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SUMMARY

Networks and learning algorithms are key themes in artificial intelligence (AI). The nodes

and edges in networks can be used to model the connections of a vast community of internet-of-

things (IoT) devices, the internet, and distributed databases, among other important computing

contexts for AI. Learning algorithms, which generate trained models, can be strategically de-

signed to learn from a variety of data-rich networks, such as sensor networks, device networks,

or even networks of humans working on crowdsourcing tasks. In real-world settings, noise

generated from sources such as device inaccuracy or human error are unavoidable. Likewise,

attacks in real-world networks, such as the injection of malware, are inevitable due to their

ever-evolving sophistication.

In this thesis, we study the intrusions of noise and malicious attacks on networks and learn-

ing from networks. We devise structural and algorithmic solutions for mitigating the effects of

these unwanted intrusions. In Chapter 2, we consider viral propagation under the independent

cascade model of infection spread on half-regular bipartite networks and characterize the most

resilient structures. We then shift to the learning setting in Chapters 3 and 4, where we study

learning from data-rich networks in the presence of noise. In Chapter 3, we study learning and

generalizing from a network of crowd workers, where crowd workers provide erroneous labels to

unlabelled data at fixed, unknown error rates, known as the classification noise model. In this

setting, we develop a three-step probably approximately correct (PAC) algorithm that incor-

porates majority voting, pure-exploration bandits, and noisy-PAC learning and demonstrate

xii



SUMMARY (Continued)

our algorithm’s improvement over baseline approaches. In Chapter 4, we study learning from

a network of participants, each with their own distribution on the unlabelled data, under the

classification noise model. We develop collaborative PAC algorithms robust to classification

noise and prove sample complexity bounds. We also study the communication complexity of

collaborative PAC learning, with and without classification noise, and develop communication

efficient algorithms in both settings.
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CHAPTER 1

INTRODUCTION

Networks and learning algorithms are key themes in AI. A network consists of nodes con-

nected by either directed or undirected edges. In the context of AI, nodes can represent people,

objects, entities, or devices, among other representations. The work in this thesis considers

networks where nodes represent sources of data. Edges in a network can represent physical

connections, such as computers connected by cables, or abstract connections, such as humans

belonging to the same social network. Therefore, networks can model the connections of a vast

community of IoT devices, the internet, and distributed databases, among other important

computing contexts for AI. Attacks in real-world networks, such as the injection of malware,

are inevitable due to their ever-evolving sophistication. In Chapter 2, we consider viral propa-

gation in a particular class of networks, half-regular bipartite networks, and determine which

half-regular bipartite structures yield the smallest expected fraction of infected nodes. The

results in this chapter inform on how to best arrange nodes and edges of a network in the

presence of viral propagation. Chapter 2 is essentially self-contained and an introduction of the

necessary background is deferred to that chapter.

Chapters 3 and 4 focus on algorithms that learn from networks in the presence of noise.

Learning algorithms, which generate trained models, can be strategically designed to learn from

a variety of data-rich networks, such as sensor networks, device networks, or even networks of

humans working on crowdsourcing tasks. In real-world settings, noise generated from sources

1
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such as device inaccuracy or human error are unavoidable. The work in these chapters depend

on fundamentals of learning theory. We review the necessary background in this section. A

more thorough foundation in learning theory can be found in [4, 5].

1.1 Notation

We begin with basic notation used throughout this thesis. Let X denote the instance space

consisting of all possible examples. Let Y denote the set of all possible labels for the data in

X. In this thesis, Y = {0, 1} since we deal primarily with binary classification. A concept, or

hypothesis, h, is a mapping from X to Y . A concept class C is a set of concepts that a learning

algorithm attempts to learn. Let c∗ ∈ C denote the target concept. A hypothesis class H is a

set of hypotheses given to a learning algorithm. In general, the goal of the learning algorithm

is to select some h ∈ H that approximates c∗ ∈ C. The precise learning criteria of interest in

this thesis is discussed in the next sections.

To evaluate the cost of a learning algorithm, we focus on the resources consumed asymptot-

ically with respect to the relevant parameters. We use the conventional Big-O and Big-Omega

notation to describe the quantity of resources consumed asymptotically.

Definition (Big-O Notation [5]). We say that f(n) = O(g(n)) if there exists c0, n0 > 0 such

that for all n ≥ n0, f(n) ≤ c0g(n).

Definition (Big-Omega Notation [5]). We say that f(n) = Ω(g(n)) if there exists c0, n0 > 0

such that for all n ≥ n0, f(n) ≥ c0g(n).
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Definition (Big-Theta Notation [5]). We say that f(n) = Θ(g(n)) if f(n) = O(g(n)) and

f(n) = Ω(g(n)). If f(n) = Θ(g(n)), then we say that the bounds for f(n) are asymptotically

tight.

We sometimes use the notation Õ to indicate Big-O notation with hidden polylogarithmic

factors of present parameters. The main resource we will be concerned with is the number of

samples consumed by an algorithm. This is defined precisely as the sample complexity and we

review the related notions in the next section.

1.2 Sample Complexity

We now review the definitions of sample complexity of a learning algorithm.

Definition (Sufficient Sample Size [5]). A sufficient sample size for a learning algorithm A is

a number of samples m0 ∈ N so that for sample size m ≥ m0 the learning criteria is satisfied

for any distribution and any target function.

Definition (Sample Complexity [5]). The sample complexity, mA, of a learning algorithm A

is the smallest number of samples sufficient for learning; that is, mA = min{m|m = m0}.

Definition (Sample Complexity Lower Bound [5]). A sample complexity lower bound, mL, is

a lower bound on the number of samples required to learn H regardless of the learning algorithm

used; that is, mL = minAmA.

In the next section, we discuss the details of the learning model used in this thesis, the PAC

learning model.
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1.3 PAC Learning

The probably approximately correct (PAC) learning model outlines criteria for successfully

learning a concept class C using a hypothesis class H given any distribution D on X and any

error rate ε and confidence 1− δ. We will assume that H and C are large, so we analyze H and

C in terms of their VC-dimensions, defined below.

Definition (Shatter [4]). A set of functions H shatters a set of points S ⊆ X if H realizes all

labelings of points in S.

Definition (VC-dimension [4]). The VC-dimension of a set H is the size of the largest set that

can be fully shattered by H.

We let d denote the VC-dimension of the hypothesis class H. Before defining PAC learning,

we review two notions of error needed to evaluate a hypothesis h - the empirical error and the

generalization error.

Definition (Empirical Error [4]). Let h∗ denote the target hypothesis. Let S ∼ Dm denote a

sample of size m drawn from distribution D ∼ X. The empirical error of hypothesis h is defined

as

ˆerrD(h) =
1

m

m∑
i=1

1h∗(xi)6=h(xi)

Definition (Generalization Error [4]). Let h∗ denote the target hypothesis. The generalization

error of hypothesis h is defined as

errD(h) = Pr
S∼Dm

[h∗(x) 6= h(x)].



5

We now define the PAC learning criteria. There are two settings of PAC learning considered

in this thesis. The first setting is the realizable setting, where the target function is in the

hypothesis set.

Definition (Realizable PAC Learning [4,5]). Let H be a hypothesis class of finite VC-dimension

d. Then, algorithm A is an realizable PAC learning algorithm for C using H if for any target

c∗ ∈ C, for any distribution D ∼ X and any ε, δ > 0, A returns h ∈ H so that with probability

1− δ,

errD(h) ≤ ε,

with sample complexity mA polynomial in 1
ε and 1

δ .

We note that in the realizable setting, H and C can be different sets. In this thesis, we

generally assume that H = C, known as the proper PAC learning setting. The second setting

of PAC learning is the agnostic, or non-realizable setting, where the target function is not

necessarily in the hypothesis set.

Definition (Agnostic, Non-Realizable, PAC Learning [4, 5]). Let H be a hypothesis class of

finite VC-dimension d. Then, algorithm A is an agnostic, or non-realizable, PAC learning

algorithm using H if for any distribution D ∼ X ×{0, 1} and any ε, δ > 0, A returns h ∈ H so

that with probability 1− δ,

errD(h) ≤ min
h′∈H

errD(h′) + ε,

with sample complexity mA polynomial in 1
ε and 1

δ .
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1.3.1 Sample Complexity Bounds of PAC Learning

Upper and lower sample complexity bounds of realizable and non-realizable PAC learning

are well known. We rely on these bounds heavily in our algorithm analyses. Let mε,δ denote

the sample complexity of PAC learning. We first consider a sample complexity upper bound

in the realizable setting. A sufficient method for PAC learning is identifying a hypothesis in H

that is consistent with the sample S ∼ Dm. The size of S is outlined in the following result.

Theorem 1 (Upper Bound, Realizable [4–6]). Let H be a hypothesis class of finite VC-

dimension d. By [7], for any PAC learning algorithm that finds a consistent hypothesis,

mε,δ = O

(
1

ε

(
d log

(
1

ε

)
+ log

(
1

δ

)))
.

The following upper bound is sometimes better, and due to [8]:

mε,δ = O

(
d

ε
ln

(
1

δ

))
.

In this thesis we default to the second upper bound, O(dε ln(1
δ )), in the above theorem as the

sample complexity upper bound of PAC learning. We now consider the sample complexity upper

bound of non-realizable (agnostic) PAC learning. Recall that in the non-realizable setting, the

target concept may not be in H. Therefore, finding a consistent hypothesis may not be possible.

However, it has been shown that the generalization of a consistent hypothesis, an empirical risk

minimizing (ERM) hypothesis, is sufficient for PAC learning.
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Theorem 2 (Upper Bound, Non-realizable [4, 5]). Let H be a hypothesis class of finite VC-

dimension d. For any PAC learning algorithm that finds an ERM,

mε,δ = O

(
d

ε2
ln

(
1

δ

))
.

Finally, we recall sample complexity lower bounds in both the realizable and non-realizable

PAC learning settings.

Lemma 3 (Lower Bound, Realizable [4–6]). Let H be a hypothesis class of finite VC-dimension

d. For any PAC learning algorithm, there exists a distribution D and a target function h∗ ∈ H

such that for any ε < 1
8 and δ < 1

100 ,

mε,δ = Ω

(
d

ε

)
.

Furthermore, if H contains at least three functions, then

mε,δ = Ω

(
1

ε
ln

(
1

δ

))
,

for all 0 < ε < 3
4 and 0 < δ < 1. Together, these results imply that for all 0 < ε ≤ 1

8 and

0 < δ ≤ 1
100 ,

mε,δ = Ω

(
d

ε
+

1

ε
ln

(
1

δ

))
.
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1.3.2 PAC Learning with Classification Noise

We review PAC learning in the presence of classification noise (CN), introduced in [9]. We

will sometimes refer to this setting as noisy-PAC learning. We recall the main result in [9],

optimized and adapted for hypothesis classes of finite VC-dimension in [10], which prescribes

the number of samples that must be drawn from a noisy oracle in order to PAC learn H. Let

mε,δ,η denote the sample complexity of PAC learning with CN setting.

Theorem 4 ([9, 10]). Let H denote a hypothesis class with finite VC-dimension d. Let D

be a distribution on X and η < 1
2 . Let EXη(·) denote an oracle that returns (x, h∗(x)) with

probability 1 − η or (x,¬h∗(x)) with probability η. Given any sample S drawn from EXη, an

algorithm A that produces a hypothesis h ∈ H that minimizes disagreements with S satisfies the

PAC criterion, i.e. for any ε, δ > 0 and any distribution D on X,

Pr
S∼Dm

[errD(h) ≥ ε] ≤ δ,

with sample complexity

mε,δ,η = O

(
d

ε(1− 2η)2
ln

(
1

δ

))
.

We now recall the sample complexity lower bound for learning in the presence of random

classification noise.
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Theorem 5 ( [11, 12]). Let C be a concept class of finite VC-dimension d ≥ 2. By [12], for

all ε ≤ 1/3, δ < 1/120 and η ≥ 29/60, PAC learning C in the presence of classification noise

requires at least

mε,δ,η = Ω

(
1

ε(1− 2η)2
ln

(
1

δ

))

samples. By [11], at least

mε,δ,η = Ω

(
d

ε(1− 2η)2

)

samples are required to PAC learning in the presence of classification noise. Together, the lower

bound is then,

mε,δ,η = Ω

(
d

ε(1− 2η)2
+

1

ε(1− 2η)2
ln

(
1

δ

))
.

1.4 Concentration Inequalities

We now review concentration inequalities used in some of our proofs.

Theorem 6 (Markov’s Inequality [4]). Let X denote a non-negative random variable with

E[X] <∞. Let k > 0. Then,

Pr[X ≥ kE[X]] ≤ E[X]

k
.

Theorem 7 (Hoeffding’s Inequality [4]). Let X1, ..., Xn be independent random variables taking

values Xi ∈ [ai, bi]. Let X =
∑n

i=1Xi. For any ε > 0,

Pr
X∼Dn

[X − E(X) ≥ ε] ≤ exp

(
−2ε2∑m

i=1(bi − ai)2

)
.



10

Theorem 8 (Multiplicative Chernoff Bounds [5,13]). Suppose Xi, ..., Xn are independent ran-

dom variables taking values Xi ∈ {0, 1} and Pr(Xi = 1) = pi for all i ∈ [1, n]. Let X =
∑n

i=1Xi

and s ∈ (0, 1). Then,

Pr[X ≤ (1− s)E(X)] ≤ exp

(
−s2E(X)n

2

)

Pr[X ≥ (1 + s)E(X)] ≤ exp

(
−s2E(X)n

3

)
.

If s ≥ 1,

Pr[X ≤ (1 + s)E(X)] ≤ exp

(
−sE(X)n

3

)
.



CHAPTER 2

BIPARTITE NETWORK RESILIENCE

This chapter was previously published as On the Resilience of Bipartite Networks by Shelby

Heinecke, Will Perkins, and Lev Reyzin [1]. The code used for computations can be found in

Appendix A.

2.1 Introduction

The goal of our work is to study the resilience of bipartite networks to the spread of diseases,

viruses, or other contagion. In our case, the bipartite networks will represent an interaction

between two types of agents. Examples of such networks include clients and servers or persons

and drinking wells. In the former, one may need to connect clients to servers in order to

minimize the propagation of computer viruses; in the latter, one may want to direct people to

drinking wells as to minimize the spread of infections.

Our main motivation, however, comes from the study of the spread of sexually transmitted

diseases in heterosexual contact networks. This problem has been studied in the economics

community, with the assumption that each gender has some (possibly asymmetric) partner

distribution. An influential paper in economics [14] shows that in a mean-field model of HIV

infection, strategic behavior on the part of individuals can lead to two extreme equilibria, one

in which all individuals have a moderate number of partners and one in which some individuals

11
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have very few partners and other individuals have very many partners. We study the same

problem in the setting of finite networks.

Namely, the model we employ has been used by Blume et al. [15, 16] to study the network

resilience problem in uniform-degree graphs, though we note that related models have been

recently considered, e.g. [17]. In a variant of the Blume et al. model, vertices represent agents

in the network and edges represent pairwise interactions among the agents. Each agent has

an independent probability of being initially infected and can further infect neighboring agents

with some probability (see Section 2.2 for details).

Moreover, to correspond to the motivation above, we require the interaction graph to be

bipartite as well as have minimum degree on one side of the bipartition. The degree restriction

is weaker than that of Blume et al. [16] and allows for a larger class of graphs.

We study extremal and computational aspects of the model. Among our results, we show

the following:

• We extend the analysis of the susceptibility of networks to infection to the bipartite

case, motivated by problems in which there are two types of agents, such as computer

terminals/servers, human sexual networks, and maps of shared resources.

• We show that the objective function, the expected fraction of infected individuals in

the network, corresponds for specific choices of parameters to the expectation of natural

functions under independent edge percolation, a widely studied model in probability and

combinatorics.
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• We characterize optimal graphs when one side of the bipartition has uniform degree 1

and for higher degree give optimal graphs for extremal choices of parameters. (Theorems

1 and 2).

• We show that the two optimally resilient “extreme” graphs in the d = 1 case are not

sufficient in the d = 2 case (Theorem 3).

• We show that if we instead force a connectivity requirement in lieu of a one-sided degree

requirement, we again find that the two obvious “extremes” are not sufficient.

• We show that finding an optimal subnetwork of an arbitrary graph is NP-hard even when

the one-sided degree restriction is d = 1. (Theorem 4).

2.2 Model

In this work, we are concerned with balanced bipartite graphs on 2n nodes. In a balanced

bipartite graph G = (V,E), we have V = L ∪R, with |L| = |R| = n. Our graphs will also have

the following asymmetric degree restriction: all vertices in R have degree at least1 d > 0.

On such a graph G, the following infection process occurs. Each node v becomes infected

independently at random with probability µ ‘by nature’. Then, infected nodes spread their

infections independently to adjacent uninfected nodes with probability p. As each new node

becomes infected, they have one chance to infect their uninfected neighbors. This is known as

the independent cascade model in the literature [18].

1For the task of finding structures most resilient to the spread of infections, the optimal graphs will
have the property that all vertices in R will have degree exactly d.
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Given that the above is a random process, we analyze the expected number of infected

nodes for a given choice of n, µ, p, and graph G. The goal of our work is to examine which

networks among all bipartite graphs of a minimal degree on one side are most resilient to the

spread of infections, i.e. which networks have the fewest infected nodes in expectation. We

also consider the computational hardness of determining the optimal subnetwork of one-sided

minimal degree d of an arbitrary bipartite graph.

Blume et al. [15] study this model with respect to a cost/benefit analysis. They consider

strategic vertices who receive utility for each link formed but are penalized if they become

infected. They show a gap between the optimal graphs with respect to social welfare and

graphs which satisfy conditions for strategic equilibria. In this work we are solely concerned

with socially optimal graphs and do not consider strategic behavior.

One way to interpret the model and the quantity we are minimizing is with respect to

independent edge percolation. For a fixed graph G on n vertices, let each edge be present inde-

pendently with probability p. Let |C(v)| denote the size of the (random) connected component

containing the vertex v. Then, one can easily calculate that

I(G) := 1− 1

n
E

[∑
v∈G

(1− µ)|C(v)|

]

is exactly the expected fraction of infected nodes in the (µ, p) model.

Independent edge percolation on finite graphs is widely studied in probability and com-

binatorics. If G is the complete graph on n vertices, the model is the Erdős-Rényi random
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graph. Edge percolation on regular lattices is the topic of percolation theory in probability,

and edge percolation on more general graphs has also been studied [19–21], but typically in

the context of strong conditions (the ‘triangle condition,’ conditions on expansion) that ensure

certain behavior at the phase transition.

One topic in this field that has not been considered in depth is extremal graphs with respect

to percolation properties. Network design to minimize the spread of infections is one example

of such a problem, but many more can be imagined. In fact, several other quantities can be

interpreted with regard to the spread of infections. For example, let the random variable

S(G) =
1

n

∑
v

|C(v)|

be the average component size of a graph after p-edge percolation. This quantity, known as the

susceptibility, is fundamental in the study of random graphs (e.g. [20], [22]). It is not hard to

show that the graph in a family of n-vertex graphs that minimizes E[S(G)] also minimizes the

expected number of infected individuals in a single-origin model of infection in which one vertex

at random is infected by nature, and then the infection spreads across edges with probability p.

In a different model, that of general thresholds as studied in [16], half-regular bipartite

graphs are already extremely rich. It can be shown that for d = 1 every possible graph can be

optimal under some choice of settings (Proposition 1 in Section 2.5).
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2.3 Independent Cascade on Bipartite Graphs

As in the work of Blume et al. [16], we solve the problem of finding the optimal network

satisfactorily for the smallest non-trivial degree bound (d = 1 for half-regular bipartite graphs,

d = 2 for regular graphs), and for higher d we exhibit two graphs that can be optimal.

First we characterize the d = 1 case, which is the simplest case for this model. We first

show that, depending on the settings of µ and p, different graph structures become optimal.

Moreover, we can characterize the set of optimal solutions – namely, the network structure that

minimizes I(G), the expected fraction of infected nodes, must always be a matching or a star.

Finally, we will point out that despite the optimality of one of the two extreme cases, there is

non-monotonic behavior with respect to the size of the star.

2.3.1 Half-Regular Graphs with d = 1

Theorem 1. For d = 1, all n, and all settings of µ and p, either the perfect matching or an

n-star (with n− 1 isolated vertices) minimizes I(G).

Proof. We observe that each feasible graph is a collection of stars with (possibly) some isolated

vertices in L. We therefore compute the expected fraction of infected individuals in the union

of a k-star and k − 1 isolated vertices, call this E[Ik]:

E[Ik] =
Lk + (k − 1)L0 + kRk

2k
,

where Lj is the probability that a vertex of degree j in L is infected, and Rj is the probability

that a vertex in R joined to a vertex of degree j is infected. Note that the expected fraction of
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infected individuals in a perfect matching is exactly E[I1] and the expected fraction in an n-star

with n− 1 isolated vertices in L is E[In]. We will show that for k ∈ [1, n], E[Ik] is minimized at

either k = 1 or k = n, and since any feasible graph is a union of stars, this shows that either

the perfect matching or n-star is optimal.

We calculate

Lj = 1− (1− µ)(1− µp)j

and

Rj = µ+ p− µp− (1− µ)2p(1− µp)j−1,

giving

E[Ik] =
1− (1− µ)(1− µ)k + (k − 1)µ

2k

+
µ+ p− µp− (1− µ)2p(1− µp)k−1

2
.

Now define

Q(k) :=
2(E[Ik]− E[I1])

1− µ
+ 2µp− p

=
1− (1− µp)k

k
− (1− µ)p(1− µp)k−1

=
1− αk

k
− βαk,
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where we define α = 1− µp and β = (1−µ)p
1−µp .

We will show that whenever dQ
dk ≥ 0, d2Q

dk2
< 0, which shows that Q is a unimodal function

of k on the interval [1, n] for any n, and in particular takes its minimum at one of its endpoints.

Because Q is a linear function of E[Ik], this shows that E[Ik] takes its minimum at either k = 1

or k = n. We can assume µ ∈ (0, 1) and p > 0, since otherwise all E[Ik] is equal for all k.

We compute

dQ

dk
= −(1− αk) + k(1 + βk)αk logα

k2

and

d2Q

dk2
=

2(1− αk) + 2kαk log(α)− k2(1 + βk)αk log2 α

k3

and so

2k2dQ

dk
+ k3d

2Q

dk2
= −αkk2 logα(2β + logα+ βk logα).

Since logα < 0, this is negative when 2β + log(α) + βk log(α) is negative, i.e. when k >

− 2
logα −

1
β , and so for such k we have that whenever dQ

dk ≥ 0, d2Q
dk2

< 0. If − 2
logα −

1
β < 1, then

we are done, since we need Q to be unimodal on [1, n].
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Otherwise, for 2β + log(α) + βk log(α) ≥ 0, we show directly that d2Q
dk2

is negative. From

(2.3.1), we see that if

H(k) := 2(1− αk) + 2kαk log(α)− k2(1 + βk)αk log2 α

< 0,

then d2Q
dk2

< 0. We compute H(0) = 0 and

dH

dk
= −k2αk log2 α(3β + log(α) + bk log(α)),

which is negative when k > 0 and 3β + log(α) + bk log(α) > 0, which is true by assumption for

this range of k since β > 0.

5 10 15 20 25 30
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Figure 1: Average infection probability as a function of the degree of a star, for µ = 0.55 and

p = 0.4.
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Note that for n large enough, the matching is better than the star if and only if µ < 1/2.

However, there are already surprising effects in the d = 1 case – for instance, while a star can

be better than a matching, a decomposition into smaller stars can be worse than either. In

Figure 1, for the fixed parameters µ = .55, p = .4, we plot the expected fraction of infected

vertices in a k-star with k − 1 isolated vertices for various values of k.

2.3.2 Half-Regular Graphs with d ≥ 2

For d ≥ 2, we first show two possibilities for optimal graphs. We will prove the following

proposition by solving appropriate extremal percolation problems:

Theorem 2. Both a collection of Kd,d’s and Kd,n with n − d isolated vertices can be optimal

d-half-regular bipartite graphs. In particular,

1. For any p and any d ≥ 1, for large enough n, there exists µ close enough to 1 so that

Kd,n with n− d isolated vertices is optimal.

2. For any d and large enough n, there is a µ close enough to 0, there exist p’s close enough

to 0 and to 1 so that a collection of Kd,d’s is optimal.

Proof. We prove the two parts separately:

1. If we set µ = 1− n−2, the RHS in 2.2 becomes

1− n−3E[X0(G)] +O(n−4),
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where X0(G) is the number of isolated vertices after p-edge percolation (each edge of the graph

is deleted independently with probability 1 − p). So for large enough n, minimizing I(G) be-

comes equivalent to maximizing the expected number of isolated vertices in a graph after p-edge

percolation. Since every vertex in R has the same probability of being isolated due to the de-

gree restriction, we wish to maximize the fraction of vertices in L which are isolated. The Kd,n

configuration has n − d vertices which are isolated with probability 1, and for n large enough

the contribution of the remaining d vertices becomes negligible.

2. Set µ = n−2. Then I(G) in 2.2 becomes

n−3E

[∑
v

|C(v)|

]
+O(n−3),

and so minimizing I(G) becomes equivalent to minimizing E[S(G)] from 2.2. For p = 1, we

keep all the edges and so we need to minimize

∑
v

|C(v)| =
∑
C

|C|2 ≤
∑
C∈CR

|C|2,

where the first sum is over all vertices, the second over all components, and the third over all

components containing a vertex in R. Since a collection of Kd,d’s has no isolated vertices in L,

showing that such a graph minimizes
∑

C∈CR |C|
2 suffices. Considering all components contain-

ing a vertex in R, we note that each component has at least d vertices from L, and the sum of
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the number of vertices from R in all components equals n. Under these conditions, minimizing

with Lagrange multipliers gives each component of size 2d, which is the Kd,d configuration.

For p→ 0, set µ = n−3, p = n−2. A similar calculation to the above shows that minimizing

I(G) in this case is equivalent to minimizing
∑

C |E(C)|2, where the sum is over all connected

components and |E(C)| is the number of edges in a component C. Again we can relax the

minimization since Kd,d’s will have no isolated L vertices, and show that a collection of Kd,d’s

minimizes
∑

C∈CR |E(C)|2. There are at most n/d components in CR, and the total number of

edges is nd. Therefore n/d components of d2 edges each minimizes
∑
|E(C)|2, which completes

the proof.
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Figure 2: The graphs are for d = 1 (left), d = 2 (center), and d = 3 (right), for n → ∞. The

x-axes are values of µ, and the y-axes are values of p. The colored regions are where a Kd,d

decomposition has a lower average infection rate than Kd,n with n− d isolated vertices.
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In Figure 2, after solving the cases exactly, we indicate the regions in the parameter space

for which Kd,d and Kd,n are better than one another in the large n limit. It is straightforward

to show that as d→∞, the cut-off for p = 1 tends to 0, and for p→ 0 the cut-off tends to 1.

Given the results above, we might conjecture that for all d ≥ 1 and 0 ≤ µ, p ≤ 1, either a

Kd,d decomposition or Kd,n with n − d isolated vertices would be the optimal d-half-regular,

balanced bipartite graph on 2n vertices. Presently, however, we disprove such a conjecture.

Theorem 3. For d = 2, there exist 2-half-regular graphs on 2n nodes that are more resilient

than either a K2,2 decomposition or a K2,n with n− 2 isolated vertices.

Proof. We take n = 4 and consider the 2-half-regular graph on 8 vertices composed of a union

of a K3,2 and a K1,2, with the degree requirement satisfied by the 3 vertices on one side of the

partition in the K3,2 together with the 1 vertex in the K1,2.

For the values µ = .302 and p = .801, this graph is more resilient than either two copies of

K2,2 or the K2,4 with two isolated vertices. For these parameter settings, the average infection

probabilities for the three graphs are approximately1 .7197, .7207, and .7199, respectively. This

counterexample graph was discovered via a careful computer search, using 2.2, over all half-

regular graphs and a chosen set of settings for the parameters µ and p.

2.3.3 A Note on Connected Graphs

We now briefly turn our attention back to the general model and consider what would

happen if we dispose of any degree restriction and instead force the graphs to be connected.

1We give approximate values to sufficient precision to illustrate the difference in resilience.
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We show that with this different restriction, a similar phenomenon occurs as in the d ≥ 2 case,

with optimally resilient graphs again not lying on “extremes.” Connected graphs are interesting

in models where edges can be used for passing information, as well as disease. There, finding

connected resilient graphs preserves the ability to spread information throughout the network

while being as resilient as possible to the spread of disease.

If we try to find the optimally resilient connected graph for the µ, p model, we know that an

optimal graph is always a tree, since any graph with cycles can have an edge removed without

hurting resiliency. It is also interesting to note that, because of this, connectivity naturally

gives us a different restriction on bipartite graphs than half-regularity.

A connectivity requirement is somewhat different than the regular or half-regular case. For

example, Kd,d decompositions, which are sometimes optimal in the half-regular case, are no

longer allowed if the graph must be connected. Similarly, for d-regular graphs, Blume et al. [16]

show that the optimal 2-regular finite graph on 3n nodes is always a triangle decomposition;

this is again not connected.

It is then natural to begin by considering the path and the star graphs.1 In the case of

infinite graphs, it is easy to exactly find the expected infection probability of both the infinite

star and the infinite path. For the case of the infinite star, we can assume the center is infected

(as long as µ, p are constants > 0), and therefore the probability of infection for a leaf is simply

µ+ (1− µ)p.

1We note that Blume et al. [16] show that the infinite path can be the optimal 2-regular graph.
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In the case of the infinite path, 2.2 gives an average infection rate of

∞∑
i=1

i(1− (1− µ)i)pi(1− p)2 =
µp− µp3 + µ2p3

p(1− p+ µp)2
.

It is also easy to see that the quantities in 2.3.3 and 2.3.3 are upper bounds for finite stars and

paths, respectively, yet either of these can be optimal depending on the settings of µ and p.

The natural question again arises whether a star or a path must always be the most resilient

graph, and the answer is, perhaps by now, unsurprisingly, no.

Figure 3: Left to right: the path, star, and fork graphs on 5 nodes. These graphs comprise

all the trees on 5 nodes, up to isomorphism. Hence, the most resilient 5-node connected graph

must come from this set of graphs, ∀ 0 ≤ u, p ≤ 1.

For n = 5, we compare the 5-path to the star on 5 nodes to a 5-node “fork graph” (Figure 3),

and we show that a fork graph can be more resilient than either one of the two “extremes.”

For the values µ = .63 and p = .7, the average infection probabilities for the star, path, and

fork graphs are approximately .8906, .8907, and .8905, respectively. Figure 4, computed from
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plotting the exact infection rates on the three graphs shows the narrow region where the fork

is more resilient than the other two extreme graphs.

Figure 4: The orange region is where the 5-path is the most resilient 5-node connected graph;

the green region is where the star on 5 nodes is the most resilient 5-node connected graph; the

small blue region in the center is where the fork is the most resilient 5-node connected graph.

µ runs along the horizontal axis and p runs on the vertical axis.
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2.4 Optimal Subnetworks of Arbitrary Graphs

In this section we consider the problem of finding an optimal bipartite subnetwork of arbi-

trary bipartite graphs.

Let G = (V,E) be a bipartite graph with V = L ∪R with degree ≥ d for vertices in R. We

call the problem of finding a subgraph of G, G′ = (V,E′), with minimum degree d for vertices

in R, as to minimize I(G′), the optimal bipartite subnetwork problem.

Theorem 4. For all d ≥ 1 the optimal bipartite subnetwork problem is NP-hard.

Proof. For d = 1 we reduce from exact set cover. An instance of exact set cover is a family of

subsets F of a ground set U . The goal is to find a subcollection of sets F ′ ⊆ F such that each

element in U appears in exactly one set in F ′. This problem is NP-hard [23]. We will assume

w.l.o.g. that all sets in F are the same size, k (we can append new elements to smaller sets).

For our reduction, we construct an instance of the optimal bipartite subnetwork problem

as follows. The graph G will contain vertices L ∪ R, with R = U and L = F . We form an

edge (l, r) ∈ E, where l ∈ F and r ∈ U if r ∈ l. Applying 2.3.2, there is a setting of µ and

p such that the optimal network will maximize the number of isolated vertices, subject to our

constraints.

It is clear that if an exact cover exists, there will be subgraph of G with |F|− |U |/k isolated

vertices – namely the one that uses all edges from the cover. On the other hand, if there is no

exact cover, the number of isolated vertices will be ≤ |F| − |U |/k − 1.
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For d = 2, we use Theorem 2, part 2, that there exist settings for µ and p such that a Kd,d

decomposition is optimal in any graph if it exists. The problem of decomposing a bipartite

graph into vertex-disjoint K2,2 is NP-hard [24]

For d ≥ 3 we reduce from the problem of finding a d-clique decomposition of an arbitrary

graph, known to be NP-hard [25]. An instance of a d-clique decomposition problem is a graph

G = (V,E) and a solution is a partition of G into vertex-disjoint d-cliques.

For this reduction we make a bipartite graph Ĝ = (V̂ , Ê) with V̂ = L∪R and |L| = |R| = |V |

and (li, rj) ∈ Ê if (vi, vj) ∈ E or i = j. Again, by Theorem 2, part 2, there exist µ and p such

that a Kd,d decomposition is optimal. Such a decomposition will exist in our case if and only

if the original graph G had a d-clique decomposition.

2.5 General Threshold Model

Blume et al. [16] consider a generalization of the (µ, p) model which we will call the general

threshold model. In this model, each vertex is assigned a non-negative integer i which represents

the number of infected neighbors required to infect that vertex. If i = 0, the vertex is infected

‘by nature’. We assign these integers randomly and independently according to some common

distribution, where Pr[i] =: µi, and
∑
µi = 1. The sequence {µi} comprises the parameters for

the model. The µ, p model is a special case of the cascade model with

µi =


µ if i = 0

µi = (1− µ)p(1− p)i−1 if i ≥ 1.
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In the case of d regular graphs, [16] shows that for d = 2, the optimal graphs1 are collections

of disjoint triangles or the n-cycle. For d ≥ 3, they show that both collections of disjoint (d+1)-

cliques and the infinite d-regular tree can be optimal, but there are choices of parameters for

which neither is optimal.

For half-regular bipartite graphs, already the case d = 1 shows the richness of this model:

each k-star can be optimal under some choice of parameters:

Proposition 1. For every k ≥ 1 there exists ε small enough so that for the choice of parameters

µ0 = .6, µ1 = ε, and µk+1 = .4 − ε in the general threshold model, the k-star is the optimal

1−half-regular bipartite graph.

Proof. Set the parameters of the general threshold model as above. For j ≤ k, the expected

fraction of infected individuals in a j-star with j − 1 isolated vertices is:

E[Ij ] =
1

2j

[
.6 · 2j + ε(1− .4j) + .6εj +O(jε2)

]
= .6 + .3ε+

1− .4j

2j
ε+O(ε2)

1Their choice of objective function is slightly different: they minimize the maximum probability of
infection over all vertices.
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The function 1−.4j
2j is a strictly decreasing function of j, so for small enough ε the k-star is

better than any j-star with j < k. And for j > k,

E[Ij ] ≥.6 + .3ε+
1− .4j

2j
ε+

(.4− ε)qj,k+1

2j

+
ε(.4− ε)

2j

j−1∑
i=k+1

(j − 1)pj,i

where qj,k+1 = Pr[Bin(j, .6) ≥ k+ 1] and pj,i = Pr[Bin(j, .6) = i]. For j ≤ 2k, and ε sufficiently

small,
(.4−ε)qj,k+1

2j > 1−.4j
2j ε and so E[Ij ] > E[Ik]. For j > 2k, the term ε(.4−ε)

2j

∑j−1
i=k+1(j − 1)pj,i

is bounded below by ε times a constant independent of j, and so the k-star is optimal.



CHAPTER 3

CROWDSOURCED PAC LEARNING IN THE PRESENCE OF

CLASSIFICATION NOISE

This chapter was previously published as Crowdsourced PAC Learning under Classification

Noise by Shelby Heinecke and Lev Reyzin [3].

3.1 Introduction and Previous Work

3.1.1 Overview

In this paper, we study the problem of learning a classifier from data labeled by a crowd of

workers. In our model, we make the assumption that each worker has his or her own error rate,

independent of the data. In this framework, we give a flexible three-step algorithm that achieves

the PAC learning criterion. First, a subset of data points is chosen from X, and sufficiently

many workers are asked to label each point, so that with high probability, majority votes on

each point are correct. This gives a “ground truth” set of points on which workers can be

evaluated, so that in the second step, we can estimate their individual error rates and identify

good workers – this can be done in many ways, for example by running pure-exploration bandit

algorithms. In the final step, the workers selected in the previous step are assigned to label

sufficiently many new points so that a PAC-classifier can be trained efficiently. While each

part of our approach comes from known results, combining all these steps into a streamlined

procedure is, to our knowledge, new. We also illustrate the flexibility of our approach herein.

31
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Instead of relying on random workers to produce labels, the goal of our approach is to

quickly identify good workers and assign the main labeling task to them. Our algorithms work

especially well when there are a few expert workers in a large crowd, and when they are difficult

to pre-screen. Such scenarios can often occur when specialized knowledge is needed, e.g. in the

case of using crowdsourced labels to training a classifier to identify cat breeds, where most

people presumably don’t know anything about cats, but a few people in any large crowd will

be adept at it.

3.1.2 Previous Work

3.1.2.0.1 Classification Noise.

We assume that workers in the crowd are imperfect. In particular, each worker wi has an

individual, hidden noise rate 0 ≤ ηi < 1/2 so that each data point has an independent and equal

chance of being mislabeled, conditioned on the worker. We build our algorithm and analysis

around this noise model but show that our analysis can be adapted to handle the case where

the noise rates are conditioned on class membership. These noise models have been extensively

studied in crowdsourcing literature [26–31] and are usually attributed to Dawid and Skene [32].

The PAC learning model was extended by Angluin and Laird [9] to capture a simple notion of

noise, which they termed “classification noise.” In their extension, labels of samples are flipped

independently with probability 0 ≤ η < 1/2 by the noisy oracle, and the learner’s runtime and

sample complexity must also have a polynomial dependence on 1
1−2η . For part of our work, we

will adapt the results of Angluin and Laird [9] to our noise setting. Note that our noise setting

is similar in that a label of a data point is flipped independently with probability ηi from worker
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wi; in other words, each worker functions as a noisy oracle in our setting. Since our noise model

is a generalization, we refer to our noise model as classification noise throughout this paper.

3.1.2.0.2 Majority Voting in Crowdsourcing.

Since worker skill can be unknown and varying in crowdsourcing, entities posting data

points to be labeled on crowdsourcing platforms may require that each data point be labeled

by multiple workers. Majority voting is the most obvious method for aggregating the labels

from multiple workers. Li, Yu, and Zhou [29] establish error rate bounds of generalized hyper-

plane rules of which majority voting is a special case. While they assume the same model of

classification noise as our work, their analysis is limited to establishing error bounds of these

hyperplane aggregation rules and not on PAC learning. Wang and Zhou [30] establish error

bounds for majority voting under different assumptions, but they also do not focus on PAC

learning. Sheng et al. [33] explore various strategies of utilizing multiple noisy labels based on

majority voting and pairing, but they do not focus on PAC learning. Awasthi et al. [34], who

focus on PAC learning from crowdsourced labels as we do, note that majority voting is not

ideal because the number of worker labels needed to produce an accurate majority vote with

probability 1 − δ scales with the size of the data set. We arrive to this same conclusion with

our noise model, but we find it beneficial to still use majority voting on a small subset of the

unlabeled data set to establish a “high probability” ground-truth training set which helps to

eliminate the need for queries to an expert oracle as their algorithm requires.
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3.1.2.0.3 PAC Learning in Crowdsourcing.

Feng et al. [27], in very recent work, develop PAC-style bounds for the cost complexity of

learning an aggregation function that fits a crowd of workers with varying reliabilities. They

focus on using PAC learning to train an aggregation function for the workers’ labels; we, how-

ever, focus on using PAC learning to train a classifier that generalizes from worker labels. Wang

and Zhou [35] also develop PAC-style bounds for the cost complexity of learning a classifier in

a similar crowdsourcing setting but their algorithm is similar to our baseline approach. Con-

currently, Zhang and Conitzer [36] develop a PAC learning framework for aggregating agents’

judgments in a similar setting as ours. However, they focus on recovering the target classi-

fier exactly and employ methods similar to our baseline approach with additional assumptions.

Awasthi et al. [34] develop PAC learning algorithms in the crowdsourcing setting that generalize

from worker labels but their assumptions on the crowd differ from ours. On the one hand, they

assume nothing about the workers’ label distribution (this is the agnostic learning setting), but

on the other hand they assume some fraction α of the crowd are perfect performing workers.

While this assumption is reasonable in some settings (for example, if the crowd is curated),

there may exist settings where this assumption would not hold since even the best performing

workers are capable of making a mistake. Thus, we instead assume that each worker has a

hidden error rate ηi. Second, in the case that the fraction of perfect performing workers is less

than 1/2, their algorithm requires queries to an expert oracle. Our algorithm, however, does

not require any expert oracle queries.
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3.1.2.0.4 Multiarmed Bandits for Crowdsourcing.

There is substantial progress in multiarmed bandit (MAB) literature regarding identifying

the best arms in the vanilla MAB setting [28,31,37–41]. In our work, each arm will represent a

worker and we build upon these previous results to train a classifier. In this work, we restrict

our attention to the fixed confidence setting of best arm vanilla MAB - we want to identify the

best arms with confidence 1− δ.

More recently, MAB have been adapted to crowdsourcing settings [26,28,31,41–43]. These

previous works use bandit techniques to strategically assign tasks to workers under assumptions

that are realistic to crowdsourcing including limited budgets, limited worker availability, and

limited worker loads. Our algorithm builds upon these works to ultimately output a trained

classifier. In particular, [26, 31] suggest using their MAB top-K arm algorithms to identify

good workers, but they assume there exists a set of accurately labeled points from which to

learn (ground truth set). Similarly, Liu and Liu [42] suggest using many bandit algorithms

with the same limitation. Our algorithm does not require a ground truth set of data because in

practice, ground truth sets may not be available or can be expensive to obtain. Although some

previous algorithms [28, 42] do not assume a ground truth set of points and instead estimate

the correct label for points online, these algorithms describe an optimal selection policy for

assigning tasks rather than training a classifier like ours. Other work [41, 43] likewise focuses

on a task assignment policy rather than training a classifier. Other more applied works also

consider similar exploration/exploitation trade-offs, e.g. [44].



36

3.2 Model and Preliminaries

Given a hypothesis class C of finite VC dimension d and parameters ε > 0 and δ > 0, we

want to PAC-learn C using data points with labels gathered from workers in a crowd. Let

W = {wi | i ∈ [1, n]} denote the set of all workers, |W | = n. Each worker wi has an individual

noise rate 0 ≤ ηi ≤ 1/2 and will correctly label any given example with probability 1− ηi. The

noise is assumed to be persistent, so a worker asked to label the same example a second time

will deterministically produce the same label again. In particular, for any target function c ∈ C,

for any x ∈ X. The worker wi acts as follows: for all x, Pr[wi(x) 6= c(x)] = ηi.

Figure 5: Crowdsourced PAC Setting
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Similar to Amazon Mechanical Turk, we define a task as a single data point that needs

a label. The goal, then, is to PAC-learn C while minimizing the number of tasks labeled by

workers; in other words, we want to minimize the number of times we query the crowd. This

modeling requirement is due to the fact that in most realistic settings, workers are paid per

task, and a natural goal is to train a good classifier while expending as little as possible. Also

note that this model corresponds to PAC learning from data that has been labeled by workers,

each of which is a classifier operating under classification noise [9].

We will ultimately derive upper bounds on the number of tasks labeled by workers to PAC-

learn C. We now define several parameters that come into play throughout this paper and in

our final bounds. We define

η̄W =
1

|W |
∑

{j|wj∈W}

ηj

denotes the average error rate of workers in W . Let η̄∗K,W denote the average error rate of the

best K workers in W . As a special case, η̄∗1,W denotes the error rate of the single best worker

in W .

To obtain reliable labels, our algorithm will identify approximately good workers. Let

0 ≤ ∆ ≤ 1/2. We define a ∆-optimal worker and ∆-optimal set of K workers.

Definition (∆-Optimal Worker [37]). A worker wi ∈W is said to be ∆-optimal if ηi ≤ η̄∗1,W+∆.

Definition (∆-Optimal Set of K Workers [31]). Let S ⊆ W and |S| = K. The set of workers

S is ∆-optimal if η̄S ≤ η̄∗K,W + ∆.
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3.2.1 Baseline Approaches

We now describe two baseline approaches and their corresponding task complexities. For the

first baseline approach, we plug η̄W into the classification noise bound of Angluin and Laird [9]

(see Theorem 4 for details) to get an algorithm that solicits

O
(
d log (1/δ)

ε(1− 2η̄W )2

)

labels in total, from worker pool W of N workers, where workers are selected at random to

label the points.

Another baseline approach is to obtain a large perfectly labeled set of data points with

high confidence via majority voting and use the proper noiseless PAC bound, which requires

m = O
(
d log(1/δ)

ε

)
examples. By Theorem 10 (which appears in a later section), for each of m

datapoints we need a majority vote of O
(

log(m/δ)
(1−2η̄W )2

)
workers to get a perfectly labeled set with

high probability. Combining these two bounds gives a total sample complexity of

Õ
(
d log (1/δ)

ε(1− 2η̄W )2

)
,

which is actually slightly worse (with respect to suppressed polylogarithmic terms) than the

bound in 3.2.1.

Since we want to learn to arbitrarily small errors ε, we do not want the d/ε dependence to

be multiplied by the factor of 1
(1−2η̄W )2

, which could be large for η̄W close to 1/2. This is the

dependence this paper aims to avoid.
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3.3 Crowdsourced Learning Algorithm

Our algorithm proceeds in three parts. First, we choose a small, randomly chosen set of

data points to have labeled by multiple workers. This allows us to know the true labels of these

data with high confidence using majority voting. Second, we use these labeled data points to

identify the approximately best workers. Third, we use these workers to label additional data

points from which to train a classifier.

Algorithm 1: Crowdsourcing PAC Algorithm (Informal)

Input: n workers, unlabeled data points X

Output: classifier h ∈ C

1 take a majority vote with workers on small subset of unlabeled tasks yielding a set of

accurately labeled tasks with high confidence

2 using the ground-truth data from Step 1, identify the approximate top worker(s) (e.g.

using MAB algorithms [26,31,37,38])

3 assign tasks at random among worker(s) identified in Step 2 to perform noisy-PAC

learning [9], returning hypothesis h ∈ C that is an empirical risk minimizer (ERM)

with the labels of the approximate top worker(s)

We now proceed to analyze each part of the algorithm separately.
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3.3.1 Majority Voting by Workers with Classification Noise

Our algorithm begins by getting a set of points for which the labels need to be known,

thereby creating a “ground truth” set on which the workers’ error rates can be tested. This

is done by a majority vote of the labels of randomly selected workers. For this we need the

following lemma, which is a simple consequence of the Hoeffding inequality (it is also proved in

a more general setting in Li, Yu, and Zhou [29]).

Lemma 9. Let L(x) = {wi(x) | wi ∈ W} be the labels from workers in W , for some x ∈ X.

Suppose majority voting over the n labels in L(x) is applied and the winning label is the final

label corresponding to x. Then, the error of the majority vote can be upper bounded as follows:

Pr[MAJ(L(x)) 6= c(x)] ≤ 2e−n(1−2η̄W )2/2.

As a consequence, we can derive the following theorem.

Theorem 10. Let Y ⊆ X and |Y | = T . Suppose we want to get true labels for data points

in Y with probability 1− δ using majority voting with the crowd of workers W . Then for each

y ∈ Y , it is sufficient to solicit

O
(

log(T/δ)

(1− 2η̄W )2

)

labels from the crowd.

Proof. Follows from Lemma 1 and the union bound.
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Since Theorem 10 scales poorly, it is not prudent to rely solely on majority voting for

gathering a labeled data set. However, we find that using majority voting on a small enough

data set can be useful because it can eliminate the assumption of a ground truth set and instead

generate an ground-truth set with high probability. In this way, we also eliminate the need for

expert oracle queries used in Awasthi et al. [34]. 1

3.3.2 Identifying Top Performing Workers

Using the ground-truth training labeled data set acquired from the previous section, we now

identify one approximately good worker. We also examine the case where we want to identify

a set of approximately good workers.

3.3.2.1 Identifying One ∆-Optimal Worker.

The naive approach to identifying a ∆-optimal worker with probability 1 − δ is to sample

each arm O
(

1
∆2 log(n/δ)

)
times and return the arm with the largest empirical average.

Theorem 11. Identifying a ∆-optimal worker with probability at least 1 − δ can be done in

O
(
n

∆2 log(n/δ)
)

arm trials.

Since each ground-truth data point can be used to test all n workers, we needO
(

1
∆2 log(n/δ)

)
ground-truth data points to find a ∆-optimal worker. If we introduce the assumption that there

1This of course relies on access to a sufficiently large crowd, and hence we assume that N =

Ω̃
(

log(T/δ)
(1−2η̄W )2

)
, so that at this stage each worker will be assigned at most one labeling task, to get

the label of each point. Additionally, notice that the number of labels in Theorem 10 scales as a function
of the number of data points T for which we want labels, as noted by Awasthi et al. [34]. Our bound
in Theorem 10 is also a function of η̄W because of our classification noise model, which differs from
Awasthi et al. [34].
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is at least one perfect performing worker in the crowd, then the number of arm trials to identify

a ∆-optimal worker decreases.

Lemma 12. If there is at least one worker in the crowd who performs perfectly, then O( n∆ log(n/δ))

samples are sufficient to identify a ∆-optimal worker with probability 1− δ.

Proof. The probability that a worker who was observed to be perfect on t examples has error

≥ ∆ is bounded by (1−∆)t ≤ e−∆t. For the union bound, we need to set this to ≤ δ/k, which

yields the result.

Corollary 13. Acquiring accurate labels for data points with probability 1 − δ so that a ∆-

optimal worker can be identified requires at most Õ
(

log2(n/δ)
∆(1−2η̄W )2

)
worker labels if there is at

least one perfect performing worker in the crowd and Õ
(

log2(n/δ)
∆2(1−2η̄W )2

)
otherwise.

Proof. The number of arm trials to identify a ∆-optimal worker is given in Theorem 11 and

Lemma 12. We sample all arms uniformly, so O
(

1
∆2 log(n/δ)

)
and O

(
1
∆ log(n/δ)

)
accurately

labeled points are needed in order to compute the reward for each arm trial, respectively.

We acquire an accurately labeled point with high confidence as in Theorem 10, where we set

T = O
(

1
∆2 log(n/δ)

)
and T = O

(
1
∆ log(n/δ)

)
. We then multiply by T to get the total number

of worker labels needed to acquire an ground-truth set of size T .

The problem of identifying the best workers can also be solved with sophisticated methods

that employ pure-exploration stochastic multi-armed bandit algorithms [26, 31]; for example,

OptMAI (see Theorem 14) improves the dependence on n in logarithm, even in the case of finding

the approximately-best worker.
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In our crowdsourcing setting, each worker is an arm in the bandit setting with mean reward

1 − ηi. When we select a worker/arm, the reward is 1 if the worker’s label is correct and 0

otherwise. In order to compute rewards, many bandit algorithms require a ground-truth set of

points [26, 31, 37, 38]. Instead, we use the set we gathered from the majority voting step as a

proxy for a ground-truth set. Thus, we are able to make use of many MAB algorithms, but for

now we focus on vanilla MAB.

3.3.2.2 Identifying the Top K Workers.

Let K ≤ n. The following sample complexity bound of identifying a set of the approximate

top K workers is known.

Theorem 14 (Zhou, Chen, and Li 2014). For K ≤ n
2 , OptMAI(n, K, q) identifies a ∆-optimal

set of K arms with probability 1− δ using

q = O
(
n

∆2

(
1 +

log(1/δ)

K

))

arm trials.1

An upper bound on the number of trials per arm is given, as well.

1For K ≥ n/2, OptMAI(n,K, q) identifies a ∆-optimal set of K arms with probability 1− δ using

q = O
((

(n−K)n

K∆2

)(
(n−K)

K
+

log(1/δ)

K

))
arm trials.
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Theorem 15 (Zhou, Chen, and Li 2014). In OptMAI(n, K, q), each arm is sampled at most

s = O
( q

n.3

)

times, where q is set according to 14.

Now, we will use OptMAI from Zhou, Chen, and Li [31] to efficiently learn a set of the

approximate top K workers in our crowdsourcing model. A worker labeling a datapoint will

function as an arm pull. Hence, a number of correctly labeled datapoints as in 15 will be

sufficient to implement this strategy.

Corollary 16. Acquiring accurate labels for s data points (as per 15) with probability 1− δ so

that a ∆-optimal set of K workers can be identified requires at most

Õ

n.7 log(1/δ)
(

1 + log(1/δ)
K

)
∆2(1− 2η̄W )2



total tasks assigned to workers to label points.

Proof. The number of arm trials to identify a ∆-optimal set of K workers is given by q in

Theorem 14. Each arm is sampled at most O
( q
n.3

)
times (Theorem 15), thus we need this

many accurately labeled points in order to compute the reward for each arm trial. We acquire

an accurately labeled point with high confidence as in Theorem 10, where we set T = O
( q
n.3

)
.

We then multiply by T to get the total number of worker labels needed to acquire a ground-truth

set of size T .
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It is also clear that for various extensions and variants of our problem, we can also use more

sophisticated bandit algorithms. For example, if different sets of workers are available during

different rounds, we can use sleeping bandits [45], etc. The variety of known bandit algorithms

working under various assumptions further illustrates the flexibility of our modular approach.

3.3.3 PAC Learning under Label Noise

Now that the algorithm has identified good workers, we use those workers to label more

tasks needed to PAC learn the concept class C. In this step, each task consists of labeling a

distinct data point; in other words, each data point is labeled only once by one of the good

workers we identified in the previous step. To perform the PAC learning we use the algorithm

from [9] in which the learner queries a noisy oracle sufficiently many times and returns the

hypothesis h ∈ C that has the minimal number of disagreements with the results from the noisy

oracle. We assume that finding this hypothesis can be done efficiently.

We adapt Theorem 4 to the two types of approximately good workers identified in the

previous section so that either one ∆-optimal worker functions as the noisy oracle or the ∆-

optimal set of K workers sampled i.i.d. function as the noisy oracle. In the former case, the

oracle noise rate η becomes η̄∗1,W + ∆, so by Theorem 4 we assign to the ∆-optimal worker at

most

O

(
d log(1/δ)

ε(1− 2(η̄∗1,W + ∆))2

)
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additional points to label. In the latter case, the oracle noise rate becomes η̄∗K,W + ∆, so we

assign the ∆-optimal set of K workers

O

(
d log(1/δ)

ε(1− 2(η̄∗K,W + ∆))2

)

points to label.

3.3.4 Total Task Complexity

We combine the task bounds established for majority voting, identifying good workers, and

PAC-learning with good workers to derive the total task complexity of our algorithm. To satisfy

the PAC criterion (Theorem 3.3.3), we set the failure rate for each part of our algorithm to

be at most δ/3 (so that the total failure rate is bounded by δ). We then add the three task

bounds. Notice that the bounds in 3.3.3 and 3.3.3 adapted from Theorem 4 and the arm trial

bounds from Section 3.3.2 are a function of ∆. We parameterize ∆ as a function of either best

worker’s error rate or the average error rate of the best set of K workers. For Theorems 17

and 18, which follow, we set

∆ =
1/2− η̄∗1,W

2
.

The following theorem gives an upper bound on the number of tasks required by our algorithm

in order to PAC-learn C.
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Theorem 17. Let ε, δ > 0. Suppose that in Step 2 of the algorithm, we identify one approxi-

mately good worker. Then

Õ

(
log2(n/δ)

(1− 2η̄∗1,W )2(1− 2η̄W )2
+

(
n+ d

ε

)
log(1/δ)

(1− 2η̄∗1,W )2

)

tasks can be labeled by workers in order to efficiently PAC learn C.

Proof. We sum the task complexity from each step in the algorithm. We first sample the crowd

Õ
(

log2(n/δ)
∆2(1−2η̄W )2

)
times (Corollary 13) in order to gather a ground truth set with probability

1 − δ. Using the ground truth set as the training set, we sample the crowd O
(
n

∆2 log(n/δ)
)

times (Theorem 11) in order to identify an approximately good worker. We then use the

approximately good worker to label O
(

d log(1/δ)
ε(1−2(η̄∗1,W+∆))2

)
points (bound in 3.3.3). Summing

these components gives

Õ
(

log2(n/δ)

∆2(1− 2η̄W )2

)
+O

( n

∆2
log(n/δ)

)
+O

(
d log(1/δ)

ε(1− 2(η̄∗1,W + ∆))2

)
.

Setting ∆ =
1/2−η̄∗1,W

2 and simplifying yields the task complexity.

Recall that from Lemma 12, if we assume there is one perfect worker in the crowd, the task

complexity improves. We see the improvement in the overall task complexity below. In this

case, since η̄∗1,W = 0, we set ∆ = 1
4 .
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Theorem 18. Let ε, δ > 0. Suppose that in Step 2 of the algorithm, we identify one approx-

imately good worker and we assume there exists at least one perfect performing worker in the

crowd. Then

Õ
(

log2(n/δ)

(1− 2η̄W )2
+

(
n+

d

ε

)
log(1/δ)

)

tasks can be labeled by workers in order to efficiently PAC learn C.

Proof. We sum the task complexity from each step in the algorithm. We first sample the crowd

Õ
(

log2(n/δ)
∆(1−2η̄W )2

)
times (Corollary 13) in order to gather a ground truth set with probability

1−δ. Using the ground truth set as the training set, we sample the crowd O
(
n
∆ log(n/δ)

)
times

(Lemma 12) in order to identify an approximately good worker. We then use this approximately

good worker to label O
(

d log(1/δ)
ε(1−2(η̄∗1,W+∆))2

)
points (3.3.3). Since there is a perfect worker in the

crowd, η̄∗1,W = 0. Summing these components gives

Õ
(

log2(n/δ)

∆(1− 2η̄W )2
+
n

∆
log(n/δ) +

d log(1/δ)

ε(1− 2∆)2

)
.

Setting ∆ = 1/4 and simplifying yields the task complexity.

As discussed in Section 3.3.2, an alternative to identifying one approximately good worker

is to identify K approximately good workers to limit the burden of tasks for workers. The

maximum number of tasks a single worker must complete is referred to as the load [34]. In the

case of one approximately good worker, that worker must label all the tasks prescribed by the

bound in 3.3.3. In the case of K approximately good workers, the workers can evenly split the

tasks prescribed by the bound in 3.3.3, reducing the load. If load is a priority in a particular
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crowdsourcing setting, then we have the following task upper bound for our algorithm. To

derive this bound, we set

∆ =
1/2− η̄∗K,W

2
.

Theorem 19. Let ε, δ > 0. Let K denote the number of workers identified in Step 2 of the

algorithm and assume K ≤ n
2 . Then,

Õ

(
n.7 log(1/δ)(1 + 1

K log(1/δ))

(1− 2η̄∗K,W )2(1− 2η̄W )2

)
+O

(
( nK + d

ε ) log(1/δ) + n

(1− 2η̄∗K,W )2

)

⊂ Õ

(
n log2(1/δ)

(1− 2η̄∗K,W )2(1− 2η̄W )2
+

d log(1/δ)

ε(1− 2η̄∗K,W )2

)
.

tasks can be labeled by workers in order to efficiently PAC learn C.

Proof. Again, we sum the task complexity from each step in the algorithm. We first sample the

crowd Õ
(
n.7 log(1/δ)(1+

log(1/δ)
K

)

∆2(1−2η̄W )2

)
times (Corollary 16) in order to gather a ground truth set with

probability 1− δ. Using the ground truth set as the training set, we sample the crowd q times

in order to identify a set of K approximately good workers (Theorem 14). We then use these

approximately good workers to label O
(

d log(1/δ)
ε(1−2(η̄∗K,W+∆))2

)
points (bound in 3.3.3). Summing

these components gives

Õ

(
n.7 log(1/δ)(1 + log(1/δ)

K )

∆2(1− 2η̄W )2

)
+O

(
n

∆2

(
1 +

log(1/δ)

K

))
+O

(
d log(1/δ)

ε(1− 2(η̄∗K,W + ∆))2

)
.

Setting ∆ =
1/2−η̄∗K,W

2 and simplifying yields the task complexity.
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3.3.5 Comparison to Baseline and to Other Work

In the bounds established above, the term 1
(1−2η̄W )2

is not multiplied the d/ε term, which is

the improvement over the baseline described in Section 3.2. In particular, in Theorem 17, the

d/ε term is multiplied by a factor of

1

(1− 2η̄∗1,W )2

which is function of the error rate of the best worker η̄∗1,W in W instead of the average of all

workers in W , η̄W , as in the baseline. Similarly, in Theorem 19, the d/ε term is multiplied by

1

(1− 2η̄∗K,W )2

which is function of the error rate of the best K workers in W , η̄∗K,W , instead of η̄W . Theorem 18

shows further improvement from the baseline as the d/ε is multiplied only by a factor of log(1/δ).

Note that in all three Theorems, the task complexity can get arbitrarily bad as any of the crowd

parameters approaches random guessing, i.e. as η̄∗1,W , η̄W , or η̄∗K,W approach 1/2.

Unlike the baseline, there are additional terms in each of the bounds above that are not

multiplied by d/ε. While these terms indeed add to the task complexity, as ε becomes arbitrarily

small they become negligible, thus, the term multiplied by d/ε is most important.

We now discuss how our results compare to the work of Awasthi et al. [34]. Recall that

Awasthi et al. [34] assume that a fraction α of workers are perfect performers with no assump-

tions on the rest of the crowd. Like Awasthi et al. [34], our algorithm is a PAC learning algorithm

but ours does not rely on or require an assumption of perfect workers in the crowd. Instead,
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our algorithm assumes everyone has an individual noise rate. When we do consider perfect

workers, we find that even just one perfect worker in the crowd improves our task complexity

bound. When the fraction of perfect workers is below 1/2, the algorithm in Awasthi et al. [34]

requires “golden queries”, queries to an expert oracle. Note that none of our PAC bounds are

dependent on access to an expert oracle.

3.4 Variants and Extensions

We now demonstrate a few ways in which our model and algorithm can be easily adapted

to fit different crowdsourcing settings.

3.4.1 Asymmetric Classification Noise

In some settings, workers may perform differently depending on the true label of the data

point. This assymetric noise model is attributed to Dawid and Skene [32]. For simplicity, we

assume the binary classification setting with labels {−1,+1}. For worker wi ∈ W , let η+
i and

η−i denote the error rates of positive and negative instances; that is, for each x ∈ X,

η+
i = Pr[wi(x) 6= c(x) | c(x) = 1]

and

η+
i = Pr[wi(x) 6= c(x) | c(x) = −1].

Let η̄+
W and η̄−W denote the average one-sided error rates among all workers in W . Also let

η̂i = η+
i Pr[c(x) = 1] + η−i Pr[c(x) = −1]



52

and let i∗ = argminiη̂i.

We now show that our algorithm can be easily adapted to the setting of asymmetric clas-

sification noise. We first derive an analogue of Theorem 10 which is also a result of Hoeffding

and union bounds.

Theorem 20. Let Y ⊆ X where |Y | = T . Suppose we want to get true labels for data points in

Y with probability 1− δ using majority voting using the crowd of workers W under asymmetric

classification noise. Then for each data point y ∈ Y , it is sufficient to solicit

O
(

log(T/δ)

(1− 2 max(η̄+
W , η̄

−
W ))2

)

labels.

The only added bound we need is an asymmetric-noise analogue for the Angluin and Laird [9]

bound from Theorem 4.

Corollary 21 (to Theorem 4). If a learning algorithm that is given at least

O
(

d log (1/δ)

ε(1− 2 max(η+, η−))2

)

samples labeled under the Dawid-Skene noise model [32] with parameters η+ and η− can produce

a hypothesis h that minimizes disagreements with the noisy sample, then h satisfies the PAC

criterion for the class C, i.e. for any ε, δ > 0 and any distribution D on X,

Pr(d(h, h∗) ≥ ε) ≤ δ.
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where d(h, h∗) denotes the rate of disagreement between h and the target concept h∗.

Proof. The simplest proof of this is a reduction to the uniform noise case, as suggested by Blum

and Kalai [46] for reducing from one-sided noise to two-sided noise. Without loss of generality,

assume η+ > η− (otherwise, we will flip the other label). We will flip each negative label with

probability p. Hence, the new noise rates are η′+ = η+ − η+p and η′− = η− + (1 − η−)p.

Making η′− = η′+ and solving for p yields p = η+−η−
1+η+−η− . The new symmetric noise rate is now

η′+ = η′− ≤ max(η+, η−), so we can apply the bound from Theorem 4 to finish the proof.

We can now proceed to derive upper bounds on the task complexity of our algorithm adapted

to this new setting.

Theorem 22. Let ε, δ > 0. Suppose we identify one approximately good worker in Step 2 of

the algorithm per label. Then

Õ
(

log2(n/δ)

(1− 2 max(η̄+
W , η̄

−
W ))2(1− 2η̂i∗)2

)
+O

((
n+

d

ε

)
log(1/δ)

(1− 2 max(η+
i∗ , η

−
i∗))

2

)

tasks can be labeled by workers in order to efficiently PAC learn C.

Proof. We sum the task complexity from each step in the algorithm. As before, we first sample

the crowd Õ
(

log2(n/δ)

∆(1−2 max(η+W ,η−W ))2

)
times (Theorem 11 and Theorem 20) in order to gather a

ground truth set with probability 1 − δ. Using the ground truth set as the training set, we

sample the crowd O
(
n

∆2 log(n/δ)
)

times (Theorem 11) in order to identify an approximately
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good worker. We then use the approximately good worker to label O
(

d log(1/δ)

ε(1−2 max(η+
i∗ ,η
−
i∗ ))2

)
points (Corollary 21). Summing these components gives

Õ
(

log2(n/δ)

∆(1− 2 max(η̄+
W , η̄

−
W )2)

)
+O

( n

∆2
log(n/δ)

)
+O

(
d log (1/δ)

ε(1− 2 max(η+
i∗ , η

−
i∗))

2

)
.

Setting ∆ = 1/2−η̂i∗
2 and simplifying yields the task complexity.

The baseline approach in this setting would be to substitute the average one-sided error

rates of workers into the bound from Corollary 21, yielding an upper bound of

O
(

d log (1/δ)

ε(1− 2 max(η̄+
W , η̄

−
W ))2

)
.

With only slight adjustments to our algorithm and analysis, the bound we derive in Theorem 22

for this asymmetric noise setting is still an improvement on the baseline since the d/ε term is

multiplied by a term that is a function of η̄+
i∗ and η̄−i∗ instead of η̄+

W and η̄−W .

3.4.2 Per-worker Task Limits

In practice, the load per worker may be limited. In Section 3.4 we discuss how identifying

the top K workers instead of one good worker in Step 2 of the algorithm reduces the load on

workers. In this extension, we consider a different setting of limited worker loads where each

worker can complete no more than B tasks. This setting is useful because in reality, workers

will have time and energy limitations that will bound the number of tasks they can realistically

complete. Suppose that B > 0 denotes the task limit for each worker. We assume that B is



55

greater than the number of trials per arm required to identify top workers in Step 2 so that

each worker has the capacity to help with labeling additional tasks, to some extent, in Step 3.

We assume that in this setting, for Step 2 of the algorithm, we identify a ∆-optimal set of K

workers instead of one ∆-optimal worker. We take this approach because we can use the limited

worker load constraint and our knowledge of the number of tasks to be completed in Step 3 of

the algorithm to determine how many workers K to identify in Step 2. We first determine the

capacity remaining per worker after running the top-K MAB algorithm. We recall that

q = O
(
n

∆2

(
1 +

log(1/δ)

K

))

from Theorem 3.6.

Lemma 23. After implementing OptMAI(n,K,q) to identify the top K ≤ n/2 workers, the

number of tasks remaining per worker is at least

B − 4n.7

(1/2− η̄∗K,W )2

(
1 +

log(1/δ)

K

)
.

Proof. From Theorem 15, each arm is pulled at most O(q/n.3) times. We subtract this from

the task limit B and set

∆ =
1/2− η̄∗K,W

2
,

and simplify.
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Recall that the bound in 3.3.3, derived from Theorem 4, is the number of data points that

need to labeled by the selected K workers in Step 2 to complete the PAC learning algorithm.

Dividing the bound from 3.3.3 by the capacity remaining per worker yields the number of top

workers, K, that need to be identified in Step 2.

Lemma 24. In Step 2 of the algorithm,

K = O

((
d

ε
+ n.7

)
log(1/δ)

B(1− 2η̄∗K,W )2 − n.7

)

workers will be identified.

Proof. The number of workers K is the number of data points that need to be labeled, as

prescribed by the bound in 3.3.3, divided by the tasks remaining per worker, established in

Lemma 23. After setting ∆ =
1/2−η̄∗K,W

2 ,

K =

2d
ε(1−2η̄∗K,W )2

log(1/δ)

B − 2n.7

(1−2η̄∗K,W )2

(
1 + log(1/δ)

K

) .
The theorem follows from solving for K.

Theorem 19 can now be extended to upper bound the number of tasks labeled by workers

in this new setting by simply letting K be defined as in Lemma 24.

3.4.3 Agnostic PAC

It is possible that our symmetric or asymmetric classification noise model does not model

the behavior of all workers. For instance, there may be workers who behave maliciously or
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workers with error rates ηi > 1/2. On one end of the spectrum, each worker may have a fixed

error rate. On the other end of the spectrum, there may be no assumptions on worker behavior

at all, and this case is referred to as the agnostic setting.

PAC learning in the agnostic setting is usually computationally hard [47]. Hence, Awasthi

et al. [34] assume an α fraction of workers are perfect performers and places no assumptions on

the behavior of the remaining 1−α workers. We would like to begin bridging the two ends of the

spectrum in a similar way to account for workers that cannot be modeled by classification noise.

Here, we begin to do this by showing a simple extension of the result of Awasthi et al. [34].

We let α denote the fraction of workers that can be modeled by persistent classification

noise with ηi ≤ 1/2. As in the work of Awasthi et al. [34], there are no assumptions on the

behavior of the remaining 1−α fraction of workers. PAC learning can be achieved in this setting

by adapting the proof of Theorem 4.3 from Awasthi et al. [34]; in particular, in our proposed

setting, the probabilistic guarantees of their Lemma 4.6 still hold. Thus, their algorithm still

the extended setting we proposed, as we state in the following corollary.

Corollary 25 (to Theorem 4.3 of Awasthi et al. 2017). Let W be the subset of workers that

can be modeled by persistent classification noise with average noise rate η̄W , and let α denote

the fraction all workers that are in W . Then when

α(1− η̄W ) ≥ 1/2,
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a concept class C can be efficiently PAC learned from the crowd given the ability to efficiently

find an ERM over C.



CHAPTER 4

COLLABORATIVE PAC LEARNING IN THE PRESENCE OF

CLASSIFICATION NOISE

4.1 Introduction

In this chapter, we study collaboratively learning classifiers that generalize well on set of

distributions in the presence of classification noise. We first recall the noiseless collaborative

PAC learning setting defined in Blum et al. [48]. In the collaborative PAC setting, there are

k distributions on data set X, referred to as players, and a center node that orchestrates the

learning process (see Figure 6). The goal of collaborative PAC learning is to learn classifiers from

data provided by the players that generalize well on each of players’ distributions simultaneously.

Note that this differs from distributed PAC learning, whose goal is to learn classifiers that

perform well on the mixture of players’ distributions [49]. There are two styles of collaborative

PAC learning. The first is the personalized learning setting, where the goal is to learn a classifier

for each player with generalization error less than ε, with probability 1− δ. The second setting

is centralized learning setting, where the goal is learn a single classifier with generalization error

less than ε on each players’ distribution with probability 1− δ. The efficiency of a collaborative

learning algorithm is assessed by its overhead, defined as the ratio of the sample complexity of

learning in the collaborative setting to the sample complexity of learning in the single player

setting. An overhead of at least k indicates that the collaborative learning algorithm offers no

59
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sample complexity benefit over individual PAC learning. An overhead less than k indicates

that the collaborative algorithm is more sample efficient than individual PAC learning.

In real-world settings of this model, players may be noisy. In this chapter, we consider the

classification noise setting. Classification noise (CN) is integrated into the collaborative PAC

learning setting as follows. Each player has an individual noise rate ηi <
1
2 . When the center

node requests a point from player i, the player sends instance-label pair (x, y) where x ∼ Di and

y = f∗(x) with probability 1− ηi or y = ¬f∗(x) with probability ηi. We develop collaborative

PAC learning algorithms robust to CN.

This chapter is organized as follows. First, we discuss the previous work and background.

Second, we develop personalized and centralized collaborative learning algorithms robust to

classification noise and prove sample and overhead bounds. Finally, we develop personalized

learning algorithms with improved communication complexity in both the noiseless and classi-

fication noise settings.

4.2 Previous Work

The work in this chapter builds primarily on [13,48,50]. The collaborative PAC framework

and the first algorithms were introduced in [48]. In [48], they develop an algorithm in the

personalized setting with O(ln(k)) overhead and an algorithm in the centralized setting with

O(ln2(k)) overhead. They prove that the overhead lower bound in both the personalized and

centralized setting when k = d is Ω(ln(k)), thus, showing their personalized algorithm to be

asymptotically optimal when k = d. We recall their personalized algorithm as Algorithm 2 and

state their sample complexity result below.
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Figure 6: Collaborative PAC Setting

Theorem 26 ([48]). For any ε, δ > 0, and hypothesis class H of finite VC-dimension d, the

sample complexity of personalized collaborative PAC learning is

m = O

(
ln(k)

ε

(
(d+ k) ln

(
1

ε

)
+ k ln

(
k

δ

)))
.

When k ln(k) = O(d), the overhead is O(ln(k)).

Subsequent works [13, 50] develop optimal centralized algorithms using a multiplicative

weights approach. We recall their optimal centralized algorithm in Algorithm 3. In [50], they

extend the sample complexity lower bound to any k and d, showing Ω(max{d ln(k), k ln(d)}/ε)

samples are needed for personalized and centralized collaborative learning. This chapter builds
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on the works of [13,48,50] by adapting their collaborative learning algorithms to handle classifi-

cation noise. We also develop communication efficient alternatives in the personalized learning

setting.

Regarding robustness, the previous work of [51] considers the collaborative PAC learning

setting under the noise model where 1 − α fraction of players behave truthfully while the

remaining α fraction of players behave adversarially. They show that centralized learning is

impossible in their setting. Our classification noise setting differs from theirs since we assume

noise occurs only in the label of a sample and we assume every player has their own noise rate.

Unlike [51], both personalized and centralized learning are possible in our noise setting.

We note that no previous work has addressed the communication complexity of collaborative

PAC learning.
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Algorithm 2: Personalized Collaborative PAC Learning [48]

Input: H, k distributions Di ∼ X, δ′ = δ/2 log(k), ε > 0

Output: f1, ..., fk ∈ H

Let N1 = {1, ..., k};

for j = 1, ..., dlog(k)e do

Draw sample S of size mε/4,δ′ from mixture DNj = 1
|Nj |

∑
i∈Nj Di;

Select consistent hypothesis hj ∈ H on S;

Gj ← TEST(hj , Nj , ε, δ
′);

Nj+1 = Nj \Gj ;

for i ∈ Gj do

fi ← hj ;

end

end

return f1, ..., fk

Procedure TEST(h,N, ε, δ)

for i ∈ N do

Draw sample of size Ti = O

(
ln(
|N|
εδ

)

ε

)
from Di;

end

return {i | errTi(h) ≤ 3ε
4 }
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Algorithm 3: Centralized Collaborative PAC Learning [13,50]

Input: H, k distributions Di ∼ X, δ′ = δ/4t, ε′ = ε/6, t = 150dlog(kδ )e

Output: h = MAJORITY({hi}ti=1)

Initialize wi,0 = 1 for all i ∈ [1, k];

for j = 1, ..., t do

Draw sample S of mε′/16,δ′ samples from mixture Dj = 1∑k
i=1 wi,j

∑k
i=1wi,jDi;

Select consistent hypothesis hj ∈ H on S;

Gj ← FAST-TEST(hj , Nj , ε, δ
′);

for i = 1, ..., k do

wi,j+1 =


2wi,j if i /∈ Gj

wi,j if i ∈ Gj

;

end

end

return h = MAJORITY({hi}ti=1)

Procedure FAST-TEST(h, k, ε, δ)

for i = 1, ..., k do

Draw sample of size Ti = O(1
ε ) from Di;

end

return {i | errTi(h) ≤ 3ε
4 }
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4.3 Background

We now formally define notation and key concepts used in this chapter. Let X denote the

instance space and Y = {0, 1} denote the set of possible labels. Let H denote a hypothesis

class with finite VC-dimension d. We will assume the realizable setting of learning, where the

target hypothesis h∗ is in the hypothesis class H. The collaborative learning scenario with CN

is similar to the original formulation [48] but with the addition of CN. Our setting consists

of k players, each with their own distributions Di ∼ X and classification noise rates ηi <
1
2 .

The center node orchestrating the learning process knows the players’ noise rates but does not

know the players’ distributions. In the CN model, we treat each player as an oracle, denoted by

EXηi(·), that returns an instance-label pair (x, y), where x ∼ Di, and with probability 1 − ηi,

y = h∗(x), or with probability ηi, y = ¬h∗(x).

A learned classifier will be evaluated by its error on an individual player’s distributions. We

review the notions of error used in the CN setting. Let errT (EXηi(·), h) denote the empirical

error of concept h ∈ H on T points generated from EXηi(·). The definition of empirical error

is standard and defined as

errT (EXηi(·), h) =
1

T

T∑
j=1

1EXηi (xj) 6=h(xj).

The generalization error in more subtle in the CN setting. There are two types of generalization

errors of h to consider. The first is the error of h on the noisy distribution, that is, the

distribution Di in the presence of label noise. The second is the error of h on the underlying
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clean distribution, that is, the distribution Di without label noise. In the CN setting, the

learner only has access to samples from the noisy distribution, but the goal of learning in this

setting is to generalize well with respect to the clean distribution. With access only to the

noisy distribution, we use the generalization error with respect to the noisy distribution as a

stepping stone in our analysis. The generalization error on the noisy data distribution, EXηi(·),

is defined as

errDi(EXηi(·), h) = ET∼DTi [errT (EXηi(·), h)].

The generalization error of concept h on the clean data distribution, Di, denoted errDi(h),

and defined as follows,

errDi(h) = ET∼DTi [errT (h)] = Pr
x∼Di

[h(x) 6= h∗(x)].

We now formally define the collaborative PAC learning criteria for personalized and cen-

tralized learning in the presence of classification noise.

Definition (Personalized Learning with Classification Noise). A learning algorithm A is a

personalized learning algorithm in the presence of classification noise for concept class H if for

any target h∗ ∈ H, any k distributions {D1, ...Dk} on X each with noise rate ni <
1
2 , and for

any ε, δ > 0, A returns a concept hi ∈ H for each Di (not necessarily distinct) so that with

probability 1− δ, the following is true

∧ki=1(errDi(hi) < ε),
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and A has sample complexity mA = poly(1
ε ,

1
δ ,

1
(1−2ηMAX)).

Definition (Centralized Learning with Classification Noise). A learning algorithm A is a cen-

tralized learning algorithm in the presence of classification noise for concept class H if for any

target h∗ ∈ H, any k distributions {D1, ...Dk} on X each with noise rate ni <
1
2 , and for any

ε, δ > 0, A returns a single concept h ∈ H so that with probability 1− δ, the following is true

∧ki=1(errDi(h) ≤ ε),

and A has sample complexity mA = poly(1
ε ,

1
δ ,

1
(1−2ηMAX)).

In addition to considering sample complexity, we will consider the overhead of our algo-

rithms, formally defined as follows.

Definition (Overhead [48]). The overhead of a collaborative learning algorithm is the ratio of

the sample complexity of collaborative PAC learning in the presence of noise with k players to

the sample complexity of traditional PAC learning in the presence of noise in the single player

setting.

We compute the overhead in our classification noise setting with respect to the greatest

error rate among all k players, denoted as ηMAX. In our algorithms and analysis, we use the

sample complexity results of traditional PAC learning with classification noise, Theorem [9] and

Theorem [12]. Let mε,δ,η = O
(
d log(1/δ)
ε(1−2η)2

)
denote the sample complexity upper bound prescribed

by Theorem [9]. This also represents the sample complexity of learning with classification noise
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in the single player setting, so this will be used in our computations of overhead. Finally, for

N ⊆ {1, ..., k}, we let η̄N = 1
|N |
∑|N |

i=1 ηi denote the average error rate of all players in N .

4.4 Personalized Learning with Classification Noise

Before presenting our algorithm, we first consider the baseline approach to personalized

learning with CN. Naively, the center can sample mε,δ,ηi from each player and learn an empirical

risk minimizer (ERM), following exactly as in traditional PAC learning with CN outlined in

Theorem 4. In this case, the sample complexity is
∑k

i=1mε,δ,ηi = O(kmε,δ,ηMAX
). The sample

complexity for learning with a single player is mε,δ,ηMAX
, so the overhead of the baseline is O(k).

The goal is to develop algorithms with overhead less than O(k).

Our algorithm for personalized learning in the presence of CN, Algorithm 4, improves upon

the overhead of the baseline, with overhead of O(log(k) log(log(k)). We summarize how our

algorithm differs from noiseless personalized learning, Algorithm 2. In the first and second step

of our algorithm, the center draws mε/4,δ′,η̄Nj
points in total from the mixture of players and

returns an ERM. In contrast, in Algorithm 2, the center draws mε/4,δ′ samples and returns a

consistent hypothesis. In the setting of CN, the existence of a hypothesis in H consistent with

a sample generated from a noisy distribution is not guaranteed. Therefore, in our algorithm

we find instead the more general ERM. By Theorem 4 the ERM has error ε/4 when trained on

mε/4,δ′,η̄Nj
samples. The final step of our algorithm, the CN-TEST step, differs from the TEST step

in Algorithm 2 in that ours accounts for the individual noise rates of the players. Essentially,

players draw a factor of 1
(1−2ηi)

more samples in CN-TEST than in TEST and the testing criterion
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is adjusted to reflect the relationship between drawing from noisy distribution and generalizing

on the clean distribution.

We now formally prove the correctness of our algorithm. Besides proving the correctness of

our adjustments to handle CN outlined above, most of the proof will follow immediately from

the correctness results of the original personalized learning (Algorithm 2) proved in [48]. In the

following lemmas, we prove the correctness of our adjustments. We start by showing formally

that the first and second steps in our algorithm yield a classifier that performs with error ε/4

on the mixture.

Lemma 27. The ERM hj established in Step 2 of Algorithm 4 has error no more than ε
2 on

at least half of the distributions in Nj.

Proof. First, note that the mixture DNj has expected error rate η̄Nj . By Theorem 4, the ERM

hj trained on mε/4,δ′, ¯ηNj
samples drawn from DNj has errDNj (hj) ≤

ε
4 . Now, as shown in [48],

Markov’s inequality yields the result,

Pr
[
errDNj (hj) ≤ 2

( ε
4

)]
≥ 1

2
.

Next, we prove the correctness of the CN-TEST routine. We use the following lemma and

proof from [9] that connects the generalization error of a concept h on the noisy distribution to

the generalization error of h on the underlying clean distribution.
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Algorithm 4: Personalized Learning with CN

Input: H, k distributions Di ∼ X with error rates ηi <
1
2 , δ′ = δ/2 log(k), ε > 0

Output: f1, ..., fk ∈ H

Let N1 = {1, ..., k};

for j = 1, ..., dlog(k)e do

Draw sample S of size mε/4,δ′,η̄Nj
from mixture DNj = 1

|Nj |
∑

i∈Nj Di;

Select ERM hypothesis hj ∈ H on S;

Gj ← CN-TEST(hj , Nj , ε, δ
′);

Nj+1 = Nj \Gj ;

for i ∈ Gj do

fi ← hj ;

end

end

return f1, ..., fk

Procedure CN-TEST(h,N, ε, δ)

for i ∈ N do

Draw sample of size Ti = O

(
ln(
|N|
δ

)

ε(1−2ηi)

)
from Di;

end

return {i | errTi(EXηi , hj) ≤ ηi + 3ε
4 (1− 2ηi)}
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Lemma 28 ([9]). Let D denote a distribution on X. Let ηi denote the CN error rate and

h∗ ∈ H denote the target function. Then,

errD(EXηi(·), h) = ηi + errD(h)(1− 2ηi).

Proof. There are two ways in which h can disagree with EXηi(·) on a point x ∈ X:

1. EXηi(·) labels x correctly with probability 1− ηi and h disagrees with h∗, or

2. EXηi(·) labels x incorrectly with probability ηi and h agrees with h∗.

The probability that either of these two events occurs is (1 − ηi)errD(h) + ηi(1 − errD(h)) =

ηi + errD(h)(1− 2ηi).

We prove the correctness of CN-TEST in the following lemmas. The first direction of cor-

rectness is proved as follows.

Lemma 29. With probability 1− δ′, if hj passes CN-TEST then errDi(EXηi(·), hj) ≤ ηi + (1−

2ηi)ε. Hence, errDi(hj) ≤ ε.

Proof. As in [13, 48, 50], we use multiplicative Chernoff bounds (Theorem 8) to prove the per-

formance of CN-TEST. Our Chernoff bounds are adjusted to handle each player’s noise rate ηi.

By Lemma 28, we scale the generalization error on the noisy distribution to the generalization

error on clean distribution.

Assume that errDi(EXηi(·), hj) ≥ ηi + (1 − 2ηi)ε and that Tj ≥ 32
ε(1−2ηi)

ln
(
|N |
δ′

)
. Let P =

errDi(EXηi(·), hj)− ηi. We use the Chernoff bound on the random variable errTj (EXηi(·), hj),
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the empirical error of hj of Tj samples. If hj passes CN-TEST for player i, then we have the

following inequality:

Pr

[
errTj (EXηi(·), hj) ≤ ηi +

3ε

4
(1− 2ηi)

]
= Pr

[
errTj (EXηi(·), hj)− ηi ≤

3ε

4
(1− 2ηi)

]

Computing the expected value of errTj (EXηi(·), hj), we have

E
Tj∼D

Tj
i

[errTj (EXηi(·), hj)− ηi] = E
Tj∼D

Tj
i

[errTj (EXηi(·), hj)]− ηi

= errDi(EXηi(·), hj)− ηi

≥ (1− 2ηi)ε.

Applying the Chernoff bound gives:

Pr

[
errTj (EXηi(·), hj) ≤ ηi +

3ε

4
(1− 2ηi)

]
= Pr

[
errTj (EXηi(·), hj)− ηi ≤

3ε

4
(1− 2ηi)

]
≤ Pr

[
errTj (EXηi(·), hj)− ηi ≤ (1− 1

4
)P

]
≤ exp

(
−1

2

(
1

4

)2

(1− 2ηi)εTj

)

≤ δ′

|N |

By the union bound over |N | players, if errDi(EXηi(·), hj) ≥ ηi + (1 − 2ηi)ε then hj passes

CN-TEST with probability at most δ′. Hence, CN-TEST is correct with probability 1 − δ′. By

Lemma 28, this implies errDi(hj) ≤ ε.
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To prove the second direction of correctness, we again employ multiplicative Chernoff

bounds, but the multiplicative factor is more subtle, as in [13].

Lemma 30. Let s = ε(1−2ηi)
4(errDi (EXni (·),hj)−ηi)

. Suppose errDi(EXηi(·), hj)−ηi ≤ ε
2(1−2ηi). Then,

(1 + s)(errDi(EXηi(·), hj)− ηi) ≤
3ε

4
(1− 2ηi).

Proof. The proof follows as in [13], but casted to our CN setting. Suppose the claim is true,

3ε
4 (1− 2ηi) ≥ (1 + s)(errDi(EXηi(·), hj). Then,

3ε(1− 2ηi)

4(errDi(EXηi(·), hj)− ηi))
≥ 1 + s

3ε(1− 2ηi)

4(errDi(EXηi(·), hj)− ηi))
≥ 1 +

(1− 2ηi)ε

4(errDi(hj ,EXni)− ηi)
ε(1− 2ηi)

2(errDi(EXηi(·), hj)− ηi)
≥ 1

The last inequality is true since by assumption errDi(EXηi(·), hj) − ηi ≤ (1 − 2ηi)
ε
2 =⇒

2(errDi(EXηi(·), hj)− ηi) ≤ ε(1− 2ηi).

Lemma 31. With probability 1 − δ′, if errDi(EXηi(·), hj) ≤ ηi + (1 − 2ηi)
ε
2 , then hj passes

CN-TEST. Hence, if errDi(hj) ≤ ε
2 , then hj passes CN-TEST.

Proof. As in [13], we invoke our CN-analogue, Lemma 30, and use the multiplicative Chernoff

bounds in Theorem 8. Let s be defined as in Lemma 30. We consider two cases, (1) when
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errDi(EXηi(·), hj) − ηi ≥ (1 − 2ηi)
ε
4 and (2) when errDi(EXηi(·), hj) − ηi ≤ (1 − 2ηi)

ε
4 . First,

suppose errDi(EXηi(·), hj)−ηi ≥ (1−2ηi)
ε
4 . Let P = errDi(EXηi(·), hj)−ηi. Then, s < 1 and,

Pr

[
errTj (EXηi(·), hj)− ηi ≥ (1− 2ηi)

3ε

4

]
≤ Pr

[
errTj (EXηi(·), hj)− ηi ≥ (1− 2ηi)(1 + s)

]
.

By multiplicative Chernoff bounds and Lemma 30,

Pr

[
errTj (EXηi(·), hj)− ηi ≥ (1− 2ηi)

3ε

4

]
= Pr

[
errTj (EXηi(·), hj)− ηi ≥ 3(1− 2ηi)

ε

4

]
≤ Pr

[
errTj (EXηi(·), hj)− ηi ≥ (1 + s)(1− 2ηi)

ε

4

]

≤ exp

(
−1

3

(
(1− 2ηi)ε

4(errDi(EXni(·), hj)− ηi)

)2

PTj

)

≤ exp

(
− 1

12
(1− 2ηi)εTj

)
≤ δ′

|N |

when Tj = O

(
ln(
|N|
δ′ )

ε(1−2ηi)

)
. The second case follows by a symmetric argument. In both cases,

by the union bound over all |N | players, hj fails CN-TEST with probability less than δ′. Since

errDi(hj ,EXηi) ≤ ηi + (1− 2ηi)
ε
2 , Lemma 28 implies errDi(hj) ≤ ε

2 .

We combine the above lemmas to prove the correctness of our algorithm (Algorithm 4).

Theorem 32. Algorithm 4 is a personalized collaborative learning algorithm in the presence of

CN.
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Proof. Analogous to [48], the first and second step in our algorithm yield a classifier that

performs with error ε/4 on the mixture of distributions, proven in Lemma 27. By Lemmas 29,

30, and 31, if errDi(hj) ≤ ε
2 , then hj passes CN-TEST and if hj passes CN-TEST, then errDi(hj) ≤

ε. Our CN-TEST exhibits the same performance as TEST step in the noiseless personalized

learning algorithm (Algorithm 2). Therefore, the rest of the proof of correctness follows directly

from [48], where they prove that in each round, at least half of the players are removed with

probability 1− δ
log(k) . Therefore, after at most log(k) rounds, each player is assigned a hypothesis

with generalization error less than ε, with respect to their clean distribution, with probability

1− δ. Therefore, the learning criteria is satisfied.

Now, we consider the sample complexity and overhead of our algorithm.

Theorem 33. The sample complexity of personalized learning with CN, Algorithm 4, is

O

(
log(k)

(
k ln(k log(k)

δ )

ε(1− 2ηMAX)
+

d ln( log(k)
δ )

ε(1− 2ηMAX)2

))
.

When k ln(k) = O(d), the overhead is O(log(k) log(log(k)) = Õ(log(k)).

Proof. Recall that δ′ = O( δ
log(k)). Our algorithm implements CN-TEST for log(k) rounds on at

most |N | = k players, using

O

(
log(k)

k ln(k log(k)
δ )

ε(1− 2ηMAX)

)
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samples. Let K = {1, ..., k}. The algorithm learns at most log(k) ERMs via Theorem 4, using

O(log(k)mε/4,δ′,η̄K ) = O

(
log(k)

d ln( log(k)
δ )

ε(1− 2η̄K)2

)

samples. Note that η̄K ≤ ηMAX. Summing gives the sample complexity result. Simplify-

ing the above sample complexity with respect to constant ε, δ, and ηMAX, and using the fact

that k ln(k) = O(d), we have O(d log(k) log(log(k)). Simplifying the sample complexity of

single-player PAC learning with CN under the same conditions gives sample complexity O(d).

Therefore, the overhead of our algorithm is O(log(k) log(log(k)).

We have shown that personalized collaborative PAC learning with CN can be performed

with nearly the same overhead as in the noiseless setting (Theorem 26). Next, we move on to

the centralized collaborative PAC learning setting in the presence on CN.

4.5 Centralized Learning with Classification Noise

We now consider centralized collaborative learning in the presence of CN, where the goal

is to learn a single classifier that generalizes well on each player’s distribution. We recall the

noiseless centralized learning algorithm in Algorithm 3 and present our algorithm robust to CN

in Algorithm 5. As in [13, 50], our centralized learning algorithm does not iteratively remove

players from consideration, but rather, re-weights the players’ distributions at each round,
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reminiscent of boosting. Let η̄j denote the weighted average of noise rates determined by the

distributions weights in round j,

η̄j =
1∑k

i=1wi,j

k∑
i=1

wi,jηi.

To handle CN, we make adjustments to the noiseless centralized learning (Algorithm 3)

algorithm that resemble the adjustments we made to noiseless personalized learning algorithm

in the previous section. In summary, our algorithm differs from the noiseless centralized learning

algorithm in two ways. First, we sample mε′/16,δ′,η̄j from the weighted mixture to account

for the classification noise (by Theorem 4). Second, we use CN-FAST-TEST, a modification

of FAST-TEST, to account for classification noise. Aside from the proof of correctness of our

adjustments to handle CN, the proof of correctness of our algorithm will follow immediately

from [13,50].

We start by showing the correctness of Steps 1 and 2.

Lemma 34. The ERM hj established in Step 2 of Algorithm 5 satisfies errDj (hj) ≤ ε′

16 .

Proof. The expected error rate of weighted distribution Dj is η̄j . Therefore, the result follows

by Theorem 4.

We now prove the correctness of CN-FAST-TEST.

Lemma 35. (1) With probability at least .99, if hj passes CN-FAST-TEST then errDi(hj , EXηi) ≤

ηi+(1−2ηi)ε. Hence, errDi(hj) ≤ ε. (2) With probability at least .99, if errDi(hj ,EXηi) ≤ ηi+

(1− 2ηi)
ε
2 , then hj passes CN-FAST-TEST. Hence, if err(hj) ≤ ε

2 then hj passes CN-FAST-TEST.
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Algorithm 5: Centralized Learning with CN

Input: H, k distributions Di ∼ X, δ′ = δ/4t, ε′ = ε/6, t = 150dlog(kδ )e

Output: h = MAJORITY({hi}ti=1)

Initialize wi,0 = 1 for all i ∈ [1, k] for j = 1, ..., t do

Draw sample S of mε′/16,δ′,η̄j samples from mixture Dj = 1∑k
i=1 wi,j

∑k
i=1wi,jDi;

Select ERM hypothesis hj ∈ H on S;

Gj ← CN-FAST-TEST(hj , Nj , ε
′, δ′);

for i = 1, ..., k do

wi,j+1 =


2wi,j if i /∈ Gj

wi,j if i ∈ Gj

;

end

end

return h = MAJORITY({hi}ti=1)

Procedure CN-FAST-TEST(h,N, ε, δ)

for i ∈ N do

Draw sample of size Ti = O( 1
ε′(1−2ηi)

) from Di;

end

return {i | errTj (h,EXηi) ≤ ηi + 3ε
4 (1− 2ηi)



79

Proof. Follows from multiplicative Chernoff bounds (Theorem 8).

Recall that in the centralized learning algorithms, players are never eliminated from the

algorithm. Instead, their weights are increased or decreased according to the performance of

hj on their distributions. Over t rounds, this gives have t classifiers with varying performance

on the players. As in Algorithm 3, we take the majority vote of these classifiers as our final

classifier. Thus, we need to verify that the majority vote is sufficiently accurate. We use the

following claim directly from [13,50] which also holds in our setting with CN.

Lemma 36 ([13, 50]). For each player, the number of classifiers that have error more than ε′

is less than .4t with probability 1− δ.

Therefore, by the above lemma and analysis in [13,48,50], with probability 1− δ, the error

of the final hypothesis h is less than ε for every player’s distribution. Combining Lemmas 34,

35, 36 proves the correctness of our algorithm.

Theorem 37. Algorithm 5 is a centralized collaborative PAC algorithm in the presence of CN.

We compute the sample complexity of our algorithm.

Theorem 38. The sample complexity of Algorithm 5 is

O

(
log

(
k

δ

)(
d log( log(k/δ)

δ )

ε(1− 2ηMAX)2
+

k

ε(1− 2ηMAX)

))
.

When k ln(k) = O(d), the overhead is O(log(k) log(log(k))).
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Proof. Recall that δ′ = O
(

δ
log(k/δ)

)
. The algorithm runs for a total of t = O(log(kδ )) rounds.

In each round, an ERM is learned on the mixture of players using

m ε′
16
,δ′,η̄j

= O

(
d log( log(k/δ)

δ )

ε(1− 2η̄j)2

)

samples. Then, the algorithm implements CN-FAST-TEST at each round for all k players, costing

O( k
ε(1−2ηi)

) samples. Therefore, over all t rounds, the sample complexity is

O

(
log

(
k

δ

)(
d log( log(k/δ)

δ )

ε(1− 2ηMAX)2
+

k

ε(1− 2ηMAX)

))
.

Setting ε, δ, and ηMAX to constants and setting k ln(k) = O(d), the sample complexity simplifies

to O(d log(k) log(log(k))) indicating O(log(k) log(log(k))) overhead.

4.6 Communication Complexity of Personalized Learning

Thus far, we have considered only the sample complexity and overhead of collaborative PAC

learning algorithms with and without noise. Likewise, related work focuses only on sample

complexity and overhead. In this section, we shift our focus to the communication complexity

of personalized collaborative learning. We define the communication complexity as the total

number of samples and bits communicated to the center node during the execution of the

algorithm. The communication complexity is dependent on the implementation of an algorithm.

Therefore, to compute communication costs accurately and consistently, we carefully outline

the implementation assumptions of our collaborative learning model. First, we assume that the
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learning criteria is personalized collaborative learning and that the algorithm is complete when

each player is in possession of a classifier that has error < ε. Second, we assume that each player

has computing power, access to the hypothesis class H, and access to learning parameters ε, δ,

and k. Third, we assume the broadcast model of communication as in [49], which means that

all players can observe all samples or bits sent to the center. Fourth, for clarity in computations

and analysis, we assume δ is a constant.

We first revisit the baseline approach of personalized learning. Previously in this chapter,

we described the personalized baseline as the approach where each player sends O(dε ) samples

from their own distributions to the center. The communication efficient personalized baseline is

the same but implemented differently. Namely, each player draws O(dε ) locally and individually

learns their own classifier. This implementation requires no communication to the center.

Although both baselines have the same sample complexity, in light of the model assumptions

and communication costs, the latter baseline is most competitive and will serve as our default

baseline in this section.

The sample complexity of the personalized learning algorithm (Algorithm 2) is proved in

Theorem 26. We compute the communication complexity of their algorithm in the following

theorem.

Theorem 39. The communication complexity of personalized collaborative learning, Algorithm

2, is

Õ

(
log(k)

d

ε

)
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samples plus O(k log(k)) additional bits of communication.

Proof. We describe the implementation details for personalized learning. Consider round j. In

the first step, each player in Nj sends mε/4,δ′/|Nj | points to the center to learn a common con-

sistent hypothesis, hj , costing Õ(dε ) samples of communication. Note that each player sending

exactly mε/4,δ′/|Nj | samples is the same, in expectation, as drawing from the multinomial dis-

tribution on the players’ distributions and therefore, the hypothesis learned in the next step will

have the same generalization guarantees. By assumption of the broadcast model, each player

can see the samples transmitted by other players so all players can learn a consistent hypothesis

locally, costing no communication in this step. After learning the consistent hypothesis hj , each

player implements TEST locally, costing no communication. Afterwards, they communicate a

single bit to the center indicating whether or not TEST passed with hj , costing O(k) bits of

communication. Therefore, the total communication over log(k) rounds is Õ(log(k)dε ) samples

plus additional O(k log(k)) = Õ(k) bits of communication.

The main contribution of personalized collaborative learning (Algorithm 2) is the expo-

nential improvement in the sample complexity with respect to the baseline; in particular, the

sample complexity improves to logarithmic dependence on k in (Algorithm 2), a drastic im-

provement for large k. We now consider the scenario where k is large and players want to learn

classifiers with low error. In this scenario, ε will be very small, so improving ε dependence

is crucial. In this section, we show that the dependence on ε can be improved exponentially

in communication complexity. Our communication efficient personalized learning algorithm
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achieves the same sample complexity as personalized learning but with O(log(1
ε )) dependence

in communication complexity.

Table I summarizes the sample and communication complexities of the baseline approach,

the personalized learning algorithm from [48] (Algorithm 2), and in bold, our algorithm (Al-

gorithm 7). The table also tracks the number of additional bits needed to orchestrate the

algorithms. However, we are primarily concerned with the number of samples communicated

(since this can be expensive for large d) and therefore, we aim to reduce this cost.

TABLE I: Samples and Communication in Personalized Learning

Sample Complexity Samples Communicated Bits Communicated

Baseline Õ(k dε ) Õ(1) Õ(1)

Algorithm 2 Õ(log(k)dε ) Õ(log(k)dε ) Õ(k)

Algorithm 7 Õ(log(k)dε ) Õ(log(k)d log(1
ε )) Õ(k log(d) log(1

ε ))

To reduce communication costs, we replace the first step in personalized learning with

distributed boosting [49]. We recall the distributed boosting algorithm in Algorithm 6. The

distributed boosting algorithm is essentially a distributed implementation of AdaBoost ([52])

that requires only Õ(log(1
ε )) rounds to yield a consistent hypothesis. The learning objective of

distributed boosting is to learn a classifier with error less than ε on the mixture of distributions,

1
k

∑k
i Di. We recall the communication complexity of distributed boosting below.
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Theorem 40 ([49]). Any class H of finite VC-dimension d can be learned to error ε in

Õ(log(1
ε )) rounds and O(d) examples plus O(k log(d)) bits of communication per round using

the distributed boosting algorithm, Algorithm 6.

The sample complexity of distributed boosting was not analyzed in [49]. We derive the

sample complexity in the next section, showing that distributed boosting can be implemented

with the same sample complexity as boosting.

4.7 Sample Complexity of Distributed Boosting

We first recall the sample complexity of the original implementation of AdaBoost ([52]). The

sample complexity is the size of the reservoir of points used in the AdaBoost routine, denoted

by S. To compute the sample complexity, we first need the VC-dimension of the hypothesis

class H after T rounds of boosting.

Lemma 41 ([52]). Suppose the weak learner in AdaBoost learns a classifier with constant error

in each round. Then, Õ(ln(1
ε )) rounds of AdaBoost are needed to learn a classifier with zero

training error.

Let dboost denote the VC-dimension of the hypothesis class after T rounds of boosting.

Lemma 42 ([52]). Let H denote the base class of hypotheses with VC-dimension d. After T

rounds of boosting, the resulting hypothesis class has VC-dimension dboost = O(dT log(T )) =

Õ(dT ).

We now show the known result of the sample complexity of AdaBoost.
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Algorithm 6: Distributed Boosting [49]

Input: k players with sample reservoirs Si ∼ Di, ε > 0, β-weak learning oracle on H

Initialize player weights: wi,t=0 = 1 for each player =⇒ Wt=0 =
∑k

i=1wi,t=0 = k

Initialize sample weights: vi,j,t=0 = 1
|Si| for each point xj ∈ Si

Set β = 1
2 .

For round t = 1, ..., T :

1: [Pre-sampling] Sample O( dβ log( 1
β )) times from the multinomial distribution defined by

wi,t−1

Wt−1
to determine the number of samples to request from each player, ni,t. Transmit ni,t

to each player.

2: [Sampling] Each player samples ni,t from Si according to weights vi,j,t. All ni,t points are

transmitted to the center.

3: [Weak Learning] Each player learns the same β
2 -good classifier simultaneously.

4: [Updating Sample Weights] Each player updates vi,j,t+1 according to the underlying

boosting algorithm. Set wi,t =
∑|Si|

j=1 vi,j,t−1 and transmit approximation of wi,t to the

center.

Output: h = sign(
∑T

i=1 hi).
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Lemma 43. We have that the sample complexity of AdaBoost is

mboost = O

(
dboost
ε

)
= Õ

(
d

ε

)
.

Proof. Follows immediately from Lemma 41, Lemma 42, and PAC sample complexity bounds

in Theorem 1.

We now proceed with the sample complexity of distributed boosting. In distributed boosting

(Algorithm 6) the sample complexity is the sum over the players’ sample reservoirs,
∑k

i=1 Si.

From classic learning theory we know lower and upper bounds on
∑k

i=1 |Si|, but the size with

which to initialize each individual Si is unclear. In particular, the issue is that during each

round of distributed boosting, the number of samples requested from a player can increase and

in the original analysis of Algorithm 6, Si is assumed to be large enough so each player always

has plenty of samples to send when requested. Assuming the worst case that each player has at

least O(d) samples in their reservoir leads to sample complexity dependence on O(kd), which

will not lead to a competitive sample complexity in our collaborative learning setting. We show

that it is not necessary for each player to have a large reservoir Si. We propose adding the

following one-time preprocessing step to Algorithm 6: set each |Si| = dmboost
k e. By initializing

each reservoir in this way, we restrict the sample size to
∑k

i=1 |Si| = mboost. By assumption,

the players have access to all parameters such as ε, δ and k, so they can compute dmboost
k e and

initialize their sets Si locally.
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Theorem 44. The sample complexity of distributed boosting, Algorithm 6, is

O

(
dboost
ε

)
= Õ

(
d

ε

)
.

Proof. The sample complexity of distributed boosting, Algorithm 6, with mboost samples follow

from the fact that distributed boosting is equivalent to boosting with a single player with sample

S = ∪ki=1Si, and in this case, we know the sample complexity is Õ(dε ) by Theorem 43. By adding

the preprocessing step described above, we restrict the sample complexity of the algorithm to

mboost. We now show that distributing mboost points evenly across players as prescribed by the

preprocessing step, Algorithm 6 remains correct. The Pre-sampling step remains unaffected.

However, in the Sampling step, it is possible that the center requests more points from a player

than the player has in their now limited reservoir Si. This is not a problem as the player simply

samples from Si i.i.d. according to their internal weights, vi,j,t. The Weak Learning step is

unaffected since it is still receiving a sample drawn i.i.d. from the boosting-weighted mixture of

players. And finally, we note that the Updating Sample Weights step is unaffected. Therefore,

Õ(dε ) samples suffice for distributed boosting and adding the preprocessing step to Algorithm

6 achieves the sample complexity.

In this section, we reviewed the communication complexity of distributed boosting, demon-

strating O(log(1
ε )) dependence, and proved the sample complexity of distributed boosting. We

use these results in the next section in proving the correctness, sample complexity, and com-

munication complexity of our communication-efficient personalized learning algorithm.
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4.8 Communication Efficient Personalized Learning Algorithm

To improve the communication cost of personalized learning, we propose replacing the first

step with distributed boosting (Algorithm 6), while leaving the rest of the personalized algo-

rithm intact, as shown in Algorithm 7. We first compute the sample complexity of our proposed

algorithm showing that it is equal, up to polylogarithmic terms, to the sample complexity of

the original personalized learning algorithm.

Theorem 45. The sample complexity of communication-efficient personalized learning with

boosting (Algorithm 7) is

Õ

(
log(k)

d

ε

)

when k ln(k) = O(d).

Proof. By Theorem 44, the sample complexity of distributed boosting is Õ(dε ). This step is im-

plemented at most O(log(k)) times, totaling Õ(log(k)dε ) samples. The TEST step is unchanged,

so from [48], it uses O(log(k)kε ln(k log(k)
ε )) = Õ(log(k)kε ) samples. Since k ln(k) = O(d), we

have Õ(log(k)dε ).

We now compute the communication complexity of our proposed algorithm, showing that

it is indeed an improvement over the original personalized learning.

Theorem 46. The communication complexity of Algorithm 7 is

Õ

(
log(k)

(
d log

(
1

ε

)))



89

Algorithm 7: Communication Efficient Personalized Learning with Boosting

Input: H, k distributions Di ∼ X, δ′ = δ/2 log(k), ε > 0

Output: f1, ..., fk

Let N1 = {1, ..., k};

for j = 1, ..., dlog(k)e do

Run distributed boosting (Algorithm 6) with players in Nj to get candidate hj ;

Gj ← TEST(hj , Nj , ε, δ
′);

Nj+1 = Nj \Gj ;

for i ∈ Gj do

fi ← hj ;

end

end

return f1, ..., fk

Procedure TEST(h,N, ε, δ)

for i ∈ N do

Draw sample of size Ti = O

(
ln(
|N|
εδ

)

ε

)
from Di;

end

return {i | errTi(h) ≤ 3ε
4 }
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samples plus an additional Õ(k log(d) log(1
ε )) bits of communication.

Proof. We consider a single round of our algorithm. The communication complexity of the

first step is given in Theorem 40 as Õ(d log(1
ε )) examples plus Õ(k log(d) log(1

ε )) bits of com-

munication. Recall that each step in distributed boosting, all players learn the same weak

learning classifiers locally. Therefore, when the distributed boosting algorithm completes, each

player has all log(k) weak classifiers and can therefore sum them to create the final boosting

classifier hj , costing no communication. Using the boosting classifier in the TEST step, there

is no communication needed as the players simply need to test the boosting classifier on Tj

samples drawn from their own distributions. The players each send one bit of communication

to the center indicating if they passed TEST or not, costing O(k) bits for all k players. There-

fore the total communication complexity over log(k) rounds is Õ(log(k)(d log(1
ε )) samples plus

Õ(k log(d) log(1
ε )) +O(k) = Õ(k log(d) log(1

ε )) additional bits of communication.

The sample and communication complexities are summarized in Table I. We have shown

that by replacing the first step of personalized collaborative learning with distributed boosting,

we can improve the number of samples communication exponentially in 1
ε , which is particularly

valuable for collaboratively learning highly accurate classifiers.

4.9 Communication Efficient Personalized Learning with Classification Noise

Thus far in our study of communication efficient collaborative learning we have considered

noiseless personalized learning. We now revisit personalized collaborative learning with CN.

We propose a communication-efficient variant of our algorithm for personalized learning with

CN described in Algorithm 8. The baseline approach is for each player to draw mε,δ,ηi samples
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from their own distributions and learn a classifier locally. The sample sample complexity of

this baseline is O
(
k d
ε(1−2ηMAX)2

)
and requires no communication.

We revisit our personalized collaborative learning algorithm robust to CN, Algorithm 4,

and compute its communication complexity.

Theorem 47. The communication complexity of personalized learning with CN, Algorithm 4,

is

Õ

(
log(k)

d

ε(1− 2ηMAX)2

)

samples and Õ(k) additional bits of communication.

Proof. In the first step, a total of O
(
d log(log(k))
ε(1−2η̄K)2

)
samples are communicated to the center

and simultaneously broadcasted to all players so that each player can learn an ERM. Each

player than implements the CN-TEST locally, costing no communication. However, after im-

plementing CN-TEST, the players must send one bit to the center indicating the results of

CN-TEST, costing O(k) bits. Therefore, over O(log(k)) rounds, the communication complexity

is O
(

log(k)d log(log(k))
ε(1−2η̄K)2

)
= Õ

(
log(k) d

ε(1−2ηMAX)2

)
and an additional O(k log(k)) = Õ(k) bits of

communication.

Simplifying the sample complexity of personalized learning with CN in Theorem 33 with

respect to constant δ and k ln(k) = O(d) gives Õ
(

log(k) d
ε(1−2ηMAX)2

)
. Table II summarizes the

sample and communication complexities of the baseline approach, personalized learning with

CN (Algorithm 4), and in bold, our communication efficient personalized learning algorithm

with CN (Algorithm 8). As in the previous section, we consider the scenario where players want
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to learn highly accurate classifiers, thus our goal is to develop an algorithm that can improve

dependence on 1
ε(1−2ηMAX) in samples communicated.

TABLE II: Samples and Communication in Personalized Learning with Classification Noise

Sample Complexity Samples Communicated Bits Communicated

Baseline Õ
(
k d
ε(1−2ηMAX)2

)
Õ(1) Õ(1)

Algorithm 4 Õ
(

log(k) d
ε(1−2ηMAX)2

)
Õ
(

log(k) d
ε(1−2ηMAX)2

)
Õ(k)

Algorithm 8 Õ
(

log(k) d
ε(1−2ηMAX)2

)
Õ
(

log(k)d log
(

1
ε(1−2ηMAX)

))
Õ
(
kd log3

(
1

ε(1−2ηMAX)

))

As in the previous section, we use a boosting approach to improve communication com-

plexity. However, there are some subtleties around boosting in the CN setting. We restrict

our attention to boosting the error up to the noise rate ηMAX, where ηMAX ≤ ε. It has been

shown that boosting past the error rate, where ηMAX > ε, is hard [54]. By restricting to our

attention to boosting up to the noise rate, we can take advantage of agnostic boosting algo-

rithms since CN is a special case of agnostic learning. Therefore, we propose replacing the

first step of our personalized learning with CN algorithm (Algorithm 4) with distributed ag-

nostic boosting algorithm in [53], described in Algorithm 8. The distributed agnostic boosting

algorithm assumes access to a β-weak agnostic learner, which returns a hypothesis h so that

errD(h) ≤ minh′∈H err(h
′) + β [53]. We recall the sample and communication complexities of

distributed agnostic boosting.
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Algorithm 8: Communication Efficient Personalized Learning with Agnostic Boosting

Input: H, k distributions Di ∼ X with error rates ηi <
1
2 , δ′ = δ/2 log(k), ε > 0

Output: f1, ..., fk ∈ H

Let N1 = {1, ..., k};

for j = 1, ..., dlog(k)e do

Use distributed agnostic learning ([53]) on players in Nj to learn hj ;

Gj ← CN-TEST(hj , Nj , ε, δ
′);

Nj+1 = Nj \Gj ;

for i ∈ Gj do

fi ← hj ;

end

end

return f1, ..., fk

Procedure CN-TEST(h,N, ε, δ)

for i ∈ N do

Draw sample of size Ti = O

(
ln(
|N|
δ

)

ε(1−2ηi)

)
from Di;

end

return {i | errTi(EXηi , hj) ≤ ηi + 3ε
4 (1− 2ηi)}
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Theorem 48 ([53]). Suppose the distributed agnostic boosting algorithm has access to a β-weak

agnostic learner. Then, the sample complexity of distributed agnostic boosting is

Õ

(
d

ε2(1/2− β)2

)
.

The following corollary that holds for the special case of classification noise.

Corollary 49. Suppose the distributed agnostic boosting algorithm has access to a β-weak

agnostic learner. Let β be a fixed constant. The sample complexity of boosting in the presence

of classification noise where ηMAX ≤ ε is

Õ

(
d

ε(1− 2ηMAX)2

)
.

Proof. Using the standard agnostic learning to classification noise restriction ([55]), the sample

complexity for agnostic distributed boosting is Õ
(

d
ε2(1−2ηMAX)2

)
. We then reduce ε2 to ε by

the argument in [10], which holds specifically for the case of classification noise.

We now review the communication complexity results of agnostic distributed boosting from

[53]. In their work, they track the number of words, instead of bits, communicated. They

define words as the length of the vector communicated – a length d vector costs O(d) words to

communicate.
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Theorem 50 ([53]). Suppose the distributed agnostic boosting algorithm has access to a β-weak

agnostic learner. The distributed agnostic boosting algorithm achieves error 2errD(H)
1/2−β + ε by

using at most

O

(
log(1

ε )

(1/2− β)2

)

rounds, each communicating

O

(
d

β
log

(
1

β

))

samples and

Õ

(
kd log2

(
d

(1/2− β)ε

))

words of communication.

We derive a corollary that holds specifically for the CN setting. We also convert words to

bits. To ensure an approximation within poly( d
ε(1−2ηMAX)), we assume that each element in any

vector communicated consists of at most O
(

log
(

d
ε(1−2ηMAX)

))
bits.

Corollary 51. Suppose the distributed agnostic boosting algorithm has access to a β-weak

agnostic learner. Let β be a fixed constant. The communication complexity of boosting in the

presence of classification noise where ηMAX ≤ ε consists of

O

(
log

(
1

ε(1− 2ηMAX)

))
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rounds, each communicating O(d) samples and

Õ

(
kd log3

(
1

ε(1− 2ηMAX)

))

bits of communication.

Combining the corollaries above with analysis from previous sections, we have the following

sample and communication complexities of our algorithm for communication efficient person-

alized learning with CN (Algorithm 8).

Theorem 52. The sample complexity of communication efficient personalized learning with

noise (Algorithm 8) is

Õ

(
log(k)

d

ε(1− 2ηMAX)2

)
.

Theorem 53. The communication complexity of communication efficient personalized learning

with noise (Algorithm 8) is

Õ

(
log(k)

d

ε(1− 2ηMAX)2

)

plus Õ
(
kd log3

(
1

ε(1−2ηMAX)

))
bits of communication.
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Appendix A

SOURCE CODE FOR CHAPTER 2

1 import networkx as nx

2 import itertools as it

3 import random

4

5 def powerset(s):

6 #CREDIT: This powerset method was taken from stackoverflow , contributed by

user hughdbrown , source: https :// stackoverflow.com/a/1482320

7 x = len(s)

8 masks = [1 << i for i in range(x)]

9 for i in range(1 << x):

10 yield [ss for mask , ss in zip(masks , s) if i & mask]

11

12 def compute_obj(mu , p, graph_init , R, L):

13 ’’’

14 INPUT: any bipartite graph , mu , p, R = set of right nodes , L = set of left

nodes

15 OUTPUT: expected fraction of infected nodes

16 ’’’

17 #generate the edges of all subgraphs possible

18 #start = time.time()

19 subgraphs_powerset = list(powerset(graph_init.edges()))
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20 subgraphs = [0]* len(subgraphs_powerset)

21 original_num_edges = len(graph_init.edges())

22

23 #initialize stuff

24 subgraphs_with_probs = {}

25 nodes_and_connected_components = {}

26 for node in graph_init.nodes():

27 nodes_and_connected_components[node] = [0]*( len(graph_init.nodes()))

28

29 #for each edgeset , generate a graph , compute the probability of obtaining

that graph , and compute the

30 #size of the connected components for each vertex of the graph and add the

graph probability to the

31 #appropriate count

32 new_graph = nx.Graph()

33 for i in range(len(subgraphs_powerset)):

34 new_graph.add_nodes_from(R, bipartite = 0)

35 new_graph.add_nodes_from(L, bipartite = 1)

36 new_graph.add_edges_from(subgraphs_powerset[i])

37 conn_comp_size = nx.node_connected_component

38 subgraphs_probs = p**(len(new_graph.edges()))*(1-p)**(

original_num_edges - len(new_graph.edges()))

39 for node in graph_init.nodes():

40 size = len(conn_comp_size(new_graph , node))

41 nodes_and_connected_components[node][size -1] += subgraphs_probs

42 new_graph.remove_edges_from(subgraphs_powerset[i])
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43

44 #compute the sum of the expected value over all nodes

45 expval = 0

46 for node in graph_init.nodes():

47 sum_over_cv = 0

48 for component_size in range(len(nodes_and_connected_components[node])):

49 sum_over_cv += ((1 - mu)**( component_size +1))*

nodes_and_connected_components[node][ component_size]

50 expval += sum_over_cv

51

52 #compute the objective function = expected fraction of infected nodes

53 obj = 1 - (( expval)/(len(graph_init.nodes())))

54

55 #return result

56 return obj

57

58

59 def get_all_min_indices(list_of_floats):

60 ’’’Returns a list of all indices that have the lowest value; once indices

are found , can be used to find

61 corresponding subgraphs that yield min expected fraction of infection.’’’

62 smallest = min(list_of_floats)

63 indices_of_smallest = [index for index in range(len(list_of_floats)) if

list_of_floats[index] == smallest]

64 return indices_of_smallest

65
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66

67 def gen_2_half_regular ():

68 ’’’Generates all 2-half -regular bipartite graphs on 8 (4 nodes/side) nodes.

’’’

69 #initialize the complete bipartite graph with 4 nodes per side

70 R = [1, 2, 3, 4]

71 L = [’a’, ’b’, ’c’, ’d’]

72 E = [(1,’a’), (1, ’b’), (1, ’c’), (1, ’d’), (2, ’a’), (2, ’b’), (2, ’c’),

(2, ’d’), (3, ’a’),

73 (3, ’b’), (3, ’c’), (3, ’d’), (4, ’a’), (4, ’b’), (4, ’c’), (4, ’d’)]

74 graph_init = nx.Graph()

75 graph_init.add_nodes_from(R, bipartite = 0)

76 graph_init.add_nodes_from(L, bipartite = 1)

77 graph_init.add_edges_from(E)

78

79 two_half_regulars = []

80 append = two_half_regulars.append

81 R_nodes_and_edges = {}

82

83 for i in range(len(R)):

84 R_nodes_and_edges[i+1] = []

85

86 for edge in E:

87 r, l = edge

88 R_nodes_and_edges[r]. append(l)

89
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90 #generate all possible 2-half -regular graph edge sets: to generate one

graph , pick TWO edges from each of the

91 #four nodes in R, repeat for all possibilites , i.e. (4 choose 2)^4 = 1296

graphs

92 edges_2_half_regular = list(it.product(it.combinations(R_nodes_and_edges

[1], 2), it.combinations(R_nodes_and_edges [2], 2),

93 it.combinations(R_nodes_and_edges

[3], 2), it.combinations(R_nodes_and_edges [4], 2)))

94

95 for i in range(len(edges_2_half_regular)):

96 edges_2_half_regular[i] = list(edges_2_half_regular[i])

97 for j in range(len(edges_2_half_regular[i])):

98 edges_2_half_regular[i][j] = list(edges_2_half_regular[i][j])

99

100 #initialize a bipartite graph object for each graph generated above

101 newgraph = nx.Graph

102 for neighborlist in edges_2_half_regular:

103 E_new_subgraph = []

104 add_on = E_new_subgraph.append

105 for i in range(len(neighborlist)):

106 for j in range(len(neighborlist[i])):

107 add_on ((i+1, neighborlist[i][j]))

108

109 graph_new = newgraph ()

110 graph_new.add_nodes_from(R, bipartite = 0)

111 graph_new.add_nodes_from(L, bipartite = 1)
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112 graph_new.add_edges_from(E_new_subgraph)

113 append(graph_new)

114

115 #return list of 1-half -regular bipartite graph objects with 4 nodes/side

116 return two_half_regulars

117

118

119 #define nodes in R and L

120 R = [1, 2, 3, 4]

121 L = [’a’, ’b’, ’c’, ’d’]

122

123 #generate all 2-half -regular graphs and intialize dictionary of all results

124 all_2_half_regulars = gen_2_half_regular ()

125 num_2_half_regulars = len(gen_2_half_regular ())

126 all_results = {}

127

128

129 n = 10

130 k = 1

131 l = 10

132

133 #for all combinations of mu ,p, compute the expected infected fraction of nodes

explicitly for

134 #each possible 2-half -regular bipartite graph on nodes R, L

135 for mu_times_l in range(0, n, k):

136 all_results[mu_times_l/l] = []
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137 for p_times_l in range(0, n, k):

138 iteration = 0

139 print(’Starting mu = ’, mu_times_l/l, ’p = ’, p_times_l/l)

140 p_result = []

141 for graph in all_2_half_regulars:

142 p_result.append(compute_obj(mu_times_l/l, p_times_l/l, graph , R, L)

)

143 iteration += 1

144 all_results[mu_times_l /10]. append(p_result)

145

146

147 all_result_graphs = {}

148

149 #find the smallest expected infected fraction of nodes for each combo of mu and

p, then find the corresponding

150 #graphs;

151 for mu in all_results.keys():

152 all_result_graphs[mu] = []

153 for p_times_l in range(0, n, k):

154 smallest_obj_graphs_mu = []

155 smallest_indices = get_all_min_indices(all_results[mu][ p_times_l ])

156 for index in smallest_indices:

157 smallest_obj_graphs_mu.append(all_2_half_regulars[index])

158 all_result_graphs[mu]. append(smallest_obj_graphs_mu)

159

160 #print results
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161 for mu in all_result_graphs.keys():

162 for p_times_l in range(0, n, k):

163 min_edges = all_result_graphs[mu][ p_times_l ][0]. edges()

164 print(’mu = ’, mu , ’p = ’, p_times_l/l)

165 print(min_edges)

Listing A.1: Identifying the 2-Half Regular Bipartite Graphs with Minimal Expected Fraction

of Infected Nodes
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