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SUMMARY

Every problem in real life is an optimization problem. From choosing the market from which

we buy certain items to the task of the day we choose to focus on first, to which job offer we

accept, all can be formulated as an optimization problem. Most of these optimization problems,

however, are either very hard, or even impossible, to solve. Modern large-scale optimization

aims at finding the class of these problems that are efficiently solvable.

This thesis focuses on a class of optimization problems called minimax optimization. In

chapter 1, we will review the literature and introduce somee of the more well-known methods,

called “primal-dual algorithms”, that are commonly used to solve these methods. In Chapter 2,

we propose a variant of one of these methods, that solves the nonconvex-nonconcave minimax

optimization problems efficiently upon assuming some structural assumption. We also showcase

a class of problems that shows that our structural assumption is tight for the convergence of

the said first order method. Chapter 3, addresses the problem of minimax optimization in the

presence of constraints. We will present the convergence of damped proximal point methods

under an equivalent structure when neither convexity nor concavity is present in our objective

function. We also furnish some properties for the constrained saddle envelope, a generalization

of Moreau envelope to primal-dual problems, that we believe will be of independent interest in

future research endeavors.
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CHAPTER 1

INTRODUCTION TO MINIMAX OPTIMIZATION

This dissertation studies minimax optimization problems which have always been an es-

sential part of the optimization due to its wide range of applications in game theory (Başar

and Olsder, 1998) and control theory (Hast et al., 2013). Recently, with the advent of General

Adversarial Networks (GANs) (Goodfellow et al., 2014), reinforcement learning (Dai et al.,

2018; Sutton and Barto, 2018), in particular, the interests in minimax optimization have seen

a considerable increase.

Minimax optimization problems are formulated as the following,

min
x∈C

max
y∈D

f(x, y), (1.1)

where C ⊂ Rn and D ⊂ Rm are the constraints of the problem. The case of C = Rn and

D = Rm is called the unconstrained minimax problem.

The problem (Equation 1.1) is called a convex-concave problem if x 7→ f(x, y) is convex for

every y ∈ D and y 7→ f(x, y) is concave for every x ∈ C. Various combinations of these classes

are thus defined.

A point (x∗, y∗) ∈ C×D is called a Nash equilibrium of problem (Equation 1.1) if

f(x∗, y) ≤ f(x∗, y∗) ≤ f(x, y∗), for all x ∈ C, y ∈ D. (1.2)

1
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The following sections of this Chapter are as follows: section 1.1 goes over two of the recent

robust machine learning models that motivate the study of minimax problems. Section 1.2

introduces a few of most common first-order methods used in solving minimax optimization

problems and argues why the most simple method, gradient descent-ascent, fails to converge

to the solution of bilinear (convex-concave) problems. Section 1.3 goes over the literature of

primal-dual methods and further covers more particular primal-dual methods.

1.1 Motivations and Applications

In GANs, where the goal is to predict the class a data point belongs to by learning the

distribution of the data, two models are simultaneously trained: the generative network G and

the discriminator network D. The generative network G tries to generate data from noise prior

pW(w) via a differentiable function G(w,Xg), where Xg represents the generator’s parameters,

and the discriminator maps the data point v to a scalar in D(v, Yd) ∈ (0, 1), the probability

the data came from data rather than the generator’s fake output, where Yd represents the

generator’s parameters. This is a zero-sum game and the whole model is trained with D trying

to maximize logD(v, Yd) and the generator trying to minimize log(1 − D(G(w,Xg))). The

game that G and D play simultaneously leads, with some abuse of notation, to the following

formulation

min
Xg∈G

max
Yd∈D

Ev∼Pdata(v)D(v, Yd) + Ew∈PW(w) log (1−D(G(w,Xg), Yd)) (1.3)

where Pdata is the true data distribution.
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GANs have been very successful in machine learning community. However, GANs can be

succeptible to adversarial attacks. Alternatives (Madry et al., 2018) involve solving a minimax

problem with adversarial corruptions t. For example, let (u, v) represent the feature vector

and its label, respectively, x represent the model’s parameters, and t represent the adversarial

corruption parameter. In that case, the robust minimax formulation of the machine learning

model minx E(u,v)l(u, v, x) becomes

min
x

E(u,v)

[
max
t∈T

l(u+ t, v, x)

]
, (1.4)

where T is the set of all corruptions, and l is the loss function.

While, for instance, GANs are formulated as a simultaneous zero-sum game, the robust

training example is a general-sum game that has a different solution concept known as Stack-

elberg equilibrium (von Stackelberg, 2010). In the robust training example, the maximizing

player t, also sometimes known as the leader, takes an action t0, knowing that the minimizing

player, also known as the follower, plays the best response x0(t0) := argminx E(u,v)l(u+ t0, v, x).

1.2 First-Order Methods for Solving Minimax Problems

Perhaps the simplest method to solve minimax optimization problems is the (vanilla) gra-

dient descent-ascent (GDA) that goes from each iteration to the next by going in the negative

direction of the gradient oracle. These methods are applied when the bivariate objective func-
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tion f(x, y) is in class C1, i.e. the class of continuously differentiable functions. At each iteration

(xk, yk), the next iterate is found via

xk+1 = xk − sk∇xf(xk, yk)

yk+1 = yk + sk∇yf(xk, yk),

(1.5)

where sk > 0 is the step-size at iteration k.

As simple and as computationally inexpensive as this method is, and contrary to its min-

imization counterpart, GDA fails to converge even for convex-concave minimax optimization

problems. In fact, consider in problem (Equation 1.1) that f(x, y) = xTAy where A ∈ Rn×m is

full-rank. This problem has a Nash equilibrium at the origin. Applying GDA to this problem

yields

xk+1 = xk − skAyk

yk+1 = yk + skA
Txk

so that

∥∥∥∥∥∥∥∥
xk+1

yk+1


∥∥∥∥∥∥∥∥
2

∥∥∥∥∥∥∥∥
xk
yk


∥∥∥∥∥∥∥∥
2

= 1+ s2k

∥∥∥∥∥∥∥∥
Ayk

ATxk


∥∥∥∥∥∥∥∥
2

∥∥∥∥∥∥∥∥
xk
yk


∥∥∥∥∥∥∥∥
2

> 1,
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where the last ineqluality follows since A is full-rank. Therefore, starting from any initial

point (xk, yk) ∈ Rn+m, GDA diverges away from the unique solution at the origin, even if the

algorithm starts from any of the vertices of the n+m−1-dimensional standard simplex. This is,

as stated before, in contrast to smooth convex minimization where gradient descent efficiently

converges to the minimum.

A more sophisticated method, called Extra-Gradient Method (EGM), initially introduced

by (Korpelevich, 1976), implies a GDA step to obtain a middle point (x ′
k+1, y

′
k+1), and then

subsequently moves in the negative direction of the gradients evaluated at the middle point to

reap the next iterate. In other words,

x ′
k+1 = xk − sk∇xf(xk, yk)

y ′
k+1 = yk + sk∇yf(xk, yk),

⇒ xk+1 = xk − sk∇xf(x
′
k+1, y

′
k+1)

yk+1 = yk + sk∇yf(x
′
k+1, y

′
k+1),

(1.6)

We will study, in Chapter 2, that a variant of this method, called damped EGM, converges for

a structural class of nonconvex-nonconcave minimax optimization problems.

The other method, Optimistic Gradient Descent-Ascent (OGDA), shares some similarity

with EGM,

x ′
k+1 = xk − sk∇xf(xk, yk)

y ′
k+1 = yk + sk∇yf(xk, yk),

⇒ xk+1 = x ′
k+1 − sk

(
∇xf(xk, yk) −∇xf(x

′
k−1, y

′
k−1)

)
yk+1 = y ′

k+1 + sk
(
∇yf(xk, yk) −∇yf(x

′
k−1, y

′
k−1)

)
,

(1.7)
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The fourth method that can solve these minimax problems is the proximal point method

(PPM) that was first introduced by (Martinet, 1970). PPM calculates the next iterate in the

following manner

(xk+1, yk+1) = argminimax
u∈C
v∈D

{
f(u, v) +

1

2sk
∥u− xk∥2 −

1

2sk
∥v− yk∥2

}
=: Proxskf(xk, yk).

(1.8)

This method is the most theoretically appealing of all the methods so far stated. If the step-size

sk > 0 is small enough, the subproblem is strongly-convex-strongly-concave1. Many problems

are known to approximate PPM, such as EGM (Tseng, 1995; Nemirovski, 2004), and OGDA

(Daskalakis and Panageas, 2018). Despite enjoying favorable theoretical properties, PPM is

an implicit method (also known in the literature as a “conceptual” method). Each iteration

requires solving a computationally nontrivial minimax problem, whence not an “implementable”

method, at least not the exact version, in practice.

1.3 Literature

The convex-concave minimax optimization problem (Equation 1.1) has been well-studied in

the literature. PPM (Equation 1.8) was first introduced by (Martinet, 1970) in the context of

1This means the mapping x 7→ f(x, y) is strongly convex for every y ∈ D, and y 7→ f(x, y) is strongly
concave for every x ∈ C.
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maximal monotone variational inequality (VI) with sk ≡ s > 0, i.e. constant step-size1 This

exact PPM was extended by (Rockafellar, 1976) to inexact PPM with varying step-sizes sk, i.e.

when each iteration of (Equation 1.8) is replaced by (xk+1, yk+1) ≈ Proxskf(xk, yk), that is

∥(xk+1, yk+1) − Proxskf(xk, yk)∥ ≤ ek,

∞∑
k=1

ek <∞,

∥ (xk+1, yk+1) − Proxskf(xk, yk)∥ ≤ dk∥ (xk+1, yk+1) − (xk, yk) ∥,
∞∑
k=1

dk <∞
Results in (Rockafellar, 1976) imply that if further (i) the solution to the problem (Equation 1.1)

is unique, (ii) and that the inverse of the gradient operator (also known as oracle) F(x, y) := ∇xf(x, y)

−∇yf(x, y)

 is single-valued around the unique solution, and (iii) that F is metrically sub-

regular around the solution, then local linear convergence rate can be attained by PPM. Later

on, (Tseng, 1995) showed that both PPM and EGM converge linearly to the solution of a vari-

ational inequality granted a projection-type error bound holds, i.e. one where the distance to

the solution is bounded for all iterations. Nemirovski (Nemirovski, 2004), later, showed that

the mirror prox algorithm, and therefore EGM, converges sublinearly O
(
1
ϵ

)
to the solution of

the minimax problem when the objective is convex-concave.

There are quite a few other algorithms that have been proposed to solve convex-concave

minimax optimization problems.

1An operator T : Rn ⇒ Rm is monotone if for every x, x ′ ∈ Rn and every y ∈ T(x), y ′ ∈ T(x), we have
⟨x−x ′, y−y ′⟩ ≥ 0. This mapping is, further, maximally monotone if its graph gph T := {(x, y) | y ∈ T(x)}
is not properly contained in the graph of another monotone operator.
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(Solodov and Svaiter, 1999a; Solodov and Svaiter, 1999b; Solodov and Svaiter, 2000; Solodov

and Svaiter, 2001) furnished new versions of approximate PPM using an error criteria relative

to that of (Rockafellar, 1976). In particular, for solving the maximally monotone inclusion

problem 0 ∈ T(x), (Solodov and Svaiter, 1999a) introduced a hybrid approximate proximal

extragradient method, using ϵ-enlargement Tϵ of T . More precisely, let the ϵ-enlargement for

ϵ > 0 of T at x ∈ Rn be defined as

Tϵ(x) := {v ∈ Rn | ⟨w− v, y− x⟩ ≥ −ϵ for all y ∈ Rn, w ∈ T(y)} ,

with T 0 := T . Using this approximation of the maximally monotone T , define now for x ∈ Rn, s >

0 and δ ∈ [0, 1), the δ-approximate solution to the proximal subproblem 0 ∈ T(.) + 1
s (. − x) as

the pair (x ′, v) if there exists an ϵ > 0 such that v ∈ Tϵ(x ′), v + 1
s (x

′ − x) = e(ϵ) ̸= 0 with

∥e(ϵ)∥2+2sϵ ≤ δ2∥x ′−x∥2. Now define the hybrid approximate proximal extragradient iterates

with step sk > 0 as follows

1. Find the δ-approximate solution (x ′
k+1, v

′
k+1) to the subproblem

0 ∈ T(.) +
1

sk
(.− xk)

2. Define

xk+1 = xk − skv
′
k+1
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(Solodov and Svaiter, 1999a) showed the above algorithm, called Hybrid Approximate Proximal

Extragradient Method (HPEM) converges sublinearly to the solution of a maximally monotone

inclusion problem.

(Monteiro and Svaiter, 2010) modified the termination criteria for HPEM to be of the

following form: given ϵ > 0, the algorithm terminates whenever it finds a tuple (x∗, v∗, ϵ∗) such

that

v∗ ∈ Tϵ(y∗), and max {∥v∗∥, ϵ∗} ≤ ϵ

More precisely, (Solodov and Svaiter, 1999a) showed the sequence (xk, yk, x
′
k, y

′
k, δk) gen-

erated via HPEM converges to a solution of monotone inclusion problem as (xk, yk) −−−−−→
O
(

1√
k

)
(x∗, y∗) and δk −−−→

O( 1
k)

0.

Another algorithm in the literature to solve monotone variational inequalities is the Douglas-

Rachford splitting method (DRSM). Motivated by the difficulty of calculating the proximal step

(I+skT)
−1, an alternative is to find maximal montone operators A and B with A+B = T whereas

calculating (I + skA)−1 and (I + skB)
−1 is easier. Initially motivated by problems in numer-

ical linear algebra (Douglas and Rachford, 1956), DRSM was introduced in the optimization

community by (Eckstein and Bertsekas, 1992).
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Closely related to DRSM is the Primal-Dual Hybrid Gradient (PDHG) method introduced

in (Chambolle and Pock, 2011), where they analyzed PDHG to solve nonsmooth convex-concave

minimax optimization problems with bilinear interaction, i.e. problems of the form,

min
x∈Rn

max
y∈Rm

f1(x) + ⟨ATx, y⟩− f2(y),

The algorithm runs a GDA using only the interaction term to get to the “middle point”, and

then runs two proximal step from that middle point using f1 and f2 to get to the next iter-

ate. Assuming simple structure for f1 and f2, these proximal steps are easy to compute. It

was shown in (Chambolle and Pock, 2011) that PDHG converges sublinearly to the solution

of the bilinear problem mentioned above. The close relationship between PDHG and DRSM

was recently shown in (O’Connor and Vandenberghe, 2018) to be an equivalence relation under

preconditioning. While PDHG and DRSM are known to converge linearly under further reg-

ularity conditions, and that these methods are not designed to be applied to generic minimax

problems, the main difference they have with the algorithms that we cover in this Thesis like

EGM and PPM is that PDHG and DRSM update the primal and dual sequentially whereas

EGM and PPM simultaneously update the primal and the dual.

(Nesterov, 2005) introduced a smoothing scheme to solve minimization problems, which

is also one of the most influential algorithms to solve convex-concave minimax problems with
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bilinear interaction term, i.e. functions in the class f(x, y) = f1(x) + xTAy− f2(y), where f1, f2

are continuous and convex. More precisely, motivated by the constrained minimization

min
x∈C

f(x) (1.9)

of a continuous, but not necessarily differentiable, function, (Nesterov, 2005) proposed a smooth

reformulation of (Equation 1.9) as

min
x∈C

max
y∈D

f̂(x) + ⟨Ax, y⟩− ĝ(y) −
σ

2
∥y− y0∥2,

for some y0 ∈ Rm with the structure of D ⊂ Rm was assumed to be “simple”, and ĝ(.) to be an

affine function. He thus furnished a rate of O
(

1√
ϵ

)
to solve the outer minimization problem,

thereby achieving, in this way, an overall rate of O
(
1
ϵ

)
if both C ⊂ Rn, D ⊂ Rm are simple and

the objective is affine in both x and y, with bilinear interaction term.

More recently, the advent of GANs (Goodfellow et al., 2014), and, subsequently, Wasserstein

GANs (Arjovsky et al., 2017), minimax optimization problems have gained new attraction in

the machine learning community. In one of the very first papers in this line of work, (Syrgkanis

et al., 2015) proved the OGDA1 converges faster to the solution of the convex-concave general

normal form games. Later on, (Daskalakis et al., 2018) showed that OGDA exhibits last-

1Also known in the literature as Optimistic Mirror Descent-Ascent (OMDA)



12

iterate convergence to the solution of the specific class of bilinear minimax games, whence

linear convergence, if the bilinear interaction matrix is full-rank.

(Mokhtari et al., 2020) furnished a unified analysis of different primal-dual algorithms to

solve convex-concave minimax optimization problems. In particular, they showed that OGDA

and EGM are approximations of PPM (the case of EGM was, indeed, shown earlier by (Ne-

mirovski, 2004)), and obtained linear rates for smooth and strongly-convex-strongly-concave

problems.

A different perspective taken in the literature with respect to minimax optimization prob-

lems, in particular, and the problem of (non-)monotone inclusion more generally, is analyzing

various algorithms using dynamical systems perspective. (Su et al., 2016) derived a second

order ordinary differential equation that behaves asymptotically the same as Nesterov’s ac-

celerated gradient descent (Nesterov, 1983) as the (constant) step-size s converges to 0, and

thus, in this way, furnished an explanation why Nesterov’s acceleration scheme speeds up con-

vergence rates. One drawback of this approach is that various algorithms behave distinctly

under different step-sizes, thereby making the explanation, under vanishing step-size s, restric-

tive. Recently, (Shi et al., 2022) has furnished a higher O(s)-resolution ODE explanation for

primal-dual algorithms, which was further generalized to O(sr)-resolution in (Lu, 2022).

However, most of the applications of minimax optimization in machine learning, such as

GANs and reinforcement learning, in particular, involve a nonconvex-concave or even nonconvex-

nonconcave objective, which is much more challenging than convex-concave minimax problems.
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When the objective is nonconvex-concave, a basic technique to solve the minimax op-

timization problem (Equation 1.1) is to do a minimization on the outer function Ψ(x) :=

maxy∈D f(x, y). The function Ψ in this case is well-defined since the function f(x, .) is al-

ways concave. Then one can use the recent developments in nonconvex minimization problems.

(Rafique et al., 2022) considered a weakly-convex concave bivariate function and showed a

convergence rate of O
(

1
ϵ6

log
(
1
ϵ

))
to the approximate stationary point of the saddle function

using a proximally-giuded stochastic mirror descent, and further showed this rate is improved to

O
(

κ
ϵ2

log
(
1
ϵ

))
when the objective is weakly-convex-strongly-concave with κ being the condition

number of f(x, .). (Lin et al., 2020a) used GDA with two different step-sizes, called two-timescale

GDA, for solving a nonconvex-concave minimax optimization with one constraint on the maxi-

mization domain. They showed the efficient convergence of two-timescale GDA to a stationary

point of Ψ(.) = maxy∈D f(., y) in O
(

1
ϵ6

)
iterations, thereby, also improving the convergence rates

of (Rafique et al., 2022) for nonconvex-strongly-concave to O
(

κ
ϵ2

)
. (Thekumparampil et al.,

2019) furnished a better rate of O
(

1
ϵ3

log2
(
1
ϵ

))
earlier for this setting by applying inexact prox-

imal point algorithms, which is, in fact, an implicit method. The Minimax-PPA algorithm

proposed by (Lin et al., 2020b) achieves O
(

1
ϵ3

log2
(
1
ϵ

))
that matches that of (Thekumparampil

et al., 2019). For completeness, we would like to mention that Minimax-PPA runs accelerated

proximal point algorithm on the smooth nonconvex f(., y) to find x̂ followed by accelerated

gradient ascent on f(x̂, .).

These techniques, however, are not applicable to nonconvex-nonconcave minimax optimiza-

tion problems as calculating Ψ(.) is no longer tractable. There are quite a few very recent
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research results that address this problem under a wide array of structural assumptions. Be-

fore reviewing the state-of-the-art, let us specify the issues of nonconvex-nonconcave minimax

optimizaiton.

Cycling. Computational tractability and the scale of motivating applications, such as

GANs, require one to largely consider first-order methods. One major challenge in nonconvex-

nonconcave minimax optimizaiton using first order-methods is that all algorithms known do

cycle, that is, the algorithm’s trajectories converge to limit cycles that do not contain the equi-

librium of the problem. This phenomenon, more precisely described in chapter 2, is currently

the biggest challenge in nonconvex-nonconcave minimax literature. While many efforts have

been made to describe this phenomenon (Lu, 2022; Grimmer et al., 2022b; Pethick et al., 2022),

it is largely an unknown issue in this line of research.

Nonconvex Minimization does not translate well into nonconvex-nonconcave

minimaxation. For one, the nonconvexity-nonconcavity, to the best of our knowledge, revolves

around weak-convexity-weak-concavity in all literature works. This condition, while sufficient

in minimization problems to obtain convergence (Davis and Drusvyatskiy, 2019), is generally

insufficient in minimax optimization. An additional structure, such as Polyak- Lojasiewicz, non-

negative interaction dominance, negative comonotonicity, or weak minty variational inequality,

are necessary to show convergence for various first-order methods. On the other hand, algo-

rithms that solve nonconvex minimization are generally hard to get to converge in nonconvex

minimax problems.
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Lack of strong progress measures. While minimization problems have a clear progress

measure of the value of the function, with which one can compare different optimum solutions,

nonconvex-nonconcave minimax optimization problems lack such measures which makes it very

hard to show the convergence of an algorithm to the solution. The most well-known progress

measure, the saddle gap, does not decay monotonically, and, at times, can be infinite, even in

bilinear minimax (Applegate et al., 2022). However, in smooth minimization, a move in the

negative direction of the gradient always leads to progress.

In one of the earliest research efforts, (Liu et al., 2021) considered the class of weakly-

convex-weakly-concave objectives that satisfy the Minty Variational Inequality (MVI) regularity

condition at the solution. Leveraging the inexact PPM results in (Davis and Grimmer, 2019),

they showed a O
(
ϵ−2

)
convergence rate to an approximate solution of the MVI. Other research

papers studying MVI and similar conditions include (Malitsky, 2020; Mertikopoulos et al.,

2019; Song et al., 2020).

The issue, however, with this structural assumption is that it is relatively strong, and almost

convex-concave like. In an attempt to address this issue, (Grimmer et al., 2022a) considered

the class of nonconvex-nonconcave f(x, y) with strong interaction1 between the two agents in

the zero-sum game. They showed that under such sufficient interaction, the damped PPM

run on f(x, y) is equivalent to running GDA on the envelope and achieving, in this way, linear

convergence rate for such problems. Damped PPM, that is closely related to our algorithm

1This will be made precise in the second chapter as it is our assumption in pursuing the convergence
behavior of EGM.
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discussed in Chapter 2, (carefully) chooses a damping parameter λ ∈ (0, 1] and thereby computes

the next iterate as

(xk+1, yk+1) = λProxsf(xk, yk) + (1− λ)(xk, yk). (1.10)

Later on, or perhaps at the same time as (Grimmer et al., 2022a), (Diakonikolas et al., 2021)

considered the more general class of nonconvex-nonconcave f(x, y) that satisfy a weak MVI,

i.e. there exists a point z∗ := (x∗, y∗) such that the gradient oracle of the (smooth) objective

function F(z) =

∇xf(z),

−∇f(z)

, where z := (x, y), satisfies, for some σ > 0 “small enough”1,

⟨F(z), z− z∗⟩ ≥ −
σ

2
∥F(z)∥2, ∀z ∈ Rn+m (1.11)

(Diakonikolas et al., 2021) showed that EG+, a damped version of EGM, converges sublinearly

to the solution of such structured problem. To this day, this is the most general setting a

result is known in the literature for nonconvex-nonconcave minimax problems using first-order

methods. Other notable work in this line of research include (Lee and Kim, 2021; Pethick et al.,

2022)

1Assuming that the gradient oracle is further globally Lipschitz with modulus L > 0, i.e. ⟨F(z ′) −
F(z), z ′ − z⟩ ≤ L∥z ′ − z∥, for all z, z ′ ∈ Rn+m, “small enough” here means σ ∈

[
0, 1

4L

)
.



CHAPTER 2

ON THE LINEAR CONVERGENCE OF EXTRA-GRADIENT

METHODS FOR MINIMAX OPTIMIZATION

Materials in this chapter are published in (Hajizadeh et al., 2023)

2.1 Introduction

Recently, minimax optimization received renewed focus due to modern applications in ma-

chine learning, robust optimization, and reinforcement learning. The scale of these applications

naturally leads to the use of first-order methods. However, the nonconvexities and nonconcav-

ities present in these problems, prevents the application of typical Gradient Descent-Ascent,

which is known to diverge even in bilinear problems. Recently, it was shown that PPM con-

verges linearly for a family of nonconvex-nonconcave problems. In this chapter, we study the

convergence of a damped version of EGM which avoids potentially costly proximal computa-

tions, only relying on gradient evaluation. We show that EGM converges linearly for smooth

minimax optimization problem satisfying the same nonconvex-nonconcave condition needed by

PPM.

Formally, we consider unconstrained minimiax optimization problem of interest in this chap-

ter in the following form

min
x∈Rn

max
y∈Rm

L(x, y) , (2.1)

17
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where L is β-smooth, twice-differentiable, ρ-weakly-convex-weakly-concave, and is positive in-

teraction dominance.1

2.2 State-of-the-Art

The introduction of General Adversarial Networks (GANs) (Goodfellow et al., 2014) has

shifted a ton of attention towards nonconvex-nonconcave minimax problems. Recently, Grim-

mer et. al (Grimmer et al., 2022a) studied PPM and its global convergence on a class of

nonconvex-nonconcave minimax problems that enjoy sufficiently strong interaction between

the two underlying agents. (Yang et al., 2020) furnished another example of global conver-

gence of Alternating Gradient Descent-Ascent (AGDA) for the class of objective functions

that satisfy the two-sided Polyak- Lojasiewicz inequality, known to be a weaker condition than

strongly-convex-strongly-concave. (Jin et al., 2020) studied the various notions of optimality in

nonconvex-nonconcave minimax problems. (Diakonikolas et al., 2021) furnished the proof for

the ergodic convergence of a special class of our damped EGM, that is, one with a damping

parameter of λ = 1
2 , when applied to a nonconvex-nonconcave minimax problems. Lee and Kim

(Lee and Kim, 2021) furnished the convergence of the so-called two-time-scale anchored extra-

gradient method (FEG) to a stationary point (Definition 2.4.1) of an objective function with

a negatively ρ-comonotone oracle. This is also known in literature as |ρ|-cohypomonotonicity

(see (Bauschke1 et al., 2021, Remark 2.5 (ii))). Each iteration of FEG iterates from a convex

combination of the “current iterate” zk and the “initial point” z0, and moves along the direction

1These assumptions will be made precise in Section 2.3
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Algorithm Explicit
Method

Setting Constraints Convergence
Rate

AGDA (Yang et al., 2020) ✓ two-sided P L ✘ O
(
log

(
1
ϵ

))
PPM (Grimmer et al., 2022a) ✘ Positive Interaction Dominance ✘ O

(
log

(
1
ϵ

))
Damped EGM (Diakonikolas
et al., 2021)

✓ weak MVI ✘ O
(
1
ϵ

)
CEG+ (Pethick et al., 2022) ✘ weak MVI ✓ O

(
1
ϵ

)
EGM Variant (Lee and Kim,
2021)

✓ Negatively Comontone ✘ O
(
1
ϵ

)
Damped EGM[This chap-
ter]

✓ Positive Interaction Dominance ✘ O
(
log

(
1
ϵ

))
TABLE I: Comparison of the algorithms studied in recent papers on nonconvex-nonconcave
minimax optimization. Any method that used a resolvent or proximal step is not considered

an explicit method and may thus have an expensive cost per iteration.

of a linear combination of gradient information in its transition from the mid-point to the next

iteration. This was shown to converge sublinearly to a stationary point of an objective function

that admits negative comonotonicity.

The convergence rate of various implicit and explicit methods for solving nonconvex-nonconcave

minimax problems, their convergence rate, are illustrated in Table Table I. We note that posi-

tive interaction dominance, a slight strengthening of negative comonotonicity, is, to the best of

the authors’ knowledge, the most general setting for which linear convergence is known in the

literature.

2.3 Notations and Assumption

Throughout this section, we use x and y to denote the minimizing and maximizing variables,

respectively. We use I to denote identity matrix of appropriate dimension. The symbols ∇,
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∇2, ∇x, and ∇2
xx are used to denote the gradient, Hessian, partial gradient, and partial Hessian

of a function following the symbol. Let U ⊂ Rn × Rm. We say a mapping L : Rn × Rm → R

is ξ-Lipschitz on U if for any pair of z, z ′ ∈ U, ∥L(z) − L(z ′)∥ ≤ ξ∥z − z ′∥. We are primarily

interested in twice differentiable functions L. We say L is β-smooth on U if its gradient is

β-Lipschitz in U, or equivalently, when L is twice continuously differentiable and its Hessian

satisfies ∥∇2L(z)∥ ≤ β for all z ∈ U. We say that L is µ-strongly convex-strongly concave on

U for µ > 0 if for any z = (x, y) ∈ U, ∇2
xxL(z) ⪰ µI and −∇2

yyL(z) ⪰ µI. When µ = 0, this is

equivalent to convexity and concavity in x and y, respectively. However, our primary interest

is in nonconvex-nonconcave objectives. We quantify the level of negative curvature in x and

positive curvature in y as follows: We say L is ρ-weakly convex-weakly concave on U if for all

z = (x, y) ∈ U,

∇2
xxL(z) ⪰ −ρI, −∇2

yyL(z) ⪰ −ρI .

Moreover, we denote the first-order oracle for the problem (Equation 2.1) by F(z) =

 ∇xL(z)

−∇yL(z)


for any z ∈ Rn ×Rm. For any ρ-weakly-convex-weakly-concave function L, we denote the prox

operator with stepsize 0 < s ≤ 1/ρ by

(x, y) = Proxs.f(u, v) := argminimax
u∈Rn,v∈Rm

f(u, v) +
1

2s
∥u− x∥2 − 1

2s
∥v− y∥2 .
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For any 0 < s ≤ 1/ρ, we say a function L is α(s)-interaction dominant in x if for all

z ∈ Rn+m,

∇2
xxL(z) +∇2

xyL(z)
(
s−1I−∇2

yyL(z)
)−1

∇2
yxL(z) ⪰ α(s)I (2.2)

and α(s)-interaction dominant in y if for any z ∈ Rn+m

−∇2
yyL(z) +∇2

yxL(z)
(
s−1I+∇2

xxL(z)
)−1

∇2
xyL(z) ⪰ α(s)I . (2.3)

Throughout our analysis of the Extragradient Method, we assume the following regularity

conditions on the objective. The first two conditions (Lipschitz continuity, smoothness, and

weak convexity-concavity) are relatively standard. The third regularity condition is positive

interaction dominance (see Assumption 2.3.1) and is equivalent to the settings considered for

the proximal point method in (Grimmer et al., 2022a) and the negative comonotone setting

where accelerated, sublinear rates were recently derived by (Lee and Kim, 2021).

Assumption 2.3.1. The objective function L : Rn × Rm → R satisfies the following four con-

ditions

1. L is continuously twice differentiable and β-smooth on Rn × Rm.

2. L is ρ-weakly convex in x and ρ-weakly concave in y on Rn × Rm.

3. For some s ∈
(
0, 1ρ

)
, L satisfies the interaction dominance conditions (Equation 2.2)

and (Equation 2.3) where α > 0 is a positive function.
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The smoothing constant β, weak-convexity-weak-concavity constant ρ, and a pair of values s and

α satisfying interaction dominance are needed to select stepsize parameters where our theory

applies.

Positive Interaction-Dominance: Provided 0 < s ≤ 1/ρ, the second terms

∇2
xyL(z)

(
s−1I−∇2

yyL(z)
)−1

∇2
yxL(z)

∇2
yxL(z)

(
s−1I+∇2

xxL(z)
)−1

∇2
xyL(z)

in (Equation 2.2) and (Equation 2.3) are always positive semi-definite. We thus see that any

convex-concave objective function is always nonnegative interaction dominant in both x and y.

A ρ-weakly-convex-weakly-concave function is α(s)-interaction dominant with α(s) ≥ −ρ. For

this weakly-convex-weakly-concave function L(x, y) to have nonnegative interaction dominance,

L must have “large enough” interaction between x and y in the Hessian in order to “overcome”

the effect of the smallest (negative) eigenvalue of partial Hessian ∇2
xxL and the largest (positive)

eigenvalue of partial Hessian ∇2
yyL.

2.4 Preliminaries

(Grimmer et al., 2022a) used a generalization of the Moreau envelope, called saddle envelope,

introduced by (Attouch et al., 1986), to study the behavior of a certain class of nonconvex-

nonconcave objective functions. More precisely, given any ρ-weakly-convex-weakly-concave
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objective function L : Rn × Rm → R with L ∈ C2, and any s > 0, the saddle envelope Ls is

defined as

Ls(x, y) := min
u∈Rn

max
v∈Rm

{
L(u, v) +

1

2s
∥u− x∥2 − 1

2s
∥v− y∥2

}
. (2.4)

Suppose s < 1
ρ , then it is easy to see that M(u, v) := L(u, v) + 1

2s∥u − x∥2 − 1
2s∥v − y∥2

is
(
1
s − ρ

)
-strongly-convex-strongly-concave so that the saddle envelope (Equation 2.4) is well-

defined. Corollary 2.2 in (Grimmer et al., 2022a) implies that to find any stationary point of

L, one only needs to find those of Ls. Imposing nonnegative interaction dominance paves the

way for proving more powerful properties of the saddle envelope.

If an objective function is nonnegative interaction dominant in both x and y for some

s ∈
(
0, 1ρ

)
, its saddle envelope Ls(x, y) would then be convex-concave ((Grimmer et al., 2022a),

Proposition 2.6). If for some s ∈
(
0, 1ρ

)
the objective function is further positive interaction

dominance, then the saddle envelope Ls(x, y) is strongly-convex-strongly-concave.

These interaction dominance conditions can be equivalently characterized in terms of the

convexity and concavity of the saddle envelop (Equation 2.4) and in terms of the monotonicity

of the saddle gradient F(z) =

 ∇xL(z)

−∇yL(z)

. This is formalized in Proposition 2.4.1.

Recently, (Lee and Kim, 2021) presented algorithms with sublinear rate for nonconvex-

nonconcave minimax optimization problems with ρ-comonotone gradient oracle for some neg-
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ative ρ. A set-valued mapping T : Rn+m ⇒ Rn+m is said to be ρ-monotone on Rn+m if for

every z̄ ∈ Rn+m there exists a neighborhood V of z̄ such that

⟨w−w ′, z− z ′⟩ ≥ ρ∥z− z ′∥2 for all z, z ′ ∈ Vand all w ∈ T(z), w ′ ∈ T
(
z ′
)
.

A set-valued mapping1 T : Rn+m ⇒ Rn+m is said to be ρ-comonotone if for every z̄ ∈ Rn+m

there exists a neighborhood V of z̄ such that

⟨w−w ′, z− z ′⟩ ≥ ρ∥w−w ′∥2 for all z, z ′ ∈ Vand all w ∈ T(z), w ′ ∈ T
(
z ′
)
.

The following proposition, in particular, establishes the equivalence of our assumptions and the

negative comonotone setting recently considered by (Lee and Kim, 2021).

Proposition 2.4.1. Let L(x, y) be a twice-differentiable, ρ-weakly-convex-weakly-concave ob-

jective function, and s ∈
(
0, 1ρ

)
. Then the following statements are equivalent:

(i) L(x, y) is α(s) ≥ 0-interaction dominance in both x and y,

(ii) The saddle envelope Ls(x, y) of L is convex-concave,

(iii) The oracle F(x, y) =

∇xL(x, y)

∇yL(x, y)

 of L(x, y) is −s-comonotone.

1The use of set-valued operators is typical here, allowing these definitions to be applied to cases where
the objective function is not smooth whence only admitting subdifferentials. However, such nonsmooth
optimization is beyond the scope of this chapter. We will discuss Nonsmooth Minimax optimization in
Chapter 3.
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Proof. (i) ⇐⇒ (ii): Observe that the conditions (Equation 2.2) and (Equation 2.3) hold with

nonnegative α exactly when

∇2
xxL(z) +∇2

xyL(z)
(
s−1I−∇2

yyL(z)
)−1

∇2
yxL(z) ⪰ 0

−∇2
yyL(z) +∇2

yxL(z)
(
s−1I+∇2

xxL(z)
)−1

∇2
xyL(z) ⪰ 0 .

Adding an identity matrix 1
s I above and inverting the resulting positive definite matrix yields

the following equivalent characterization

s−1I− s−2

(
s−1I+∇2

xxL(z) +∇2
xyL(z)

(
s−1I−∇2

yyL(z)
)−1

∇2
yxL(z)

)−1

⪰ 0

s−1I− s−2

(
s−1I−∇2

yyL(z) +∇2
yxL(z)

(
s−1I+∇2

xxL(z)
)−1

∇2
xyL(z)

)−1

⪯ 0.

By Lemma 3 in (Grimmer et al., 2022a), these are exactly the xx and yy components of the

saddle envelope’s Hessian, i.e. ∇2
xxLs(z) and ∇2

yyLs(z), whence the assertion is proved.

(ii) ⇐⇒ (iii): In (Lee and Kim, 2021, Appendix A.1), Lee and Kim showed that the

saddle envelope’s gradient mapping Fs(.) =

 ∇xLs(.)

−∇yLs(.)

 is monotone if and only if F is −s-

comonotone. Recalling that a gradient mapping (∇xL,−∇yL) is monotone if and only if the

associated function is convex-concave, the proof is complete.

Let us now state the definition of a stationary point of a bifunction.

Definition 2.4.1. A point (x∗, y∗) ∈ Rn+m is a stationary point of an objective function L(x, y)

if

∇xL(x
∗, y∗) = 0, and ∇yL(x

∗, y∗) = 0 .
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We now provide a result that is all but stated in (Grimmer et al., 2022a):

Lemma 2.4.1. A ρ-weakly-convex-weakly-concave objective function L that is positive interac-

tion dominance in both x and y has a unique stationary point.

Proof. By hypothesis and Proposition 2.6 in (Grimmer et al., 2022a), the saddle envelope

is strongly-convex-strongly-concave whence adopting a unique saddle point (x∗, y∗) which is

also its unique stationary point. By Corollary 2.2 in (Grimmer et al., 2022a), then (x∗, y∗)

is the unique stationary point of L; because otherwise, if L has any other stationary point

(x̃∗, ỹ∗) ̸= (x∗, y∗), it would clearly contradict Corollary 2.2 of (Grimmer et al., 2022a).

2.5 Damped EGM

Damped PPM, as the name suggests, introduces a damping parameter λ ∈ (0, 1] in each

iteration of PPM. The iteration update is

xk+1

yk+1

 = (1− λ)

xk
yk

+ λ Prox
sf


xk
yk


 . (2.5)

The damping, illustrated in (Equation 2.5), decreases the size of the proximal step in each

iteration. The inclusion of λ = 1 allows taking a full proximal step in each iteration.

In this section, we introduce the damped EGM and show that it is approximating the

damped PPM introduced in (Grimmer et al., 2022a). We first recall that EGM is an approxi-

mation of PPM (Nemirovski, 2004). Next, we will extend this result and show that the damped

EGM is an approximation to damped PPM (Equation 2.5). Notice that damped EGM does
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not need to solve an implicit step, thus the update is computationally cheaper than that of

damped PPM (Equation 2.5). The damped EGM is presented in Algorithm 1.

Algorithm 1 Damped EGM

Input: z0 := (x0, y0), step-size s > 0, damping parameter λ ∈ (0, 1], and tolerance ϵ > 0

1: k = 0

2: while

∥∥∥∥[ ∇xL(xk, yk)
−∇yL(xk, yk)

]∥∥∥∥ ≥ ϵ do

3: Find the mid-point:

[
x ′
k+1

y ′
k+1

]
=

[
xk
yk

]
− s

[
∇xL(xk, yk)
−∇yL(xk, yk)

]
,

4: Find the next-iterate:

[
xk+1

yk+1

]
=

[
xk
yk

]
− λs

[
∇xL

(
x ′
k+1, y

′
k+1

)
−∇yL

(
x ′
k+1, y

′
k+1

)]
5: k← k+ 1

6: end while

Damped EGM is a generalization of traditional EGM, where the step-size of the two steps

can be chosen differently. This difference in steps comes from the damping parameter λ that

controls the length of the second step. Intuitively, it is natural to think that the lack of

convexity and concavity would require an algorithm to take a type of “cautiously aggressive”

steps to avoid divergence and cycling that are common phenomena in nonconvex-nonconcave

minimax optimization (Grimmer et al., 2022b). The following Proposition establishes that the

damped EGM in Algorithm 1 approximates damped PPM.
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Proposition 2.5.1. Damped EGM update in Algorithm 1, when applied to the ρ-weakly-convex-

weakly-concave objective function L(x, y), is an approximation to the update for damped PPM

(Equation 2.5).

Proof. We write the Taylor expansion of the update for x in Algorithm 1, which gives us,

xk+1 = xk − λs∇xL (xk − s∇xL(zk), yk + s∇yL(zk))

= xk − λs
[
∇xL(zk) − s∇2

xxL(zk)∇xL(zk) + s∇2
xyL(zk)∇yL(zk) + o(s)

]
= xk − λs∇xL(zk) + λs2∇2

xxL(zk)∇xL(zk) − λs2∇2
xxL(zk)∇yL(zk) + o

(
s2
)

. (2.6)

Similarly, one can find the update of y as

yk+1 = yk + λs∇yL(zk) − λs2∇2
yxL(zk)∇xL(zk) + λs2∇2

yyL(zk)∇yL(zk) + o
(
s2
)

. (2.7)

Let now z+k := Proxs.L(zk) be one proximal step of size from the current iterate zk. We then

have,

x+k = xk − s∇xL
(
xk − s∇xL(z

+
k ), yk + s∇yL(z

+
k )
)

= xk − s
[
∇xL(zk) − s∇2

xxL(zk)∇xL(z
+
k ) + s∇2

xyL(zk)∇yL(z
+
k ) + o(s)

]
= xk − s∇xL(zk) + s2∇2

xxL(zk)∇xL(zk) − s2∇2
xyL(zk)∇yL(zk) + o(s2) . (2.8)

where the second equality follows from the local Lipschitzness of partial gradients.
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Similarly,

y+
k = yk + s∇yL(zk) − s2∇2

yxL(zk)∇xL(zk) + s2∇2
yyL(zk)∇yL(zk) + o(s2) . (2.9)

We know from (Equation 2.5) that the update iterate of a damped PPM with constant λ is

given by

z̃k+1 = (1− λ)zk + λz+k . (2.10)

Combining (Equation 2.8) and (Equation 2.9) with (Equation 2.10) and comparing with (Equa-

tion 2.6) and (Equation 2.7), one can observe that

∥z̃k+1 − zk+1∥ = o
(
s2
)

.

This concludes the proof of the claim that the damped EGM update as defined in Algorithm 1

is an approximation to that of damped PPM.

In the next section, we show that if L(x, y) is interaction dominance, then the damped

EGM with proper step-size converges linearly to a stationary point. Furthermore, we show

that damped EGM may diverge without interaction dominance, which showcases the tightness

of using interaction dominance to characterize the convergence of damped EGM.

2.6 Convergence Result

First, let us state our main convergence result:
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Theorem 1. Suppose the objective function L : Rn × Rm → R in Problem (Equation 2.1)

satisfies Assumption 2.3.1, and let z∗ := (x∗, y∗) be its saddle point. Choose the parameters s

and λ such that they satisfy

2

s3
(

1
sα(s) + 1

) > β3, λ < min

{
1,

(
1

sρ
− 1

)2
}[

2
1

sα(s) + 1
− s3β3

]
(2.11)

The damped EGM with step-size s ∈
(
0, 1ρ

)
applied to the problem minx∈Rn maxy∈Rm L(x, y)

with the constant λ ∈ (0, 1] linearly converges to the unique stationary point of L. More precisely,

for any iterate (xk, yk) and starting point (x0, y0) one has

∥∥∥∥∥∥∥∥
xk − x∗

yk − y∗


∥∥∥∥∥∥∥∥ ≤

1−
2λ

1
sα(s) + 1

+
λ2

min

{
1,
(

1
sρ − 1

)2
} + λs3β3


k ∥∥∥∥∥∥∥∥

x0 − x∗

y0 − y∗


∥∥∥∥∥∥∥∥ .

We now state some of remarks to better understand the statement of the theorem, simplify

the conditions under which the statements hold, and observe what the Theorem translates into

when considering special cases,

Remark 1. For any µ-strongly-concave-strongly-concave, Theorem 1 has a linear convergence

rate of O
(

1
sλµ log

(
1
ϵ

))
. This is evident by plugging α = µ and ρ = −µ in the convergence

rate in the statement of the Theorem. Assuming that s = O
(
β−1

√
µ
β

)
, which results in a

step-size smaller than 1
β by a factor of

√
µ
β , we obtain a convergence rate of O

(√
β3

λ2µ3 log
(
1
ϵ

))
which is a reasonable linear rate. The best rate known for EGM in the convex-concave case



31

is O
(
β
µ log

(
1
ϵ

))
(see for example (Gidel et al., 2020, Theorem 1), (Mokhtari et al., 2020,

Theorem 7), (Tseng, 1995, Lemma 3.1), or (Alves et al., 2016, Proposition 2.2))

Remark 2. The selection of the pair of parameters λ and s satisfying (Equation 2.11) given

ρ and β, and α as a function of s is not difficult. One observes that, plugging s = t
β in the

condition on s on the left-hand side of (Equation 2.11), one would get an inequality in t and

solve for t. In many cases, e.g. quadratic problems, this inequality entails solely a polynomial

and is trivial to solve. This would enlighten one on how smaller than β should the step-size

s > 0 be taken. We would like to point out that the possible values for s usually involve an

interval as opposed to arbitrarily small values. We also note that the damping introduced in our

method is sometimes necessary for the convergence of EGM.

For instance, consider the problem

min
x

max
y

L(x, y) = f(x) + Āxy− f(y), with f(x) = (x− 1)(x+ 1)(x− 3)(x+ 3) (2.12)

that is a nonconvex-nonconcave problem. Let Ā = 100. A simple examination of our conditions

in the Theorem as described above implies that any s ∈ (0.00245, 0.00651) with a damping

factor λ ∈ (0, 0.06) would guarantee convergence. Choosing s∗ = 200 and λ∗ = 0.01 we observe

convergence for any starting point the box [−4, 4] × [−4, 4] as in Fig. 1a. Choosing, instead,

λ∗ = 1, whence recovering undamped EGM, results in cycling as shown in Fig. 1b.
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Remark 3. Let us see through the inequality on the left-hand side of (Equation 2.11) more ex-

plicitly under some assumptions. Suppose we are given a problem that is nonnegative interaction

dominant and we further restrict s to satisfy

1

s
≥

max
{
∥∇2

xxL∥2, ∥∇2
xxL∥2

}
ρ

>
ρ2

ρ
= ρ . (2.13)

On the other hand, we have

(
s−1I−∇2

yyL(z)
)−1

⪰
(
s−1 + max

{
∥∇2

xxL∥, ∥∇2
xxL∥
})−1

I(
s−1I+∇2

xxL(z)
)−1

⪰
(
s−1 + max

{
∥∇2

xxL∥, ∥∇2
xxL∥
})−1

I .

so that α can be lower-bounded as

α ≥ −ρ+
s.λmin

(
∇2

xyL(z)∇2
yxL(z)

)
1+ s.max {∥∇2

xxL∥, ∥∇2
xxL∥}

. (2.14)

Clearly, s can not be chosen arbitrarily small as that would mar interaction dominance. From

(Equation 2.14), a sufficient upper bound on s to preserve nonnegative interaction dominance

is

s ≥ ρ

λmin

(
∇2

xyL(z)∇2
yxL(z)

)
− ρ.max {∥∇2

xxL∥, ∥∇2
xxL∥}

. (2.15)
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The lower bound (Equation 2.15), as mentioned, preserves nonnegative interaction dominance.

It further illustrates what the “sufficiently large” interaction requirement means. To further

illustrate the explicit restrictions on s, in light of the inequality on the left-hand side of (Equa-

tion 2.11), let us further suppose s < 1
β
1. This further assumption and (Equation 2.14) imply

α(s) ≥ −ρ+
1+ s.max

{
∥∇2

xxL∥, ∥∇2
xxL∥
}

s.(β+ max {∥∇2
xxL∥, ∥∇2

xxL∥})
· ρ =

1− s · β
s · (β+ max {∥∇2

xxL∥, ∥∇2
xxL∥})

· ρ . (2.16)

Combining (Equation 2.13) and (Equation 2.16) with the inequality on the left-hand side of

(Equation 2.11) one would get

2

s3
(

1
sα(s) + 1

) ≥
2
max{∥∇2

xxL∥6,∥∇2
xxL∥6}

ρ3

1+ (β+max{∥∇2
xxL∥,∥∇2

xxL∥})
ρ(1+s·β)

≥
2
max{∥∇2

xxL∥6,∥∇2
xxL∥6}

ρ3

1+ 1
s·ρ

> β3.

Therefore, the lower bound

s >
1

ρ

[
2

(
max{∥∇2

xxL∥2,∥∇2
yyL∥2}

ρβ

)3

− 1

] . (2.17)

is a sufficient to guarantee the inequality condition on the left-hand side of (Equation 2.11) is

satisfied.

The reader notes all at once that (Equation 2.15) and (Equation 2.17) are two explicit lower

bounds on s illustrating how small could one select the step-size while ensuring the conditions

1This condition is consistent with the classical smooth optimization literature choosing a step-size
smaller than the reciprocal of the Lipschitz constant of the oracle.



34

(a) Convergence of damped EGM (b) Cycling of vanilla EGM
Figure 1: The convergence of damped EGM to the unique stationary point of the nonconvex-
nonconcave problem (Equation 2.12) with Ā = 100 from any starting point within the box
[−4, 4]× [−4, 4] and the cycling of EGM.

of the Theorem, nonnegative interaction dominance and the inequality condition on the left-

hand side of (Equation 2.11) are satisfied. We have been conservative to preserve the implicit

condition in the main theorem to preserve generality as much as is achievable.

Remark 4. One observes that damped EGM has a slower convergence rate 1 − 2λ
1

s·α(s)
+1

+

λ2

min

{
1,
(

1
sρ

−1
)2

}+λs3β3 than damped PPM introduced in (Grimmer et al., 2022a) which converges

at a rate of 1 − 2λ
1

sα(s)
+1

+ λ2

min

{
1,
(

1
sρ

−1
)2

} . This difference aligns with the perspective of EGM

approximating the proximal step via two cheaper gradient descent-ascent steps with accuracy

depending on the smoothness of the objective function β.
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Remark 5. Our main result also recovers the setting and results of (Zhang et al., 2022). In

particular, Theorem 5.14 in (Zhang et al., 2022) asserts that one does not lose convergence by

shrinking the damping parameter. This fact follows as well from our theorem, which additionally

quantifies the rate of convergence rate one would see as the damping parameter shrinks.

2.7 Proof of Theorem 1

Having noticed the remarks and ramifications of our main theorem, we now furnish a proof

for the theorem.

Proof of Theorem 1. Given any iterate zk, let us first find the exact upper bound to ∥z̃k+1−zk+1∥

where, as noted before, z̃k+1 is the update of damped PPM and zk+1 is the update of the damped

EGM. One notes that

zk+1 = zk − λsF (zk − sF(zk)) ,

and

z̃k+1 = (1− λ)zk + λz+k = (1− λ)zk + λ
[
zk − sF

(
z+k

)]
= z− λsF

(
z+k

)
.

One also would observe that z+k = zk−sF
(
z+k

)
, whence (I+ sF)

(
z+k

)
= zk. We need the following

lemma in order for further proceeding with the proof.

Lemma 2.7.1. The operator I+ sF : Rn+m → Rn+m for any 0 < s < 1
ρ is invertible.
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Proof. Since L is β-smooth, the operator (I + sF)(.) is continuous. On the other hand, at any

z ∈ Rn+m we have

|I+ s∇F(z)| =

∣∣∣∣∣∣∣∣
I+ s∇2

xxL(z) ∇2
xyL(z)

−∇2
xyL(z)

T I− s∇2
yyL(z)


∣∣∣∣∣∣∣∣

=
∣∣∣I+ s∇2

xxL(z)
∣∣∣ . ∣∣∣I− s∇2

yyL(z) +∇2
xyL(z)

T (I+ s∇2
xxL(z))

−1∇2
xyL(z)

∣∣∣ ,

where the second equality follows from Schur complement. Moreover, by hypothesis, I +

s∇2
xxL(z) ≻ 0, I− s∇2

yyL(z) ≻ 0, and

∇2
xyL(z)

T (I+ s∇2
xxL(z))

−1∇2
xyL(z) ⪰ 0 ,

whence the Jacobian has always nonzero determinant, i.e. |I+ s∇F(z)| ̸= 0. Therefore, by

inverse function Theorem, the operator (I+sF)(.) is invertible with a continuously differentiable

inverse.

One observes that the proximal step in (Equation 2.10) is equivalent to that of (Grimmer

et al., 2022a) with η = 1
s . For any z, the inverse (I+ sF)−1(z) of the operator I+ sF is given by

(I+ sF)−1(z) = z− sF(z) + s2∇F(z)F(z) + o
(
s2
)

. (2.18)
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For details, one may refer to Appendix B of (Lu, 2022). Therefore, we can write

∥z̃k+1 − zk+1∥ = λs∥F
(
(I+ sF)−1(zk)

)
− F (zk − sF(zk)) ∥

≤ λsβ

∥∥∥∥ 1

1!

∫ s
0

∂2

∂τ2
(I+ τF)−1(zk)

∣∣∣∣
τ=t

(s− t) dt

∥∥∥∥
≤ λsβ

∫ s
0

∥∥∥∥ ∂2

∂τ2
(I+ τF)−1(zk)

∣∣∣∣
τ=t

∥∥∥∥ (s− t) dt , (2.19)

where β-smoothness of L, Taylor expansion with the integral form of the remainder of the

inverse operator (I+ sF)−1(z), and Cauchy-Schwartz inequality are invoked.

We now turn to evaluate ∂2

∂τ2
(I+τF)−1(zk)

∣∣∣∣
τ=t

. For that matter, first note that by Appendix

B in (Lu, 2022) and by Lemma 2.7.1, we have for any t < 1
ρ

(I+ tF)−1(z) = z− tF(z) + t2∇F(z)F(z) + t3
(
−(∇F(z))2F(z) −

1

2
∇2F(z)⊗2 F(z)

)
+ o

(
t3
)
.

where ⊗2 refers to the 2-times tensor product of a 2-dimensional tensor with a vector. Now for

any z, let hz : R → Rn+m be the mapping hz : t 7→ (I + tF)−1(z). By Lemma 2.7.1, for any

t < 1
ρ the derivative,

h
′
z(t) =

∂

∂t
(I+ tF)−1(z)

= −F(z) + t(2∇F(z)F(z)) + t2
(
−3(∇F(z))2F(z) −

3

2
∇2F(z)⊗2 F(z)

)
+ o

(
t2
)
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is continuous. Invoking, in addition, the mean value Theorem, for any t < 1
ρ , one would have

a well-defined mapping f : (0, t]→ (0, t], f : t 7→ f(t) ∈ (0, t) such that

h
′
z(t) = −F(z) + 2f(t)∇F(z)F(z) .

This mapping f is continuous in (0, 1ρ), because otherwise there would exist an ϵ > 0, t0 ∈ (0, 1ρ)

such that for any δ > 0,

inf
t∈B(t0,δ)\{t0}

|h
′
z(t) − h

′
z(t0)| = inf

t∈B(t0,δ)\{t0}
|2∇F(z)F(z)| · |f(t) − f(t0)| = |2∇F(z)F(z)| · ϵ ,

which contradicts the continuity of h
′
z(t).

Hence, for any t < 1/ρ, there exists a sequence δn ↓ 0 such that

h
′′
z (t) = lim sup

n→∞
h

′
z(t+ δn) − h

′
z(t)

δn
= 2∇F(z)F(z) lim sup

n→∞
f(t+ δn) − f(t)

δn
,

with lim supn→∞ f(t+δn)−h
′
z(t)

δn
≤ f(t) ≤ 1 by construction. Therefore, we can bound (Equa-

tion 2.19) as follows

∥z̃k+1 − zk+1∥ ≤ λs3β∥∇F(zk)∥.∥F(zk)∥ ≤ λs3β3∥zk − z∗∥

by using F(z∗) = 0.
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Let c := 1 − 2λ
1

s·α(s)
+1

+ λ2

min

{
1,
(

1
sρ

−1
)2

} ∈ (0, 1) be the shrinking constant of the distance to

the unique stationary point of L on one iteration of damped PPM as in (Grimmer et al., 2022a).

Given the upper bound for ∥z̃k+1 − zk+1∥ just furnished, one has

∥zk+1 − z∗∥2 = ∥zk+1 − z̃k+1∥2 + ∥z̃k+1 − z∗∥2 + 2(zk+1 − z̃k+1)
T (z̃k+1 − z∗)

≤
(
λ2β6s6 + c2 + 2λcs3β3

)
∥zk − z∗∥2

=
(
λβ3s3 + c

)2
∥zk − z∗∥2 .

Should one select a value of s and λ such that

λβ3s3 + c < 1

linear convergence can be claimed. One would attain convergence if λ is chosen small enough,

that is,

λ < min

{
1,

(
1

sρ
− 1

)2
}[

2
1

sα(s) + 1
− s3β3

]
. (2.20)

One notices that (Equation 2.20) indicates an implicit lower bound on s, that is already needed

to be smaller than 1
β . Given α(s) > 0, one would need s to be small enough to make the upper

bound on λ positive (i.e. so that for some λ ∈ (0, 1) convergence can be attained).
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2.8 Tightness of Nonnegative Interaction Dominance

We observed that damped EGM converges to the saddle point of an objective function in

problem (Equation 2.1) if L is nonnegative interaction dominance in both variables x and y.

This interaction dominance does not hold if s is too small. This is an interesting observation

which is in contradiction with classic minimization problems where every step-size smaller

than the reciprocal of the smoothing modulus is acceptable for convergence. An interesting

question, therefore, is whether there is a class of nonconvex-nonconcave problems for which

it is “necessary” to have interaction dominance in both variables for the convergence to the

saddle point of (Equation 2.1). We answer this question in the affirmative by exploring the

class of nonconvex-nonconcave quadratic saddle problems and showing that the nonnegative

interaction dominance is necessary for convergence so that our main result in Theorem 1 is

tight. This would affirm that nonconvex-nonconcave minimax problems are in contrast to

classical optimization problems where choosing any step-size smaller than the inverse of the

Hessian norm would suffice to guarantee convergence.

We show that a slight nonconvexity-nonconcavity in a given quadratic saddle problem would

necessitate the nonnegative, in fact, even positive, interaction dominance to hold for convergence
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to occur. More precisely, consider the following nonconvex-nonconcave quadratic problem with

interaction Ā1,

min
x∈Rn

max
y∈Rn

L(x, y) := −
ρ

2
xTx+ ĀxTy+

ρ

2
yTy . (2.21)

It is observed in (Grimmer et al., 2022a) that for the very specific problem of quadratic

minimax optimization problem (Equation 2.21), interaction dominance is a necessary condition

for the convergence of damped PPM on that problem. Since damped EGM and damped PPM

only differ in terms concerning derivatives of higher order, it is natural to think that damped

EGM too accedes the positive interaction dominance as a necessary condition in converging

to the solution of (Equation 2.21). We show that this, indeed, is the case. One can observe

this by plugging the objective function of problem (Equation 2.21) in the update iterations

(Equation 2.6)-(Equation 2.7) of damped EGM. More precisely, first notice that the largest

α that satisfies the interaction dominance conditions (Equation 2.2)-(Equation 2.3) for the

problem (Equation 2.21) is α = −ρ+ s·Ā2

1−s·ρ . The update on x is given by

xk+1 = xk − λs∇xL(zk) + λs2∇2
xxL(zk)∇xL(zk) − λs2∇2

xyL(zk)∇yL(zk)

=
(
1+ sλρ+ s2λρ2 − λs2Ā2

)
xk −

(
sλĀ+ 2s2λρĀ

)
yk .

1For simplicity, we are considering equal dimensions for both x and y.
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Applying similar calculations for yk+1 and stacking the equations yields,

xk+1

yk+1

 =

ΘI −ΣI

ΣI ΘI


xk
yk

 , (2.22)

where Θ :=
(
1+ sλρ+ s2λρ2 − λs2Ā2

)
and Σ := sλĀ (1+ 2sρ). Taking the norm of both sides

in (Equation 2.22) and simplifying, one gets

∥zk+1∥2 = (Θ2 + Σ2)∥zk∥2 .

Now observing the unique stationary point of the objective function of the quadratic problem

(Equation 2.21) is z = 0, it follows that damped EGM converges if and only if Θ2 + Σ2 < 1

holds.

Suppose now that in problem (Equation 2.21) we have Ā = 10 and ρ > 0 a very small

positive value. In other words, the problem is nonconvex-nonconcave with a small negative

curvature in partial Hessian ∇2
xxL(z) and a small positive curvature in partial Hessian ∇2

yyL(z).

Therefore, one can write the convergence condition of EGM on problem (Equation 2.21) as

follows

Θ2 + Σ2 =
(
1+ sλρ+ λs2(ρ2 − 100)

)2
+ (10λs (1+ 2sρ))2 < 1.
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It is easy to notice that one must have sλρ+λs2(ρ2−100) < 0 for convergence because otherwise

the term Θ > 1 so that Θ2 + Σ2 > 1, and by (Equation 2.22) the iterations diverge away from

the origin. This implies

s >
ρ

100− ρ2
.

Since α(s) = −ρ+ 100s
1−sρ the convergence condition on α(s) simplifies to

α(s) >
ρ2(ρ+ 1)

100− 2ρ2
. (2.23)

The condition (Equation 2.23) implies that even a small nonconvexity-nonconcavity in the

problem would necessitate the value of α(s) to be positive in order to attain convergence.

Hence even for simple quandratic minimax optimization, our guarantees based on the positive

interaction dominance condition are essentially tight, as simple counter examples exist just

beyond this regime.



CHAPTER 3

ON NONCONVEX-NONCONCAVE NONSMOOTH MINIMAX

PROBLEMS

3.1 Introduction

In this chapter, we aim to study the problem of nonsmooth nonconvex-nonconcave minimax

optimization problems, i.e. problems of the form (Equation 1.1):

min
x∈C

max
y∈D

L(x, y)

where C ⊂ Rn and D ⊂ Rm, and f(., y) and f(x, .) are generally nonconvex and nonconcave,

respectively, and nonsmooth in general.

We will first prove some properties of constrained saddle envelope which we believe could be

of independent interest. Then we show that while exact PPM only attains nonexpansivity, the

damped PPM operator is quasi-nonexpansive, which will thus be used to show the sublinear

convergence of the damped PPM for constrained nonconvex-nonconvex nonsmooth minimax

problems under negative comonotonicity.

3.2 Preliminaries

In this section, we cover the preliminaries from variational analysis of nonsmooth analysis,

and proximal calculus, in particular, to set the stage for the arguments that follow.

44
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Given a closed set Ω ⊂ Rn and a point ω̄ ∈ Ω, the regular normal cone of Ω at ω̄, denoted

by N̂Ω(ω̄), is the set

N̂Ω(ω̄) = {v | ⟨v,ω− ω̄⟩ ≤ o(|ω− ω̄|), for all ω ∈ Ω} (3.1)

(Equation 3.1) is equivalent to

N̂Ω(ω̄) =

v

∣∣∣∣ lim sup
ω−→

Ω
ω̄

ω̸=ω̄

⟨v,ω− ω̄⟩
|ω− ω̄|

≤ 0

 (3.2)

where ω −→
Ω

ω̄ denotes a sequence converging to ω̄ from within the set Ω. The (limiting)

normal cone to Ω at ω̄ defined via NΩ(ω̄) is the set of all vectors v ∈ Rn such that there are

sequences ων −→
Ω

ω̄ and vν → v with vν ∈ N̂Ω(ω
ν). For a regular set, in the sense of Clarke,

(e.g. one that is convex), the regular and limiting normal cones coincide. The distance function

d(.;Ω) to the set Ω is defined as d(x;Ω) = minω∈Ω ∥x − ω∥. The Proximal Normal to Ω at

ω̄ ∈ Ω is defined as

NP
Ω(ω̄) = {ζ ∈ Rn | ∃ τ > 0 so that d(ω̄+ τζ) = τ∥ζ∥} (3.3)

The epigraph epi f of a function f : Rn → (−∞,∞] is defined as epi f := {(x, α) | f(x) ≤ α} and

the hypograpgh hypo f is defined as hypo f := {(x, α) | f(x) ≥ α}. The function f is called lower

semicontinuous at x̄ if lim infx→x̄ f(x) ≥ f(x̄), and upper semicontinuous at x̄ if lim supx→x̄ f(x) ≤

f(x̄). Given a lower semicontinuous function f and x̄ ∈ dom f, we say a vector v is a proximal
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subgradient to f at x̄ if (v,−1) ∈ NP
epi f(x̄, f(x̄)). The collection of all proximal subgradients of

f at x̄ is the proximal subdifferential ∂Pf(x̄) of f at x̄. For an upper semicontinuous function f

and x̄ ∈ dom f, we define the proximal supergradient ∂Pf(x̄) of f at x̄ as −∂P(−f)(x̄). Therefore,

w ∈ ∂Pf(x̄) if and only if (−w, 1) ∈ NP
hypo f(x̄, f(x̄)).

Below is a preliminary statement that will be later used in our analysis. The proof is

included for completeness.

Proposition 3.2.1. The ρ-weakly-convex-weakly-concave twice continuously differentiable Λ(x, y)

has a ρ-weakly monotone gradient oracle.

Proof. Notice that since x 7→ Λ(x, y) + ρ
2∥x∥

2 is convex, we have ∇2
xxΛ(x, y) ⪰ −ρIn. On the

other hand, fix ȳ and let (x1, ȳ), (x2, ȳ) ∈ domΛ , we obtain, for every x, x ′ ∈ domΛ∩(Rn×{ȳ}),

Λ(x, ȳ) = Λ(x1, ȳ) + ⟨∇Λx(x1, ȳ), x− x1⟩+
1

2!
⟨x− x1,∇2

xxΛ(x1 + t(x− x1))(x− x1)⟩ t ∈ (0, 1)

≥ Λ(x1, ȳ) + ⟨∇Λx(x1, ȳ), x− x1⟩−
ρ

2!
∥x− x1∥2 (3.4)

Λ(x ′, ȳ) = Λ(x2, ȳ) + ⟨∇Λx(x2, ȳ), x
′ − x2⟩+

1

2!
⟨x ′ − x2,∇2

xxΛ(x2 + t(x ′ − x2))(x
′ − x2)⟩ t ′ ∈ (0, 1)

≥ Λ(x2, ȳ) + ⟨∇Λx(x2, ȳ), x
′ − x2⟩−

ρ

2!
∥x ′ − x2∥2 (3.5)
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Evaluating (Equation 3.4) at x = x2 and (Equation 3.5) at x ′ = x1 and adding the inequalities,

we obtain

⟨∇xΛ(x2, ȳ) −∇xΛ(x1, ȳ), x2 − x1⟩ ≥ −ρ∥x2 − x1∥2

Similarly, one can show, for fixed x̄, and y1, y2 ∈ domΛ ∩ ({x̄}× Rm), that

⟨∇yΛ(x̄, y1) −∇yΛ(x̄, y2), y2 − y1⟩ ≥ −ρ∥y2 − y1∥2

Therefore, the oracle of Λ is −ρ-monotone.

3.3 Properties of Constrained Saddle Envelope

In optimization, Moreau Envelope is widely used to make the objective smooth, i.e. “regu-

larize” it. First introduced and studied by (Moreau, 1965), the Moreau envelope (esf)(.) of a

function f : Rn → (−∞,∞] is defined by

(esf)(x) = inf
u∈Rn

{
f(u) +

1

2s
∥u− x∥2

}
(3.6)

which is a C1,1 function, i.e. continuously differentiable with Lipschitz gradients. This func-

tion has many applications in optimization and is fundamental to the study of weakly convex

minimization problems. The generalization of the Moreau envelope to one that is applicable
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in primal-dual methods was first undertaken in (Attouch et al., 1986). More precisely, they

considered the saddle envelope1

fs(x, y) = inf
u∈Rn

sup
v∈Rm

f(u, v) +
1

2s
∥u− x∥2 − 1

2s
∥v− y∥2 (3.7)

The saddle envelope was further studied in (Grimmer et al., 2022a) and it was shown that for

the envelope to be convex-concave, it is only necessary for the original function to have certain

structure that is weaker than convexity-concavity.

It is a well-known practice in minimization problems to capture constraints through a lower

semicontinuous, proper, convex (LCP) function, say, f0(.), inside the Moreau envelope. In

moving from unconstrained minimax optimization to constrained minimax, one is tempted

to capture constraints in this way. However, using the difference of two LCP functions, say,

f0(x) − g0(y), which can create ambiguities such as ∞−∞, under which one has no choice but

to make a convention which benefits one player more than the other. Therefore, it is vital to

generalize the properties of the saddle envelope to the one in which the constraints are dealt

separately, i.e.

fs(x, y) = inf
u∈C

sup
v∈D

f(u, v) +
1

2s
∥u− x∥2 − 1

2s
∥v− y∥2 (3.8)

1The nomenclature used for the saddle envelope in (Attouch et al., 1986) was “Moreau-Yosia
Approximation”.
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In the first part of this chapter, we develop the calculus for the constrained saddle envelope

setting in (Equation 3.8).

Theorem 2 below shows the convex-concavity of the saddle envelope in the presence of

constraints granted the original function is convex-concave itself. For so doing, we will furnish

a first-principle proof of convexity-concavity.

Theorem 2. Suppose Ψ : Rn × Rm → R̄ is a convex-concave lsc-usc bivariate function and

C ⊂ Rn and D ⊂ Rm be closed convex functions. The constrained saddle envelope

Ψs(x, y) = min
u∈C

max
v∈D

{
Ψ(u, v) +

1

2s
∥u− x∥2 − 1

2s
∥v− y∥2

}

of Ψ is convex-concave on the domain D := domΨ = {(x, y) | −∞ < Ψ(x, y) <∞} of Ψ.

First-Principle Proof. Let y ∈ domΨ ∩ Rm be fixed. Let (x1, y), (x2, y) ∈ domΨ ∩ (Rn × {y}).

Since Ψ(., y) is convex function, the set domΨ ∩ (Rn × {y}) is convex in Rn × Rm. Hence, for

any λ ∈ (0, 1), (xλ, y) := (λx1 + (1− λ)x2, y) ∈ domΨ ∩ (Rn × {y}). Let

(x+1 , y
+
1 ) := ProxsΨ(x1, y),

(x+2 , y
+
2 ) := ProxsΨ(x2, y),

(x+λ , y
+) := ProxsΨ(xλ, y).
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Both x+1 and x+2 are inside the set domΨ ∩ Rn. We can now write

Ψs(xλ, y) = min
u∈C

max
v∈D

Ψ(u, v) +
1

2s
∥u− xλ∥2 −

1

2s
∥v− y∥2 (3.9)

Let u ′ := u− λx+1 − (1− λ)x+2 . Then one can write (Equation 3.9) as

(Equation 3.9) = min
u ′∈C+λx+1 +(1−λ)x+2

max
v∈D

Ψ(λ(x+1 + u ′) + (1− λ)(x+2 + u ′), v)

+
1

2s
∥u ′ + λx+1 + (1− λ)x+2 − xλ∥2 −

1

2s
∥v− y∥2

= max
v∈D

min
u ′∈C+λx+1 +(1−λ)x+2

Ψ(λ(x+1 + u ′) + (1− λ)(x+2 + u ′), v)

+
1

2s
∥u ′ + λx+1 + (1− λ)x+2 − xλ∥2 −

1

2s
∥v− y∥2

≤ max
v∈D

min
u ′∈C+λx+1 +(1−λ)x+2

λΨ(x+1 + u ′, v) + (1− λ)Ψ(x+2 + u ′, v)

+
1

2s
∥u ′ + λx+1 + (1− λ)x+2 − xλ∥2 −

1

2s
∥v− y∥2

= max
v∈D

min
u ′∈Θ

λΨ(x+1 + u ′, v) + (1− λ)Ψ(x+2 + u ′, v)

+
1

2s
∥u ′ + λx+1 + (1− λ)x+2 − xλ∥2 −

1

2s
∥v− y∥2

≤ max
v∈D

inf
u ′∈Θ◦

λΨ(x+1 + u ′, v) + (1− λ)Ψ(x+2 + u ′, v)

+
1

2s
∥u ′ + λx+1 + (1− λ)x+2 − xλ∥2 −

1

2s
∥v− y∥2

(3.10)

where

Θ :=

{
u ′

∣∣∣∣ (u ′+x+1 ,v) ∈ (domΨ)∩(C×D)

(u ′+x+2 ,v) ∈ (domΨ)∩(C×D)

}
, Θ◦ :=

{
u ′

∣∣∣∣ (u ′+x+1 ,v) ∈ int{(domΨ)∩(C×D)}

(u ′+x+2 ,v) ∈ int{(domΨ)∩(C×D)}

}
,
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and int implies the interior of the set following it.

Notice that, in general, Ψ is lsc-usc but is locally Lipschitz continuous on the interior of its

domain. Now since (u ′+x+1 , v) ∈ int {(domΨ) ∩ (C×D)} and (u ′+x+2 , v) ∈ int {(domΨ) ∩ (C×D)},

we can say that the restriction to Θ◦ of the set-valued mapping u 7→ ∂CΨ(u, v) is bounded where

∂C is the partial convex subdifferential (includes proximal subdifferential since we’re in convex

world). Therefore, ∂CΨ(x
+
1 + u ′, v) and ∂CΨ(x

+
2 + u ′, v) are bounded sets in Rn. Choose

w1 ∈ ∂CΨ(x
+
1 + u ′, v) and w2 ∈ ∂CΨ(x

+
2 + u ′, v). By convexity of Ψ(., v) we have

Ψ(x+1 , v) ≥ Ψ(x+1 + u ′, v) − ⟨w1, u
′⟩

Ψ(x+2 , v) ≥ Ψ(x+2 + u ′, v) − ⟨w2, u
′⟩

(3.11)

Plugging inequalities (Equation 3.11) in (Equation 3.10) implies that Ψs(xλ, y) is upper bounded

by

max
v∈D

min
u ′∈Θ◦

λΨ(x+1 , v) + (1− λ)Ψ(x+2 , v) + ⟨wλ, u
′⟩+ 1

2s
∥u ′ + λx+1 + (1− λ)x+2 − xλ∥2 −

1

2s
∥v− y∥2

(3.12)

Notice now that there exists a sequence ũν ↓ 0 such that eventually (ũν + x+1 , v) ∈ int domΨ

and (ũν + x+2 , v) ∈ int domΨ, whence eventually ũν ∈ Θ◦. Let ϵ > 0 be arbitrary. Choose ν



52

large enough such that ũν ∈ Θ◦ and ∥ũν∥ < min
{

ϵ
2∥wλ∥ ,

√
sϵ
2

}
. We can then further loosen

the upper bound (Equation 3.12) as

max
v

{
λΨ(x+1 , v) + (1− λ)Ψ(x+2 , v) + ∥wλ∥∥ũν∥+ 1

2s
∥ũν∥2

+
λ2

2s
∥x+1 − x1∥2 +

(1− λ)2

2s
∥x+2 − x2∥2 −

1

2s
∥v− y∥2

}
≤ max

v

{
λΨ(x+1 , v) + (1− λ)Ψ(x+2 , v) + ∥wλ∥∥ũν∥+ 1

2s
∥ũν∥2

+
λ

2s
∥x+1 − x1∥2 +

1− λ

2s
∥x+2 − x2∥2 −

1

2s
∥v− y∥2

}
≤ λ max

v

{
Ψ(x+1 , v) +

1

2s
∥x+1 − x1∥2 −

1

2s
∥v− y∥2

}
+ (1− λ) max

v

{
Ψ(x+2 , v) +

1

2s
∥x+2 − x2∥2 −

1

2s
∥v− y∥2

}
+ ∥wλ∥∥ũν∥+ 1

2s
∥ũν∥2

= λ

[
Ψ(x+1 , y

+
1 ) +

1

2s
∥x+1 − x1∥2 −

1

2s
∥y+

1 − y∥2
]

+ (1− λ)

[
Ψ(x+2 , y

+
2 ) +

1

2s
∥x+2 − x2∥2 −

1

2s
∥y+

2 − y∥2
]
+ ∥wλ∥∥ũν∥+ 1

2s
∥ũν∥2

= λΨs(x1, y) + (1− λ)Ψs(x2, y) + ∥wλ∥∥ũν∥+ 1

2s
∥ũν∥2

< λΨs(x1, y) + (1− λ)Ψs(x2, y) +
ϵ

2
+

ϵ

2

= λΨs(x1, y) + (1− λ)Ψs(x2, y)ϵ (3.13)

Since ϵ > 0 was arbitrary, (Equation 3.13) implies that

(Equation 3.12) ≤ λΨs(x1, y) + (1− λ)Ψs(x2, y) (3.14)
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Notice that (Equation 3.12) is,in itself, an upper bound for Ψs(xλ, y). Combining this with

(Equation 3.14) implies

Ψs(xλ, y) ≤ λΨs(x1, y) + (1− λ)Ψs(x2, y),

Since y ∈ domΨ ∩ Rm was arbitrary, this establishes the convexity, for any such y, of x 7→
Ψs(x, y). The symmetry of the problem concludes the proof of the Theorem.

We now show that if the objective is composite with one element ρ-weakly-convex-weakly-

concave, then so is the saddle envelope.

Theorem 3. Suppose L(x, y) = Λ(x, y)+Ψ(x, y) is a real-valued function on Rn×Rm where Ψ

is convex-concave lsc-usc, and Λ is a ρ-weakly-convex-weakly-concave C1+ function, and C ⊂ Rn

and D ⊂ Rm be closed convex sets. The constrained saddle envelope

Ls(x, y) = min
u∈C

max
v∈D

{
Λ(u, v) + Ψ(u, v) +

1

2s
∥u− x∥2 − 1

2s
∥v− y∥2

}

of L is ρ
(1−sρ) -weakly-convex-weakly-concave on domL.

Proof. Suppose (x1, y), (x2, y) ∈ domL = domΛ ∩ domΨ and λ ∈ (0, 1). Let

(x+1 , y
+
1 ) := ProxsL(x1, y),

(x+2 , y
+
2 ) := ProxsL(x2, y),

(x+λ , y
+) := ProxsL(xλ, y).
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Let u ′ := u− (λx+1 + (1− λ)x+2 ). We have

Ls(xλ, y) = min
u∈C

max
v∈D

L(u, v) +
1

2s
∥u− xλ∥2 −

1

2s
∥v− y∥2

= min
u ′∈C

max
v∈D

L(λ(u ′ + x+1 ) + (1− λ)(u ′ + x+2 ), v) +
1

2s
∥u ′ + λx+1 + (1− λ)x+2 − xλ∥2

−
1

2s
∥v− y∥2

≤ min
u ′∈C

max
v∈D

λL(u ′ + x+1 , v) + (1− λ)L(u ′ + x+2 , v) +
λ(1− λ)ρ

2
∥x+1 − x+2 ∥

2

+
1

2s
∥u ′ + λx+1 + (1− λ)x+2 − xλ∥2 −

1

2s
∥v− y∥2

= max
v∈D

min
u ′∈C

λL(u ′ + x+1 , v) + (1− λ)L(u ′ + x+2 , v) +
λ(1− λ)ρ

2
∥x+1 − x+2 ∥

2

+
1

2s
∥u ′ + λx+1 + (1− λ)x+2 − xλ∥2 −

1

2s
∥v− y∥2

≤ max
v∈D

λL(x+1 , v) + (1− λ)L(x+2 , v) +
λ(1− λ)ρ

2
∥x+1 − x+2 ∥

2

+
1

2s
∥λx+1 + (1− λ)x+2 − xλ∥2 −

1

2s
∥v− y∥2

= max
v∈D

λL(x+1 , v) + (1− λ)L(x+2 , v) +
λ(1− λ)ρ

2

[
∥x+1 − x1∥2 + ∥x1 − x2∥2 + ∥x2 − x+2 ∥

2
]

− λ(1− λ)ρ⟨x+1 − x1, x
+
2 − x2⟩+ λ(1− λ)ρ⟨x+1 − x1, x1 − x2⟩

+ λ(1− λ)ρ⟨x1 − x2, x2 − x+2 ⟩+
λ2

2s
∥x+1 − x1∥2 +

(1− λ)2

2s
∥x+2 − x2∥2

+
λ(1− λ)

s
⟨x+1 − x1, x

+
2 − x2⟩−

1

2s
∥v− y∥2

≤ λmax
v∈D

{
L(x+1 , v) +

1

2s
∥x+1 − x1∥2 −

1

2s
∥v− y∥2

}
+ (1− λ)max

v

{
L(x+2 , v) +

1

2s
∥x+2 − x2∥2 −

1

2s
∥v− y∥2

}
+

λ(1− λ)ρ

2

[
∥x+1 − x1∥2 + ∥x1 − x2∥2 + ∥x2 − x+2 ∥

2
]

− λ(1− λ)ρ⟨x+1 − x1, x
+
2 − x2⟩+ λ(1− λ)ρ⟨x+1 − x1, x1 − x2⟩

+ λ(1− λ)ρ⟨x1 − x2, x2 − x+2 ⟩−
λ(1− λ)

2s
∥x+1 − x1∥2 −

λ(1− λ)

2s
∥x+2 − x2∥2

+
λ(1− λ)

s
⟨x+1 − x1, x

+
2 − x2⟩
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= λLs(x1, y) + (1− λ)Ls(x2, y) −
λ(1− λ)

2

(
1

s
− ρ

)[
∥x+1 − x1∥2 + ∥x+2 − x2∥2

]
+

λ(1− λ)ρ

2
∥x1 − x2∥2 + λ(1− λ)ρ⟨x+1 − x1 + x2 − x+2 , x1 − x2⟩

+ λ(1− λ)

(
1

s
− ρ

)
⟨x+1 − x1, x

+
2 − x2⟩

= λLs(x1, y) + (1− λ)Ls(x2, y) −
λ(1− λ)

2

(
1

s
− ρ

)
∥x+1 − x1 − (x+2 − x2)∥2

−
λ(1− λ)ρ

2
∥x1 − x2∥2 + λ(1− λ)ρ⟨x+1 − x+2 , x1 − x2⟩

= λLs(x1, y) + (1− λ)Ls(x2, y) −
λ(1− λ)ρ

2
∥x1 − x2∥2 + λ(1− λ)ρ⟨x+1 − x+2 , x1 − x2⟩

−
λ(1− λ)

2

(
1

s
− ρ

)[
∥x+1 − x+2 ∥

2 + ∥x1 − x2∥2 − 2⟨x+1 − x+2 , x1 − x2⟩
]

= λLs(x1, y) + (1− λ)Ls(x2, y) −
λ(1− λ)

2s
∥x1 − x2∥2 +

λ(1− λ)

s
⟨x+1 − x+2 , x1 − x2⟩

−
λ(1− λ)

2

(
1

s
− ρ

)
∥x+1 − x+2 ∥

2

= λLs(x1, y) + (1− λ)Ls(x2, y) −
λ(1− λ)

2s
∥x1 − x2 − (x+1 − x+2 )∥

2 +
λ(1− λ)ρ

2
∥x+1 − x+2 ∥

2

= λLs(x1, y) + (1− λ)Ls(x2, y) +
λ(1− λ)ρ

2(1− sρ)
∥x1 − x2∥2

so that the mapping x 7→ Ls(x, y) is ρ
(1−sρ) -weakly-convex. Similarly, by the symmetry of the

problem, we claim that y 7→ Ls(x, y) is ρ
(1−sρ) -weakly-concave for every x.

The Theorem above generalizes the result (Poliquin and Rockafellar, 1996, Theorem 5.2),

stated about the unconstrained Moreau envelopes, to constrained saddle envelopes.

We now move on to show, in multiple steps, that the constrained saddle envelope is further

constinuously differentiable. We start with a Proposition showing that a constrained proximal

mapping is Lipschitz continuous.
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Proposition 3.3.1. Consider our objective L = Λ + Ψ with Λ ∈ C1+ ρ-weakly-convex-weakly-

concave and Ψ convex-concave lsc-usc and C ⊂ Rn and D ⊂ Rm closed and convex. The

constrained proximal operator

(x+, y+) = ProxsL(x, y) = argminimax
u∈C
v∈D

L(u, v) +
1

2s
∥u− x∥2 − 1

2s
∥v− y∥2

is 1
1−sρ Lipschitz continuous.

Proof. Let FL be the oracle of L and define F := FL+NC×D. By hypothesis and Proposition 3.2.1,

the operator FL+ρI is monotone, so that F+ρI is maximally monotone by the pioneering result

of (Rockafellar, 1970). Let z+i = (I + sF)−1(zi), i = 1, 2, and note that 1
s

(
zi − z+i

)
∈ F

(
z+i

)
,

i = 1, 2, so that

〈
1

s

(
z1 − z+1

)
−

1

s

(
z2 − z+2

)
, z+1 − z+2

〉
≥ −ρ∥z+1 − z+2 ∥

2

Rearranging both sides and invoking Cauchy-Schwartz inequality yields

∥z+1 − z+2 ∥ ≤ 1

1− sρ
∥z1 − z2∥,

the desired result.

Lemma 3.3.1. Assume the following for the objective function

(i) L(., y) is lsc for every y and L(x, .) is usc for every x,
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(ii) The epigraph of L(., y) and the hypograph of L(x, .) are Clarke-regular on C and D, re-

spectively.

For any point (x, y) ∈ C×D, the constrained saddle envelope satisfies

∂PLs(., y)(x)× ∂PLs(x, .)(y) ⊂
{(

1

s
(x− x+),

1

s
(y+ − y)

) ∣∣∣∣ (x+, y+) ∈ ProxsL(x, y)

}

for every s > 0.

Proof. Let (x+, y+) ∈ ProxsL(x, y). For every point x ′ ∈ C, we have

L(x ′, y+) +
1

2s
∥x ′ − x∥2 − 1

2s
∥y+ − y∥2 ≥ L(x+, y+) +

1

2s
∥x+ − x∥2 − 1

2s
∥y+ − y∥2.

Therefore,

L(x ′, y+) − L(x+, y+) ≥ 1

2s

{
∥x+ − x∥2 − ∥x ′ − x∥2

}
=

〈
1

s
(x− x+), x ′ − x+

〉
−

∥x ′ − x+∥2

2s
,

this being true for every x ′ ∈ C, and in particular, for x ′ close enough to x so that 1
s (x −

x+) ∈ ∂PL(., y)(x). Similarly, one can show 1
s (y

+ − y) ∈ ∂PL(x, .)(y). Therefore, for every

(x+, y+) ∈ ProxsL(x, y) we have

(
1

s
(x− x+),

1

s
(y+ − y)

)
∈ ∂PL(., y)(x)× ∂PL(x, .)(y).
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Suppose (v,w) ∈ ∂PLs(., y)(x)× ∂PLs(x, .)(y) so that v ∈ ∂PLs(., y)(x). Then there exists σ > 0

and r > 0 such that whenever x ′ ∈ B(x, r) we have

Ls(x
′, y) ≥ Ls(x, y) + ⟨v, x ′ − x⟩− σ∥x ′ − x∥2. (3.15)

Let (x+, y+) ∈ ProxsL(x, y) and (x ′+, y ′+) ∈ ProxsL(x
′, y). Therefore,

L(x+, y ′+) +
1

2s
∥x+ − x ′∥2 − 1

2s
∥y ′+ − y∥2 ≥ L(x ′+, y ′+) +

1

2s
∥x ′+ − x ′∥2 − 1

2s
∥y ′+ − y∥2

= Ls(x
′, y)

≥ Ls(x, y) + ⟨v, x ′ − x⟩− σ∥x ′ − x∥2

= L(x+, y+) +
1

2s
∥x+ − x∥2 − 1

2s
∥y+ − y∥2

+ ⟨v, x ′ − x⟩− σ∥x ′ − x∥2

≥ L(x+, y ′+) +
1

2s
∥x+ − x∥2 − 1

2s
∥y ′+ − y∥2

+ ⟨v, x ′ − x⟩− σ∥x ′ − x∥2

where the first inequality holds since (x ′+, y ′+) ∈ ProxsL(x
′, y), the second inequality is due to

(Equation 3.15), and the last inequality holds since (x+, y+) ∈ ProxsL(x, y). We thus have,

1

2s
∥x+ − x ′∥2 ≥ 1

2s
∥x+ − x∥2 + ⟨v, x ′ − x⟩− σ∥x ′ − x∥2,
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so that for x ′ ̸= x,

〈
v−

1

s
(x− x+),

x ′ − x

∥x ′ − x∥

〉
≤

(
1

2s
+ σ

)
∥x ′ − x∥,

this being true for all x ′ ∈ B(x, r) \ {x}. Therefore, we must have v − 1
s (x − x+) = 0. A similar

argument yields w− 1
s (y

+ − y) = 0 so that

(v,w) ∈
{(

1

s
(x− x+),

1

s
(y+ − y)

) ∣∣∣∣ (x+, y+) ∈ ProxsL(x, y)

}
.

This establishes the Lemma.

One notes that weak-convexity-weak-concavity, and, therefore, strong-convexity-strong-concavity

of the subproblem, is not needed for Lemma 3.3.1 to hold. The following Lemma strengthens

the guarantees of Lemma 3.3.1.

Lemma 3.3.2. Let L(x, y) be proper, lsc-usc, level≤ bounded in x locally uniformly in y, level≥

bounded in y locally uniformly in x, L(., y) is bounded from below for every y ∈ D, L(x, .) is

bounded from above for every x ∈ C, and ρ-weakly-convex-weakly-concave. Then the constrained

saddle envelope for 0 < s < 1
ρ is Fréchet differentiable at every (x, y) with

∇xLs(x, y) =
1

s
(x− x+), ∇yLs(x, y) =

1

s
(y+ − y).

Moreover, the gradients are 2−sρ
s(1−sρ) Lipschitz continuous.
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Proof. We first begin by arguing that if the constrained saddle envelope is differentiable, its

gradients are Lipschitz continuous. Suppose (x1, y1), (x2, y2) are two arbitrary points in C×D.

We then have

∣∣∣∣
∇xLs(x2, y2) −∇xLs(x1, y1)

∇yLs(x1, y1) −∇yLs(x2, y2)

 ∣∣∣∣ = 1

s

∣∣∣∣
x2 − x+2 − (x1 − x+1 )

y2 − y+
2 − (y1 − y+

1 )

 ∣∣∣∣

≤
∣∣∣∣
x2 − x1

y2 − y1

 ∣∣∣∣+ ∣∣∣∣
x+2 − x+1

y+
2 − y+

1

 ∣∣∣∣

≤ 1

s

{
1+

1

1− sρ

} ∣∣∣∣
x2 − x1

y2 − y1

 ∣∣∣∣
where the last inequality follows from Proposition 3.3.1. We now prove the differentiability of

the constrained saddle envelope.

By hypothesis, for any (x, y), ProxsL(x, y) is a singleton, and thus so too is the set

{(
1

s
(x− x+),

1

s
(y+ − y)

) ∣∣∣∣ (x+, y+) ∈ ProxsL(x, y)

}
(3.16)

We now move on to show that the epigraph E := epi {gy : x 7→ Ls(x, y)} is everywhere Clarke

regular.

The first step is to show that gy is lsc everywhere. To that end, let (x̄, ȳ) be arbitrary. By

the level≤ boundedness in x of L(x, y) locally uniformly in y, we conclude from (Rockafellar
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and Wets, 1998, Theorem 1.17) the existence of the solution (x̄+, ȳ+) := ProxsL(x̄, ȳ) in C×D.

Therefore,

gȳ(x̄) = L(x̄+, ȳ+) +
1

2s
∥x̄+ − x̄∥2 − 1

2s
∥ȳ+ − ȳ∥2.

Let now that {xν}ν∈N be an arbitrary sequence converging to x̄. Thus, xν ∈ x̄ + τνB for some

τν ↓ 0 and we can write xν = x̄+ τνdν for some dν ∈ B. We have

gȳ(x
ν) = min

u∈C
max
v∈D

L(u, v) +
1

2s
∥u− x̄− τνdν∥2 − 1

2s
∥v− ȳ∥2

≥ min
u∈C

{
L(u, ȳ+) +

1

2s
∥u− x̄− τνdν∥2

}
−

1

2s
∥ȳ+ − ȳ∥2

=:
(
esL(., ȳ

+)
)
(xν) −

1

2s
∥ȳ+ − ȳ∥2

where (esL(., ȳ
+)) (xν) is the Moreau envelope of L(., ȳ+) at xν. By the level≤ boundedness

in x locally uniformly in y, the said Moreau envelope has a unique bounded solution x+
ν ∈ C.

Therefore,

gȳ(x
ν) ≥ L(x+

ν
, ȳ+) +

1

2s
∥x+ν

− xν∥2 − 1

2s
∥ȳ+ − ȳ∥2 (3.17)

The boundedness from below of L(., ȳ+), implies it is prox-bounded with threshold s̄ = ∞
(Rockafellar and Wets, 1998, Exercise 1.24). Since now L(., ȳ+) is lsc, proper, and prox-bounded,
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and xν → x̄, (Rockafellar and Wets, 1998, Theorem 1.25) implies every cluster point of the

sequence x+
ν lies in argminu∈C L(u, ȳ+) + 1

2s∥u− x̄∥2 = {x̄+}. Thus, x+ν → x̄. Therefore,

lim inf
ν→∞ gȳ(x

ν) ≥ lim inf
ν→∞

{
L(x+

ν
, ȳ+) +

1

2s
∥x+ν

− xν∥2 − 1

2s
∥ȳ+ − ȳ∥2

}
≥ lim inf

ν→∞
{
L(x+

ν
, ȳ+)

}
+

1

2s
∥x̄+ − x̄∥2 − 1

2s
∥ȳ+ − ȳ∥2

≥ lim inf
x→x̄+

{
L(x, ȳ+)

}
+

1

2s
∥x̄+ − x̄∥2 − 1

2s
∥ȳ+ − ȳ∥2

≥ L(x̄+, ȳ+) +
1

2s
∥x̄+ − x̄∥2 − 1

2s
∥ȳ+ − ȳ∥2 = gȳ(x̄)

where the first inequality follows from (Equation 3.17), the second inequality follows by the

minimizing sequence argument just furnished, the third inequality follows from (Rockafellar

and Wets, 1998, Lemma 1.7), and the last inequality follows from the fact that L(., y) itself is

lsc for every y ∈ D. Since xν → x̄ was arbitrary, we conclude

lim inf
x→x̄

gȳ(x) ≥ gȳ(x̄),

the lower semi-continuity of gȳ(.), which thus, since x̄ was arbitrary, implies that E is closed

everywhere. In particular, then E is locally closed everywehere.

We start the second step of proving Clarke regularity of E by arguing that the mapping

gȳ(.) must be usc as well. Suppose not, then

L(x̄+, ȳ+) +
1

2s
∥x̄+ − x̄∥2 − 1

2s
∥ȳ+ − ȳ∥2 = gȳ(x̄) < lim sup

x→x̄
= inf

τ>0

[
sup

x∈B(x̄,τ)
gȳ(x)

]
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This implies that for every sequence {xν}ν∈N converging to x̄, we eventually have (for large ν)

gȳ(x̄) < gȳ(x
ν) = min

u∈C
max
v∈D

L(u, v) +
1

2s
∥u− xν∥2 − 1

2s
∥v− y∥2

≤ max
v∈D

L(x̄+, v) +
1

2s
∥x̄+ − xν∥2 − 1

2s
∥v− y∥2

= L(x̄+, ȳ+) +
1

2s
∥x̄+ − xν∥2 − 1

2s
∥ȳ+ − ȳ∥2.

Since this strict inequality holds for every large enough ν ∈ N, passing to a limit implies

gȳ(x̄) < gȳ(x̄), a contradiction. Therefore, gȳ : x 7→ Ls(x, ȳ) is continuous on Rn for every

ȳ ∈ Rm.

To complete the proof of Clarke-regularity of E, we now need to show that every (limiting)

normal vector to E is a regular normal vector. Suppose now that v ∈ NE((x̄, ᾱ)). We need to

show v ∈ N̂E((x̄, ᾱ)). The case for when (x̄, ᾱ) ∈ intE is trivial because then v = 0 and both

NE and N̂E contain 0 as they are “cones”. Therefore, suppose (x̄, ᾱ) = (x̄, Ls(x̄, ȳ)) ∈ bdryE

and that 0 ̸= v ∈ NE((x̄, ȳ)). This implies the existence of a sequence (xν, αν) ∈ E, vν ∈

N̂E((x
ν, αν)) with xν → x̄, αν → Ls(x̄, ȳ), and vν → v. Since v ̸= 0, the sequence (xν, αν) must

eventually lie on the boundary of E. Otherwise, vν ≡ 0, a contradiction. Thus, we eventually

can write (xν, αν) = (xν, Ls(x
ν, ȳ)) with vν ∈ N̂E((x

ν, Ls(x
ν, ȳ)) with vν → v. We need to show
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that v ∈ N̂E((x̄, Ls(x̄, ȳ)). Let (x, α) ∈ E be arbitrary. The inclusion vν ∈ N̂E((x
ν, Ls(x

ν, ȳ))

hypothesized implies for large ν

〈
vν,

 x− xν

α− Ls(x
ν, ȳ)


〉

≤ o

∣∣∣∣
 x− xν

α− Ls(x
ν, ȳ)

 ∣∣∣∣


so that

lim sup
(x,α)→(xν,Ls(xν,ȳ))

(x,α)∈E
(x,α) ̸=(xν,Ls(xν,ȳ))

〈
vν,

 x− xν

α− Ls(x
ν, ȳ)


〉

∣∣∣∣
 x− xν

α− Ls(x
ν, ȳ)

 ∣∣∣∣
≤ 0, (3.18)

this last inequality holding for all large ν. Passing (Equation 3.18) to a limit as ν → ∞ and

invoking the continuity of Ls(., ȳ) implies

lim sup
(x,α)→(x̄,Ls(x̄,ȳ))

(x,α)∈E
(x,α) ̸=(x̄,Ls(x̄,ȳ))

〈
v,

 x− x̄

α− Ls(x̄, ȳ)


〉

∣∣∣∣
 x− x̄

α− Ls(x̄, ȳ)

 ∣∣∣∣
≤ 0

Hence,

〈
v,

 x− x̄

α− Ls(x̄, ȳ)


〉

≤ o

∣∣∣∣
 x− x̄

α− Ls(x̄, ȳ)

 ∣∣∣∣
 which implies v ∈ N̂E((x̄, ᾱ)). This,

along with E being locally closed everywhere, implies that E is Clarke regular everywhere.
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By (Clarke, 1990, Theorem 2.4.9) we conclude that gȳ(.) = Ls(.ȳ) is a regular function so

that it it admits directional derivatives at x̄ for all x̄ ∈ ∂PLs(., ȳ)(x̄). This means ∂PLs(., y)(x) ̸=

∅ everywhere.

Similarly, one can show that ∂PLs(x, .)(y) ̸= ∅ everywhere. Therefore, we have shown that

∂PLs(., y)(x)×∂PLs(x, .)(y) is nonempty everywhere and is a subset of a singleton. Combining all

these facts with (Clarke, 1990, Proposition 2.2.4) imply the Fréchet differentiability of Ls(x, y).

3.4 Sublinear Convergence of Damped Proximal Point Method

In this section, we work on the negative comontonicity direction. We recall that Proposition

3.3.1 showed that the constrained proximal operator is 1
1−sρ Lipschitz continuous, which lacks

nonexpansivity. We now expand that to the case where the operator is negatively comonotone.

Proposition 3.4.1. Consider the objective L(x, y) be lsc-usc, ρ-weakly-convex-weakly-concave,

and C ⊂ Rn and D ⊂ Rm be closed and convex. Suppose further that the operator

F = ∂PL(., y)×−∂PL(x, .) +NC×D

is −ξ comonotone with ξ ∈
(
0, 1

2ρ

)
.Then the constrained proximal operator

(x+, y+) = ProxsL(x, y) = argminimax
u∈C
v∈D

L(u, v) +
1

2s
∥u− x∥2 − 1

2s
∥v− y∥2

is nonexpansive whenever s ∈
(
2ξ, 1ρ

)
.
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Proof. Let z1, z2 ∈ C × D and z+i = ProxsL(xi, yi), i = 1, 2. Optimality conditions of the

proximal operator imply 1
s

(
zi − z+i

)
∈ F(z+i ). Negative comonotonicity of F thus imply

1

s
⟨z1 − z2 − (z+1 − z+2 ), z

+
1 − z+2 ⟩ ≥ −

ξ

s2
∥z1 − z2 − (z+1 − z+2 )∥

2

= −
ξ

s2
∥z+1 − z+2 ∥

2 −
ξ

s2
∥z1 − z2∥2 +

2ξ

s2
⟨z+1 − z+2 , z1 − z2⟩,

the rearranging of which implies

(s− ξ)∥z+1 − z+2 ∥
2 ≤ ξ∥z1 − z2∥2 + (s− 2ξ)⟨z+1 − z+2 , z1 − z2⟩

≤ ξ∥z1 − z2∥2 + (s− 2ξ)∥z+1 − z+2 ∥∥z1 − z2∥ (3.19)

≤ ξ∥z1 − z2∥2 +
s− 2ξ

1− sρ
∥z1 − z2∥2

=
s− ξ(1+ sρ)

1− sρ
∥z1 − z2∥2,

where the last inequality follows from Proposition 3.3.1. We thus so far have the inequality

∥z+1 − z+2 ∥ ≤

√
s− ξ(1+ sρ)

(s− ξ)(1− sρ)
∥z1 − z2∥.

Plugging this inequality into (Equation 3.19) further implies,

∥z+1 − z+2 ∥ ≤

√√√√ 1

s− ξ

[
ξ+ (s− 2ξ)

√
s− ξ(1+ sρ)

(s− ξ)(1− sρ)

]
∥z1 − z2∥.
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Iteratively continuing this process yields,

∥z+1 − z+2 ∥ ≤

√√√√ 1

s− ξ

[
ξ+ (s− 2ξ)

√
1

s− ξ

[
ξ+ (s− 2ξ)

√
...
]]

∥z1 − z2∥ =: C∥z1 − z2∥,

Simple algebraic observation over this identity implies,

C2 =
1

s− ξ
[ξ+ (s− 2ξ)C] ,

so that C = 1.

Therefore,

∥z+1 − z+2 ∥ ≤ ∥z1 − z2∥

Therefore, the prox operator is nonexpansive. Let now λ ∈ (0, 1) and write T(z) := λz+ +

(1− λ)z, i.e. T = λProxsL + (1− λ)I. Since ProxsL is nonexpansive, (Bauschke and Combettes,

2017, Proposition 4.35) implies that T is λ-averaged and satisfies

∥T(z) − T(z ′)∥2 ≤ ∥z− z ′∥2 − 1− λ

λ
∥(I− T)(z) − (I− T)(z ′)∥2, for all z, z ′ ∈ C×D (3.20)

We now furnish the sublinear convergence of damped PPM to the solution of a structured

nonconvex-nonconcave minimax optimization problem.
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Theorem 4. Let C ⊂ Rn and D ⊂ Rm be closed and convex sets. Consider the prob-

lem minx∈C maxy∈D L(x, y) where L is lsc-usc, ρ-weakly-convex-weakly-concave, and suppose

further that the operator F = ∂PL(., y) × −∂PL(x, .) + NC×D is −ξ comonotone with ξ ∈(
0, 1

2ρ

)
. Let λ ∈ (0, 1). The sequence {zk} generated by damped proximal point method zk+1 =

λProxsL(zk) + (1 − λ)zk, where s ∈
(
2ξ, 1ρ

)
, converges sublinearly to a saddle point z∗ ∈ Z∗ of

minx∈C maxy∈D L(x, y), i.e. for any K ≥ 1, we have

min
l=1,2,...,K

∥zk+1 − zk∥2 ≤
λ∥z1 − z∗∥2

K (1− λ)
(3.21)

Proof. Notice the prox operator can be written as ProxsL(zk) = [I+s (FL +NC×D)]
−1(zk) where

FL + NC×D is −ξ comonotone. Proposition 3.4.1 implies that thus defined prox operator is

nonexpansive so that the sequence {zk}k∈N generated by the damped proximal method satisfies

∥zk+1 − z∗∥2 ≤ ∥zk − z∗∥2 − 1− λ

λ
∥zk+1 − zk∥2,

so that,

∥zk+1 − zk∥2 ≤
λ

1− λ

[
∥zk − z∗∥2 − ∥zk+1 − z∗∥2

]
. (3.22)

One can thus write,

min
k=1,2,...,K

∥zk+1 − zk∥2 ≤
1

K

K∑
k=1

∥zk+1 − zk∥2 ≤
λ

K(1− λ)
∥z1 − z∗∥2
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where the last inequality follows from (Equation 3.22).
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[Hast et al., 2013] Hast, M., Åström, K., Bernhardsson, B., and Boyd, S. (2013). Pid design
by convex-concave optimization. In ECCIEEE.

[Jin et al., 2020] Jin, C., Netrapalli, P., and Jordan, M. I. (2020). What is local optimality
in nonconvex-nonconcave minimax optimization? In Proceedings of the 37th Interna-
tional Conference on Machine Learning, pages 4880–4889.

[Korpelevich, 1976] Korpelevich, G. M. (1976). The extragradient method for finding saddle
points and other problems. Matecon, (12):747–756.

[Lee and Kim, 2021] Lee, S. and Kim, D. (2021). Fast extra gradient methods for smooth struc-
tured nonconvex-nonconcave minimax problems. In Advances in Neural Information
Processing Systems.

[Lin et al., 2020a] Lin, T., Jin, C., and Jordan, M. (2020a). On gradient descent ascent for
nonconvex-concave minimax problems. In Proceedings of the 37th International Con-
ference on Machine Learning, pages 6083–6093.

[Lin et al., 2020b] Lin, T., Jin, C., and Jordan, M. I. (2020b). Near-optimal algorithms for
minimax optimization. In 33rd Annual Conference on Learning Theory, pages 1–42.

[Liu et al., 2021] Liu, M., Rafique, H., Lin, Q., and Yang, T. (2021). First-order convergence
theory for weakly-convex-weakly-concave min-max problems. Journal of Machine
Learning Research, 22:1–34.



73

[Lu, 2022] Lu, H. (2022). An o (sr)-resolution ode framework for understanding discrete-time
algorithms and applications to the linear convergence of minimax problems. Mathe-
matical Programming, 194:1061–1112.

[Madry et al., 2018] Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A. (2018).
Towards deep learning models resistant to adversarial attacks. arXiv preprint
arXiv:1706.06083v4.

[Malitsky, 2020] Malitsky, Y. (2020). Golden ratio algorithms for variational inequalities. Math-
ematical Programming, 184:383–410.

[Martinet, 1970] Martinet, B. (1970). Regularisation d’ineq́uations variationelles par approxi-
mations successives. Rev. Francaise Inf. Rech. Oper., pages 154–159.

[Mertikopoulos et al., 2019] Mertikopoulos, P., Lecouat, B., Zenati, H., Foo, C.-S., Chan-
drasekhar, V., , and Piliouras, G. (2019). Optimistic mirror descent in saddle-point
problems: Going the extra (gradient) mile. In International Conference of Learning
Representation.

[Mokhtari et al., 2020] Mokhtari, A., Ozdaglar, A., and Pattathil, S. (2020). A unified analysis
of extra-gradient and optimistic gradient methods for saddle point problems: Proximal
point approach. In International Conference on Artificial Intelligence and Statistics.

[Monteiro and Svaiter, 2010] Monteiro, R. D. C. and Svaiter, B. F. (2010). On the complexity
of the hybrid proximal extragradient method for the iterates and the ergodic mean.
SIAM Journal on Optimization, 20(6):2755–2787.

[Moreau, 1965] Moreau, J. J. (1965). Proximité et dualité dans un espace hilbertien. Bulletin
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