briefly turn our attention back to the general

model and consider what would happen if we dispose of

2We give approximate values to sufficient precision to illustrate the
difference in resilience.

any degree restriction and instead force the graphs to be
connected. We show that with this different restriction, a
similar phenomenon occurs as in the d ≥ 2 case, with
optimally resilient graphs again not lying on “extremes.”
Connected graphs are interesting in models where edges can
be used for passing information, as well as disease. There,
finding connected resilient graphs preserves the ability to
spread information throughout the network while being as
resilient as possible to the spread of disease.

If we try to find the optimally resilient connected graph
for the µ, p model, we know that an optimal graph is always
a tree, since any graph with cycles can have an edge removed
without hurting resiliency. It is also interesting to note that,
because of this, connectivity naturally gives us a different
restriction on bipartite graphs than half-regularity.

A connectivity requirement is somewhat different than
the regular or half-regular case. For example, Kd,d decom-
positions, which are sometimes optimal in the half-regular
case, are no longer allowed if the graph must be connected.
Similarly, for d-regular graphs, Blume et al. [3] show that
the optimal 2-regular finite graph on 3n nodes is always a
triangle decomposition; this is again not connected.

It is then natural to begin by considering the path and
the star graphs.3 In the case of infinite graphs, it is easy to
exactly find the expected infection probability of both the
infinite star and the infinite path. For the case of the infinite
star, we can assume the center is infected (as long as µ, p
are constants > 0), and therefore the probability of infection
for a leaf is simply

µ+ (1− µ)p. (6)

In the case of the infinite path, Equation 1 gives an average
infection rate of

∞∑
i=1

i(1− (1− µ)i)pi(1− p)2 =
µp− µp3 + µ2p3

p(1− p+ µp)2
. (7)

It is also easy to see that the quantities in Expressions 6 and 7
are upper bounds for finite stars and paths, respectively, yet
either of these can be optimal depending on the settings of
µ and p.

The natural question again arises whether a star or a path
must always be the most resilient graph, and the answer is,
perhaps by now, unsurprisingly, no.

For n = 5, we compare the 5-path to the star on 5 nodes
to a 5-node “fork graph” (Figure 4), and we show that a
fork graph can be more resilient than either one of the two
“extremes.” For the values µ = .63 and p = .7, the average
infection probabilities for the star, path, and fork graphs
are approximately .8906, .8907, and .8905, respectively.
Figure III-C, computed from plotting the exact infection rates
on the three graphs shows the narrow region where the fork
is more resilient than the other two extreme graphs.

3We note that Blume et al. [3] show that the infinite path can be the
optimal 2-regular graph.
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Fig. 3. Left to right: the path, star, and fork graphs on 5 nodes. These
graphs comprise all the trees on 5 nodes, up to isomorphism. Hence, the
most resilient 5-node connected graph must come from this set of graphs,
∀ 0 ≤ u, p ≤ 1.

Fig. 4. The orange region is where the 5-path is the most resilient 5-
node connected graph; the green region is where the star on 5 nodes is the
most resilient 5-node connected graph; the small blue region in the center
is where the fork is the most resilient 5-node connected graph. µ runs along
the horizontal axis and p runs on the vertical axis.

IV. OPTIMAL SUBNETWORKS OF ARBITRARY GRAPHS

In this section we consider the problem of finding an
optimal bipartite subnetwork of arbitrary bipartite graphs.

Let G = (V,E) be a bipartite graph with V = L∪R with
degree ≥ d for vertices in R. We call the problem of finding
a subgraph of G, G′ = (V,E′), with minimum degree d for
vertices in R, as to minimize I(G′), the optimal bipartite
subnetwork problem.

Theorem 4: For all d ≥ 1 the optimal bipartite subnet-
work problem is NP-hard.

Proof: For d = 1 we reduce from exact set cover. An
instance of exact set cover is a family of subsets F of a
ground set U . The goal is to find a subcollection of sets
F ′ ⊆ F such that each element in U appears in exactly one
set in F ′. This problem is NP-hard [10]. We will assume
w.l.o.g. that all sets in F are the same size, k (we can append
new elements to smaller sets).

For our reduction, we construct an instance of the optimal
bipartite subnetwork problem as follows. The graph G will
contain vertices L ∪ R, with R = U and L = F . We form
an edge (l, r) ∈ E, where l ∈ F and r ∈ U if r ∈ l.
Applying Equation 5, there is a setting of µ and p such that
the optimal network will maximize the number of isolated
vertices, subject to our constraints.

It is clear that if an exact cover exists, there will be
subgraph of G with |F| − |U |/k isolated vertices – namely
the one that uses all edges from the cover. On the other hand,
if there is no exact cover, the number of isolated vertices will
be ≤ |F| − |U |/k − 1.

For d = 2, we use Theorem 2, part 2, that there exist
settings for µ and p such that a Kd,d decomposition is op-
timal in any graph if it exists. The problem of decomposing

a bipartite graph into vertex-disjoint K2,2 is NP-hard [11]
For d ≥ 3 we reduce from the problem of finding a d-

clique decomposition of an arbitrary graph, known to be NP-
hard [12]. An instance of a d-clique decomposition problem
is a graph G = (V,E) and a solution is a partition of G into
vertex-disjoint d-cliques.

For this reduction we make a bipartite graph Ĝ = (V̂ , Ê)
with V̂ = L ∪ R and |L| = |R| = |V | and (li, rj) ∈ Ê if
(vi, vj) ∈ E or i = j. Again, by Theorem 2, part 2, there
exist µ and p such that a Kd,d decomposition is optimal.
Such a decomposition will exist in our case if and only if
the original graph G had a d-clique decomposition.

V. GENERAL THRESHOLD MODEL

Blume et al. [3] consider a generalization of the (µ, p)
model which we will call the general threshold model. In this
model, each vertex is assigned a non-negative integer i which
represents the number of infected neighbors required to infect
that vertex. If i = 0, the vertex is infected ‘by nature’. We
assign these integers randomly and independently according
to some common distribution, where Pr[i] =: µi, and∑
µi = 1. The sequence {µi} comprises the parameters for

the model. The µ, p model is a special case of the cascade
model with

µi =

{
µ if i = 0

µi = (1− µ)p(1− p)i−1 if i ≥ 1.

In the case of d regular graphs, [3] shows that for d = 2,
the optimal graphs4 are collections of disjoint triangles or
the n-cycle. For d ≥ 3, they show that both collections of
disjoint (d + 1)-cliques and the infinite d-regular tree can
be optimal, but there are choices of parameters for which
neither is optimal.

For half-regular bipartite graphs, already the case d = 1
shows the richness of this model: each k-star can be optimal
under some choice of parameters:

Proposition 1: For every k ≥ 1 there exists ε small
enough so that for the choice of parameters µ0 = .6, µ1 = ε,
and µk+1 = .4− ε in the general threshold model, the k-star
is the optimal 1−half-regular bipartite graph.

Proof: Set the parameters of the general threshold
model as above. For j ≤ k, the expected fraction of infected
individuals in a j-star with j − 1 isolated vertices is:

E[Ij ] =
1

2j

[
.6 · 2j + ε(1− .4j) + .6εj +O(jε2)

]
= .6 + .3ε+

1− .4j

2j
ε+O(ε2)

The function 1−.4j
2j is a strictly decreasing function of j, so

for small enough ε the k-star is better than any j-star with

4Their choice of objective function is slightly different: they minimize
the maximum probability of infection over all vertices.
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j < k. And for j > k,

E[Ij ] ≥.6 + .3ε+
1− .4j

2j
ε+

(.4− ε)qj,k+1

2j

+
ε(.4− ε)

2j

j−1∑
i=k+1

(j − 1)pj,i

where qj,k+1 = Pr[Bin(j, .6) ≥ k + 1] and pj,i =
Pr[Bin(j, .6) = i]. For j ≤ 2k, and ε sufficiently small,
(.4−ε)qj,k+1

2j > 1−.4j
2j ε and so E[Ij ] > E[Ik]. For j > 2k, the

term ε(.4−ε)
2j

∑j−1
i=k+1(j−1)pj,i is bounded below by ε times

a constant independent of j, and so the k-star is optimal.
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