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Abstract—In this paper, we give the first analyses of the non-
center-based clustering objectives of sum-of-diameters and sum-
of-radii under Bilu-Linial stability. Specifically, for the sum-
of-diameters problem, we give polynomial-time algorithms for
instances that are 2-stable, accompanied by a matching hardness
result for stability below 2. For sum-of-radii clustering, we give
an analysis showing that 2-stable instances are polynomial-time
solvable. THIS PAPER IS ELIGIBLE FOR THE STUDENT
PAPER AWARD.

I. INTRODUCTION

In this paper, we give the first results on minimizing sum-
of-diameters (MSD) (and also, in the Appendix, minimizing
sum-of-radii (MSR)) clustering under a stability assumption
first introduced by Bilu and Linial [1] that is motivated by the
observation that many real-world NP-hard problems can be
solved efficiently in practice. Informally, Bilu-Linial stability
assumes the optimal solution for a problem of interest does
not change under small perturbation of the input.

In particular, we give structural properties that show that
single-linkage and complete-linkage algorithms give exact
solutions to 2-stable sum-of-diameters (MSD) instances, and
we show that instances that are strictly less than 2-stable
are NP-hard under randomized reductions. For the closely
related problem of sum-of-radii clustering (MSR), we also
present some structural properties that allow the single-linkage
algorithm to solve 2-stable instances and the complete-linkage
algorithm to solve 3-stable instances. We defer these results
to the Appendix.

Many problems have been studied under Bilu-Linial stabil-
ity, including max-cut [1], [2], max independent set [3], and
center-based clustering such as k-means, k-median [4]–[6],
k-center [7] and min-sum [8]. Other metric based problems
include the traveling salesman problem [9] and the Steiner
tree problem [10]. These works are also closely related to
robust algorithms [2] and certified algorithms [11], as well as
to an interesting connection between stability and independent
systems/matroids [12]. Despite extensive research on center-
based clustering, the MSD and MSR problems, which possess
distinct, non-center-based structures, have yet to be analyzed
under Bilu-Lineal stability.

The MSD and MSR problems are closely related and an
exact solution to one is a 2-approximation to the other. Under

a general metric, MSD and MSR are both known to be NP-
hard [13], [14]. There are various approximation algorithms
for these problems (see e.g. [15]), as well as exact algorithms
studied under different metrics [16]–[19].

II. PRELIMINARIES

Given a clustering instance (P, d) where P is a set of n
points and d(·, ·) is a metric on P , we study the problem of
dividing the points into k clusters {C1, . . . , Ck} under a non-
center-based objective, namely the MSD objective, where the
goal is to minimize the sum of diameters of all the clusters.
The diameter of a cluster C is

ρ(C) := max
(x,y)∈C

d(x, y).

A closely related objective that minimizes the sum of radii is
known as MSR, and the radius is

r(C) := min
c∈C

max
p∈C

d(c, p).

Notice that a solution to MSR is a 2-approximation to MSD
and vice versa, because for each cluster we have r ≤ ρ ≤ 2r,
and

i=k∑
i=1

r∗i ≤
j=k∑
j=1

ρj ,

i=k∑
i=1

ρ∗i ≤
j=k∑
j=1

2rj

where r∗i , ρ
∗
i correspond to the radii and diameters of the

optimal MSR or MSD solution, and rj , ρj correspond to any
feasible solution.

We use dist(C1, C2) to represent the distance between two
clusters, which is the distance between the closest pair of
points from each cluster, i.e.,

dist(C1, C2) := min
a∈C1,b∈C2

d(a, b).

We denote the optimal clustering as OPT := {C∗
1 , . . . , C

∗
k}

and its value as cost(OPT).
We focus on the MSD problem under the notion of stability

first introduced by Bilu and Linial [1], which is usually
referred to as “perturbation resilience" in the context of
clustering [4].



Definition II.1 (γ-Perturbation). Given a clustering instance
(P, d), we say a function d′ : P × P → [0,∞) is a γ-
perturbation of (P, d) if ∀x, y ∈ P , we have d(x, y) ≤
d′(x, y) ≤ γ · d(x, y). Note that d′ may not be a metric.

Definition II.2 (Perturbation Resilience). For γ > 1, we say a
clustering instance (P, d) is γ-perturbation-resilient if for any
γ-perturbation d′, the unique optimal clustering {C∗

1 , . . . , C
∗
k}

of (P, d) stays the same under d′, i.e., OPT = OPT′ where
OPT′ is the optimal solution of the perturbed instance.

III. ALGORITHM FOR MSD UNDER STABILITY

In this section we first present some properties of MSD
under stability assumptions, then we use these properties to
show that the single-linkage and complete-linkage algorithms
combined with dynamic programming finds the optimal clus-
tering of 2-stable instances.

A. Properties Following Stability
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Fig. 1: Properties of stable MSD instances.

Lemma III.1 (MSD properties from stability). Given a γ-
stable MSD clustering instance, suppose C1 and C2 are
clusters in OPT with diameters ρ1 and ρ2 respectively, then
we have the following:

1) ∀z /∈ C1,∃a ∈ C1 s.t. d(a, z) > γ · ρ1.
2) ∀x, y ∈ C1,∀z /∈ C1, (γ − 1) · d(x, y) < d(y, z).

In particular, if γ ≥ 2, d(x, y) < d(y, z).
3) (γ − 1) · ρ1 < dist(C1, C2).

In particular, if γ ≥ 2, ρ1 < dist(C1, C2).

Proof.
1) Suppose not, then under the perturbation where all

pair-wise distances in C1 are perturbed by γ, z can be
moved to C1 in OPT′ without increasing the cost so that
OPT′ ̸= OPT, contradicting the stability assumption.

2) Suppose ∃x, y ∈ C1 and z ∈ C2 s.t.
(γ − 1) · d(x, y) ≥ d(y, z), which means
d(y, z) ≤ (γ − 1) · ρ1. ∀a ∈ C1, we have d(a, y) ≤ ρ1,
therefore d(a, z) ≤ d(a, y) + d(y, z) ≤ γ · ρ1,
contradicting property 1.

3) Suppose not, then ∃y ∈ C1 and z ∈ C2 s.t. d(y, z) ≤
(γ − 1) · ρ1, by a same argument as above we have a
contradiction.

B. Algorithms for 2-Stable MSD Instances

The single-linkage and complete-linkage algorithms are
popular heuristics for clustering, and they both belong to
the family of agglomerative hierarchical clustering algorithms
[20]. In this section we show that for stable MSD instances
with γ ≥ 2, these simple heuristics produce a tree structure
where the optimal clustering is a pruning of the tree, which can
then be found using dynamic programming (Cf. [6] Section
4.2.)

Algorithm 1: Single-linkage for MSD
1: C = {{p} | p ∈ P} start with all singletons;
2: while |C| > k do
3: Merge argmin

Ci,Cj

dist(Ci, Cj);

4: end while

Algorithm 2: Complete-linkage for MSD
1: C = {{p} | p ∈ P} start with all singletons;
2: while |C| > k do
3: Merge argmin

Ci,Cj

ρ(Ci ∪ Cj);

4: end while

Theorem III.2 (Algorithms for MSD). The single-linkage
algorithm 1 and complete-linkage algorithm 2 give exact
solutions to MSD instances assuming stability γ ≥ 2.
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Fig. 2: Merge clusters during Algorithm 1 and 2.

Proof. We show by induction that in both algorithms the
clusters after each merge are laminar to OPT, i.e., inside
each remaining cluster, all points belong to the same cluster
in OPT. This technique is inspired by the analysis in [5] for
k-median clustering instances.
Base case: singleton clusters are laminar to OPT.
Induction step of merging: consider the clusters formed during
the algorithm and a merge step (see Figure 2). Suppose
A ⊂ C∗

1 where ρ(C∗
1 ) = ρ∗1, we know that ∃B ⊂ C∗

1 \
A s.t. dist(A,B) ≤ ρ(A ∪ B) ≤ ρ∗1. Let A′ ̸⊂ C∗

1 ,
by the induction hypothesis A′ is fully contained in some
cluster in OPT so without loss of generality we may assume
A′ ⊂ C∗

2 , and ρ(A ∪ A′) ≥ dist(A,A′) ≥ dist(C∗
1 , C

∗
2 ) >

ρ∗1 (by property 3). This means for single-linkage we have
dist(A,B) < dist(A,A′), and for complete-linkage we have
ρ(A ∪ B) < ρ(A ∪ A′), therefore the argmin pair of clusters
chosen by the algorithms must belong to the same cluster in



OPT, and all the clusters remain laminar to OPT after the
merge.

In the Appendix, we prove the following related theorem
for MSR clustering, showing that it also is polynomial-time
solvable at 2-stability or higher.

Theorem III.3 (Algorithms for MSR). The single-linkage
algorithm 1 gives exact solution to MSR if γ ≥ 2 and the
complete-linkage algorithm 2 gives exact solution if γ ≥ 3.

IV. A MATCHING LOWER BOUND FOR MSD

A. Non-Approximability of Sum-Of-Diameters Clustering

The following theorem from [13] states the non-
approximability result for the MSD problem without any
stability assumptions. We restate the theorem and the reduction
setup here, and we will use the same reduction to show the
NP-hardness result for MSD instances with 2− ϵ stability.

Theorem IV.1 (Prop. 2 [13]). Unless P = NP, for any ϵ > 0,
no polynomial time algorithm for the problem can provide a
solution which satisfies the bound on the number of clusters
and whose total diameter is within a factor 2−ϵ of the optimal
value.

The result was shown using reduction from the clique
problem. Given a clique problem to determine whether there
exists a clique of size J in the graph G = (V,E), we can
reduce it to a MSD problem using the 2-1-metric: set P = V ,
and d(u, v) = 1 if (u, v) ∈ E, otherwise d(u, v) = 2. The
number of clusters is set to k = n + 1 − J . If there exists a
clique of size J , cost(OPTMSD) = 1 consisting of 1 cluster of
diameter 1 containing all the vertices in the clique, and n−J
singleton clusters with diameter 0 for each of the remaining
vertex; otherwise cost(OPTMSD) ≥ 2.

B. Hardness Under Stability Assumptions

In this section, we provide a matching lower-bound of 2−
ϵ on the stability parameter. The result is formally stated in
Theorem IV.2.

Theorem IV.2. Unless P = NP = RP, no polynomial time
algorithm can solve a (2 − ϵ)-stable instance of the sum-of-
diameters clustering problem for any ϵ > 0.

Notice that the reduction used in Theorem IV.1 produces a
(2−ϵ)-stable clustering instance if there exists a unique clique
of size J in the clique problem. In other words, solving (2−ϵ)-
stable MSD instances is at least as hard as the Clique Promise
Problem, which is a variation on the Clique problem where
it is promised that there exists a unique optimal solution. We
show the hardness of the Clique Promise Problem in Theorem
IV.3, and then Theorem IV.2 follows.

Theorem IV.3 (Clique Promise Problem). The Clique Promise
Problem (CPP), where the instance is promised to have a
unique largest clique, is NP-hard under randomized reduction.

Theorem IV.3 follows by combining two existing results.
Lemma IV.5 states that SAT is parsimoniously reducible to

the Clique problem, so we can apply Lemma IV.4 and choose
A to be the Clique problem, which proves Theorem IV.3.

Lemma IV.4 (USAT Corollary 3.4 [21]). Let A be any NP-
complete problem to which satisifability is parsimoniously
reducible. The following “promise problem" is NP-hard under
randomized reduction:
Input: an instance x of A; Output: a solution to x; Promise:
#A(x) = 1.

Lemma IV.5 (#Clique is #P-complete [22]). There is a
parsimonious reduction from SAT to Clique.

Here we include a modified version of the proof from [22]
for completeness.

Proof. Step 1: #SAT ≤p #3SAT.
Consider a SAT instance f , we will reduce it to a 3SAT for-
mula f ′ where there is a one-to-one correspondence between
any satisfiable assignment to f and f ′. First introduce new
variables a, b, c and new clauses

(a ∨ b ∨ c) ⇐⇒ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c)

∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ,

so that f ′ is satisfiable if and only if a, b, c are all set to 0.
1) For clauses with 1 literal x1, replace it with (x1 ∨ a ∨

b) ⇐⇒ x1 ;
2) For clauses with 2 literals x1, x2, replace it with (x1 ∨

x2 ∨ a) ⇐⇒ (x1 ∨ x2) ;
3) For clauses with 3 literals, do nothing;
4) For clauses with ≥ 4 literals (x1 ∨ x2 ∨ y), where y is a

disjunction of ≥ 2 literals, repeatedly reduce the number
of literals by one by replacing the clause with

C = (x1 ∨ x2 ∨ w) ∧ (x1 ∨ x2 ∨ w)

∧ (x1 ∨ x2 ∨ w) ∧ (x1 ∨ x2 ∨ w) ∧ (w ∨ y) .

Consider any satisfiable assignment to f ,
• if x1 ∨ x2, i.e. x1 = 0, x2 = 0, y = 1, and C ⇐⇒
w∧ (w∨ y), so w = 1 in any satisfiable assignment to
f ′ ;

• if x1 ∨ x2, C ⇐⇒ w ∧ (w ∨ y), so w = 0 in any
satisfiable assignment to f ′ .

Step 2: #3SAT ≤p #Clique.
Consider #3 SAT instance f = C1 ∧ . . . ∧ Ck. Construct a
graph G:

• Vertices: for each clause Ci introduce 7 vertices corre-
sponding to the 7 assignments that satisfy C ;

• Edges: an edge exists between 2 vertices if and only
if the assignments represented by the vertices do not
contradict each other. In particular, there are no edges
among vertices from the same clause.

There is a one-to-one correspondence between a satisfiable
assignment to f and a clique of size k in G.

It remains an open question to prove a similar lower bound
for the MSR objective.



APPENDIX

In this appendix, we give an analysis of Algorithms 1 and 2
for the MSR objective. Given the similarity to the analysis for
MSD, we have relegated these results to this appendix.
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Fig. 3: Properties of stable MSR instances.

Lemma A.1 (MSR properties from stability). Given a γ-stable
MSR clustering instance, suppose B1 and B2 are clusters in
OPT centered at c1, c2 with radii r1 and r2 respectively, then
we have the following:

1) ∀p2 /∈ B1, d(c1, p2) > γ · r1.
2) d(c1, c2) >

γ
2 (r1 + r2).

In particular, if γ > 2, d(c1, c2) > r1 + r2, i.e., clusters
are separated.

3) If γ ≥ 2, each point belongs to its closest center, i.e.,
∀p1 ∈ B1, d(p1, c1) < d(p1, c2) ∀c2 that is a center of
another cluster.

4) (γ − 1) · r1 < dist(B1, B2).
(γ − 1) · d(p1, c1) < d(p1, p2) ∀p1 ∈ B1, p2 ∈ B2.
In particular, if γ ≥ 2, r1 < dist(B1, B2) and
d(p1, c1) < d(p1, p2).
If γ ≥ 3, ρ(B1) ≤ 2r1 < dist(B1, B2) ≤ ρ(B1 ∪B2).

5) Notably we don’t have “center proximity”, a property
implied by perturbation resilience used in [4] instead
of perturbation resilience, i.e., it’s possible that γ ·
d(p1, c1) > d(p1, c2).

Proof.
1) Suppose not, and consider the perturbation where

∀p1 ∈ B1, d(c1, p1) is perturbed by γ, then we can move
p2 to B1 in OPT′ without increasing the cost so that
OPT′ ̸= OPT, contradicting the stability assumption.

2) Following property 1, d(c1, c2) > γ · r1
and d(c1, c2) > γ · r2, combined we have
d(c1, c2) >

γ
2 (r1 + r2).

3) Suppose there exists another cluster’s center c2
s.t. d(p1, c2) ≤ d(p1, c1), then d(c1, c2) ≤
d(p1, c1) + d(p1, c2) ≤ 2r1 ≤ γ · r1, contradicting
property 1.

4) Suppose ∃p1 ∈ B1, p2 ∈ B2 s.t. d(p1, p2) ≤ (γ − 1) · r1,
therefore d(c1, p2) ≤ d(c1, p1) + d(p1, p2) ≤ γ · r1,
contradicting property 1.
Suppose ∃p1 ∈ B1, p2 ∈ B2 s.t. d(p1, p2) ≤
(γ − 1) · d(p1, c1) ≤ (γ − 1) · r1, therefore

d(c1, p2) ≤ d(c1, p1) + d(p1, p2) ≤ γ · r1, contradicting
property 1.

5) Figure 4 shows a counter example where γ · d(p1, c1) >
d(p1, c2) with γ = 3 and the number of clusters k = 2:

ab1

c1
d(a, b2) = 2.1

d(c2, b2) = ϵd(c1, a) = d(c1, b1) = 1

b2

c2

Fig. 4: A 3-stable MSR instance without the center proximity
property.

In the figure above, OPT = d(a, c1)+ d(b2, c2) = 1+ ϵ.
Perturb d(a, c1) → 3, then OPT → 3 + ϵ.
Consider an alternative solution OPT′: move a to c2,
OPT′ = d(b1, c1)+d(a, c2) = 1+2.1+ϵ, so the example
is 3 stable, but 3 = 3d(a, c1) > d(a, c2) = 2.1 + ϵ,
violating center proximity.

Now we are ready to prove Theorem III.3.

Proof. We show that in both algorithms the clusters after
each merge are laminar to OPT by induction.

Single-linkage: Assume γ ≥ 2 and we have
r∗1 < dist(C∗

1 , C
∗
2 ) by property 4.

Base case: correct.
Induction step of merging: suppose A ⊂ C∗

1 , we know
∃B ⊂ C∗

1 \ A s.t. dist(A,B) ≤ r∗1 (let either A or B
contain the center ci). Let A′ ̸⊂ C∗

1 , by induction A′ is fully
contained in some cluster in OPT so w.o.l.g. we may assume
A′ ⊂ C∗

2 and dist(A,A′) ≥ dist(C∗
1 , C

∗
2 ) > r∗1 . This means

dist(A,B) < dist(A,A′), and by the same argument as in
the proof of Theorem III.2, the merge step is correct.

Complete-linkage: Assume γ ≥ 3 and we have
ρ(C∗

1 ) < dist(C∗
1 , C

∗
2 ) by property 4.

Base case: correct.
Induction step of merging: suppose A ⊂ C∗

1 , we know
∃B ⊂ C∗

1 \ A s.t. ρ(A ∪ B) ≤ ρ(C∗
1 ). Let A′ ̸⊂ C∗

1 ,
by induction A′ is fully contained in some cluster
in OPT so w.o.l.g. we may assume A′ ⊂ C∗

2 and
ρ(A ∪ A′) ≥ dist(A,A′) ≥ dist(C∗

1 , C
∗
2 ) > ρ(C∗

1 ).
This means ρ(A ∪ B) < ρ(A ∪ A′), and by the same
argument as in the proof of Theorem III.2, the merge step is
correct.
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