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SUMMARY

Traditionally, algorithms have been studied under two regimes: worst-case analysis,

which makes no assumptions about the input, and average-case analysis, which assumes

that inputs are drawn from a certain distribution. However, real-world inputs rarely con-

form to either of these extremes. A new paradigm known as “beyond worst-case analysis”

seeks to bridge the gap between the two. In this thesis, we study several problems and their

algorithms under appropriate beyond worst-case models, aiming to provide more realistic

and practically relevant performance guarantees.

In the first part of this thesis, we focus on improving algorithm performance on non-

worst-case inputs (structured inputs). In Chapter 2, we study the Boolean satisfiability

problem (SAT) in the framework of learning-augmented algorithms, where the problem

instance is provided with a prediction that contains partial information of an optimal

solution. We study both the decision and optimization problem of SAT under two forms

of predictions, namely the subset advice and the label advice. In Chapter 3, we study

non-center-based clustering under Bilu-Linial stability assumptions, which assumes that

the problem instance has a unique optimal solution that stays unchanged under small

perturbation of the input. We focus on the minimizing sum-of-radii (MSR) and minimizing

sum-of-diameters (MSD) objectives, and provide polynomial time solutions under stability

assumptions.
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SUMMARY (Continued)

In the second part of this thesis, we focus on enhancing algorithm robustness to con-

tamination in average-case inputs (semi-random inputs). In the context of low-rank matrix

recovery problems, this means a monotone adversary can add arbitrary data from the dis-

tribution to break the necessary regularity conditions satisfied by fully random inputs. In

Chapter 4, we study the matrix completion problem, whose goal is to recover a ground-

truth matrix from incomplete and noisy observations of its entries. In Chapter 5, we study

the matrix sensing problem, where the goal is to recover the ground-truth matrix based on

linear measurements from a given set of sensing matrices.

xiv



CHAPTER 1

INTRODUCTION

1.1 Introduction

The design and analysis of algorithms play a crucial role in theoretical computer sci-

ence. Traditionally, we analyze algorithms in two contrasting regimes: the worst-case and

average-case analysis. In the former, we make no assumptions about the input when design-

ing the algorithm, and evaluate it against the worst-case instances. The advantage of this

approach is that we obtain guarantees on the algorithm for all inputs, including adversarial

ones, making the algorithm universally applicable. However, since real-world inputs are

usually “non-pathological” (Roughgarden, 2019), worst-case analysis is overly pessimistic

and may not accurately reflect an algorithm’s performance in practice. In the latter ap-

proach, we assume inputs are drawn from a fixed distribution, and analyze the algorithm’s

average-case performance with respect to the distribution. By leveraging domain-specific

information on inputs, many algorithms have demonstrated both empirical and theoretical

success under distributional assumptions. Yet this approach is susceptible to overfitting to

a particular distribution and may rely on assumptions that are too strong or unrealistic.

As a result, it is vulnerable to model misspecification and even data-poisoning attacks in

practice.

1
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A more recent paradigm known as “beyond worst-case analysis” seeks to bridge the

gap between the two, with the goal of providing more realistic and practically relevant

performance guarantees. In this thesis, we examine beyond worst-case analysis from two

complementary directions.

• Optimism. The first half of the thesis adopts an optimistic perspective: we assume

that the instances of interest are in some sense better than the worst case. Such opti-

mism might arise because the instance exhibits structural properties intrinsic to the

problem, or because we have access to some additional information such as historical

data or predictions. From this perspective, we investigate how algorithms can exploit

such structured inputs to achieve better performance guarantees. These ideas are

developed in Chapter 2 and Chapter 3.

• Robustness. In contrast, the second half of the thesis emphasizes robustness. Here,

we assume that inputs may be worse than the average case. In particular, we are

interested in the semi-random model, where inputs drawn from a benign distribution

are modified adversarially in an attempt to break algorithms that rely too heavily

on distributional assumptions. Our goal in this setting is to design algorithms that

remain effective under adversarial contamination, i.e., semi-random inputs. This

theme is explored in Chapter 4 and Chapter 5.

The subsequent chapters are self-contained, each focusing on a specific problem and its

associated algorithms under an appropriate beyond worst-case setting. The remainder of
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this chapter provides the necessary background, introduces the problems studied in later

chapters, and presents the various beyond worst-case settings considered in this thesis.

1.2 Background on Complexity Theory

Complexity Theory studies the time, space (memory), query and other resources re-

quired to solve computational problems. In this thesis, we are primarily concerned with

the time complexity, which serves as a criterion for classifying problems into complexity

classes. For decision problems (those with yes-or-no answers), the two most well-known

classes are P and NP.

Definition 1.2.1 (The Class P (Sipser, 1996)). P is the class of languages (problems) that

are decidable in polynomial time on a deterministic single-tape Turing machine.

Definition 1.2.2 (The Class NP (Sipser, 1996)). NP is the class of languages (problems)

that are verifiable in polynomial time given some certificate c. The hardest problems in the

class NP are called NP-complete, which means any problem in NP is polynomial time re-

ducible to a problem in NP-complete. The optimization version of an NP-complete decision

problem is in the class NP-hard.

Problems in P are generally considered to be “easy”. A famous open question is whether

P equals NP, and the prevailing belief is that P ̸= NP, i.e., NP-complete problems do

not admit polynomial time algorithms. Despite this, NP-complete problems remain at

the forefront of theoretical computer science, since many special instances can be solved

efficiently. This observation motivates the study of beyond worst-case analysis, which aims
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to understand and exploit the structural properties that make certain instances tractable.

Identifying these structures and formalizing the assumptions that capture them is a crucial

step in beyond worst-case analysis. In the following sections, we introduce the problems

studied in this thesis and the respective beyond worst-case settings under which we analyze

them.

1.3 Overview of Studied Problems

Here we introduce the specific problems studied in this thesis. All of them are NP-

complete or NP-hard in the worst case.

1.3.1 Boolean Satisfiability

Given a Boolean formula on n variables in conjunctive normal form (CNF), the Satis-

fiability problem (SAT) asks whether there exists a truth assignment on the variables so

that the formula evaluates to True. The problem is called k-SAT if each clause contains at

most k literals, and the optimization version of the problem is called MAX-(k)-SAT, which

asks for the maximum number of satisfiable clauses. We study the Boolean satisfiablility

problem in Chapter 2, where we introduce formal definitions including other variants of

the problem.

SAT is the first problem shown to be NP-complete by Stephen Cook and Leonid Levin

(Cook, 1971; Levin, 1973). There is a stronger conjecture than P̸=NP called the Expo-

nential Time Hypothesis (ETH), which postulates that 3-SAT cannot be solved in time

O(2cn) for some c > 0. Assuming P ̸=NP, MAX-2-SAT cannot be approximated above

0.954 (Hastad, 2001). In light of these hardness results, research efforts have been towards
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designing exponential time algorithms with the smallest c for the decision problem, as

well as polynomial time algorithms with the best approximation ratio for the optimization

problem.

For the decision problem of k-SAT, there has been a line of work using “random re-

striction algorithms”. In particular for 3-SAT, the PPZ algorithm (Paturi et al., 1997)

achieves running time of O∗(2
2
3
n), where O∗(·) suppresses polynomial factors. This was

later improved by the PPSZ algorithm (Paturi et al., 2005), which runs in time O∗(20.386n).

For the optimization problem, a line of research has employed SDP relaxations combined

with rounding techniques, achieving progressively improved approximation ratios. In par-

ticular for the MAX-2-SAT problem, (Goemans and Williamson, 1994) first showed an

approximation ratio of 0.878 beyond the trivial approximation of 0.75 from the random

assignment, and (Lewin et al., 2002) achieves state-of-the-art ratio of 0.94.

1.3.2 Non-Center-Based Clustering

In the clustering problem, we are given a set of points P and a metric d : P × P → R,

and the goal is to partition the points into k clusters while optimizing some objective

function on the clusters under the metric. Center-based objectives such as k-center, k-

medians and k-means have been studied extensively. In this thesis, we study clustering with

non-center-based objectives, namely the minimizing sum-of-radii (MSR) and minimizing

sum-of-diameters (MSD) objectives, and the formal definitions are provided in Chapter 3.

MSD and MSR are both known to be NP-hard under general metric. The NP-hardness

of MSD is shown by reduction from the Clique problem (Doddi et al., 2000), and MSR is
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proven by reduction from planar 3-SAT (Gibson et al., 2010). There are various approxima-

tion algorithms for these problems, and an α-approximation to one is a 2α-approximation

to another. The work of (Charikar and Panigrahy, 2001) presents a greedy algorithm for

MSR that achieves O(log n
k )-approximation with at most k clusters. Improving from log-

factor to constant-factor approximation, (Charikar and Panigrahy, 2001) gives an LP based

primal-dual algorithm that achieves 3.503-approximation for MSR, which is also a 7.006-

approximation algorithm for MSD. Moving beyond approximation to exact algorithms,

there is a randomized algorithm (Gibson et al., 2010) that gives the optimal solution to

MSR with high probability in quasi-polynomial time. If k is considered to be a fixed con-

stant, there are algorithms that take a “brute force” approach. For MSD, (Behsaz and

Salavatipour, 2015) gives an algorithm by guessing the diameters of clusters in nO(k2) time,

and for MSR, (Doddi et al., 2000) gives an algorithm by transforming the problem to

weighted set cover in nO(k) time and guessing the center-radius pairs.

1.3.3 Low-Rank Matrix Recovery

Low-rank matrix recovery is a popular inverse problem with many applications in ma-

chine learning, where the goal is to recover a ground-truth matrix X∗ ∈ Rd1×d2 from n

measurements. In general it can be formulated as a constrained optimization problem,

where f is a problem-specific objective function:

min
X∈Rd1×d2

f(X) subject to rank(X) ≤ r.
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The problem has a nonconvex optimization landscape due to the low-rank constraint, mak-

ing it NP-hard in the worst case. To obtain tractable solutions, analyses typically impose

regularity conditions, under which both convex relaxations and nonconvex approaches have

been shown to succeed.

The convex relaxation approach uses nuclear norm minimization as a proxy for low-

rankness (Recht et al., 2010):

min
X∈Rd1×d2

∥X∥∗ subject to f(X) = 0.

When formulated as a SDP, it can be solved in time Õ(nd2.5) where d = max(d1, d2).

The nonconvex approach uses the Burer-Monteiro factorization (Burer and Monteiro,

2003) to enforce the rank requirement. The problem is formulated as unconstrained non-

convex optimization (Recht et al., 2010; Bhojanapalli et al., 2016; Ge et al., 2017):

min
U∈Rd1×r, V ∈Rd2×r

f(UV ⊤).

The factorized formulation can be solved by gradient descent, and the running time is more

efficient than the SDP solution due to the reduced dimension of the variable.

In this thesis we study two different types of low-rank matrix recovery problems. In

Chapter 4 we focus on matrix completion, where the goal is to recover a low-rank matrix

X∗ based on observations Y on a subset of the indices Ω ⊂ [d1]× [d2], i.e., Yjk for (j, k) ∈
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Ω. In particular, the observations might be noisy or quantized (1-bit measurements).

Traditionally it is assumed that Ω is uniformly sampled, and X∗ satisfies the incoherence

condition, which informally means the singular vectors of X∗ are “spread out”. In Chapter

5 we turn our attention to matrix sensing, where the goal is to reconstruct X∗ from a

collection of sensing matrices (Ai)
n
i=1 and the corresponding linear measurements bi =

⟨Ai, X⟩. A standard assumption in the literature is the Restricted Isometry Property (RIP),

which means that the sensing matrices approximately preserve the norm of a low-rank

matrix. The general formulations (convex and nonconvex) apply to both problems, and

there have been provable exact recovery guarantees under appropriate regularity conditions

(Candès and Recht, 2009; Recht et al., 2010; Ge et al., 2017; Bhojanapalli et al., 2016).

1.4 Beyond Worst-Case Settings

In this section, we present a few beyond worst-case settings, each corresponding to one

of the problems introduced previously.

1.4.1 Learning-Augmented Algorithms

In the framework of “learning-augmented algorithms”, a problem instance is provided

with additional information about an optimal solution, and the goal is to develop algorithms

that leverage the information to improve upon worst-case performances. The additional

information is referred to as a prediction or an advice to the input, and often comes from

applying machine learning techniques to historic data. In this setting, the goal of algorithm

design is to obtain performance guarantees as a function of the quality of the prediction.

As machine learning methods advance and the accuracy of predictions improves over time,
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the resulting algorithms can achieve better performances (Mitzenmacher and Vassilvitskii,

2022).

Originated in online algorithms (Devanur and Hayes, 2009; Vee et al., 2010), this frame-

work has been applied to many other areas of machine learning in both the online and offline

settings. The webpage (Lindermayr and Megow, 2025) complies a comprehensive list of

literature on this topic, including problems on mechanism design, caching, paging, schedul-

ing, rent-or-buy, and many others. In particular, we highlight recent work on MAX-CUT

and general constraint satisfaction problems (Ghoshal et al., 2025; Cohen-Addad et al.,

2024), since they are closely related to the Boolean satisfiability problem (SAT) we study

in Chapter 2.

In the context of learning-augmented algorithms for the SAT problem, the prediction

(referred to here as advice) is an assignment on some or all of the variables in the CNF

formula. We consider two types of advices: the label advice, which predicts each variable

with accuracy slightly better than a random guessing, and the subset advice, which reveals

the ground-truth assignment on a small subset of the variables. In the literature, these

are also referred to as the noisy prediction (label advice) and partial prediction (subset

advice).

1.4.2 Bilu-Linial Stability

Motivated by the observation that many problems that are NP-hard in the worst case

can be solved efficiently in practice due to structural properties of real-world inputs, Bilu

and Linial introduced the Bilu–Linial stability notion, originally for the MAX-CUT prob-
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lem (Bilu and Linial, 2012). Informally, it assumes that the problem instance has a unique

optimal solution that remains unchanged under small perturbations to the input.

Many problems have been studied under Bilu-Linial stability, including MAX-CUT (Bilu

and Linial, 2012; Makarychev et al., 2014), max independent set (Angelidakis et al., 2018),

and center-based clustering such as k-means, k-median (Awasthi et al., 2012; Balcan and

Liang, 2016; Angelidakis et al., 2017), k-center (Balcan et al., 2020) and min-sum (Ben-

David and Reyzin, 2014). Other metric based problems include the traveling salesman

problem (Mihalák et al., 2011) and the Steiner tree problem (Freitag et al., 2021). These

works are also closely related to robust algorithms (Makarychev et al., 2014) and certified

algorithms (Makarychev and Makarychev, 2020), as well as to an interesting connection

between stability and independent systems/matroids (Chatziafratis et al., 2017).

In Chapter 3, we apply the Bilu-Linial stability assumption to non-center-based clus-

tering. For a clustering instance, we model perturbations to the input as multiplicative

changes to the metric d. Informally, a γ-perturbation means we can change the distance

between any pair of points by a factor up to γ, and by convention γ ≥ 1. Closely related to

our work, there have been extensive research on center-based clustering, with polynomial

time algorithms for k-medians objective, first for γ ≥ 3 (Awasthi et al., 2012), then γ ≥ 2.41

(Balcan and Liang, 2016), and finally γ ≥ 2 for general center-based objective (Angelidakis

et al., 2017). On the other hand, there are hardness results for γ < 2 (Ben-David and

Reyzin, 2014; Balcan et al., 2020).
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1.4.3 Semi-Random Model

Many machine learning problems have been studied under distributional analysis, where

we assume inputs come from some probability distribution, and the algorithms are designed

and evaluated based on “good-on-average performance” (Roughgarden, 2019) with respect

to fully random inputs from the distribution. However, this approach can be brittle to

model mis-specification and input contamination. The semi-random model combines the

random (average-case) inputs and adversarial (worst-case) inputs, and the goal is to design

more robust algorithms that do not fully rely on distributional input assumptions. In this

thesis we consider semi-random models with a “monotone adversary”: we assume first the

inputs are generated according to a probability distribution, then an adversary can modify

the inputs in a restricted, sometimes even “helpful”, manner.

First introduced by (Blum and Spencer, 1995), the semi-random model has been studied

for various graph problems (Feige and Kilian, 2001; Perry and Wein, 2017; Mathieu and

Schudy, 2010; Makarychev et al., 2012). Previously the work of (Cheng and Ge, 2018)

applied the semi-random model to the matrix completion problem, and (Kelner et al.,

2023a) studied sparse vector recovery, which are closely related to the matrix recovery

problems we study in this thesis.

In Chapter 4 we consider variants of the matrix completion problem in the semi-random

model. Unlike the traditional uniform observation model, where each entry is observed in-

dependently with probability p, here we assume each entry is observed with some unknown
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probability at least p, and can otherwise be arbitrary. Equivalently, one may view the

process as first sampling indices of the matrix uniformly at random, then an adversary

can augment the samples with arbitrary additional indices. In Chapter 5 we turn to the

matrix sensing problem, where in addition to the original sensing matrices, the adversary

can add arbitrary sensing matrices along with their corresponding measurements. For both

problems, the regularity conditions provided by fully random model are no longer guar-

anteed under the semi-random model, which poses challenges to the efficient nonconvex

approaches, since there could be spurious local optimum in the optimization landscape

without these regularity conditions.



CHAPTER 2

LEARNING-AUGMENTED ALGORITHMS FOR BOOLEAN

SATISFIABILITY

2.1 Introduction

The Boolean satisfiability problem (SAT) is a cornerstone of computational complexity

theory and algorithmic research. Given a Boolean formula over variables that can take

values true or false, the task is to decide whether there exists an assignment of these

variables that makes the formula evaluate to true. SAT is most commonly studied in

its conjunctive normal form (CNF), where the formula is represented as a conjunction of

clauses, each clause being a disjunction of literals (a variable or its negation). The restricted

case where each clause contains at most k literals is known as k-SAT. SAT was the first

problem proven to be NP-complete, via the Cook–Levin theorem (Cook, 1971; Levin, 1973),

with 3-SAT often serving as its canonical example (Karp, 1972). This foundational result

implies that any problem in NP can be efficiently reduced to SAT, making it a central object

in the study of computational intractability, reductions, and practical solving techniques.

Since polynomial-time algorithms that solve all instances of SAT optimally are unlikely

to exist unless P ̸= NP, alternative approaches are necessary. One approach is to abandon

the requirement of polynomial runtime and seek exponential-time algorithms that, while

still exponential in the worst case, are faster than exhaustive search. For k ≥ 3, let

13
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ck ≥ 1 be a constant such that k-SAT can be solved in time O∗(ck)
n, where n is the

number of variables in the given k-SAT instance and O∗(·)n hides polynomial factors. A

well-known conjecture proposed by (Impagliazzo and Paturi, 2001), called the Exponential

Time Hypothesis (ETH), posits that 3-SAT cannot be solved in sub-exponential time, i.e.,

c3 > 1. A positive answer to this conjecture would imply that P ̸= NP. A stronger

conjecture proposed by (Calabro et al., 2009), known as the Strong Exponential Time

Hypothesis (SETH), claims that limk→∞ ck = 2.

Another canonical variant of the Boolean satisfiability problem is its optimization coun-

terpart, MAX-SAT, where the objective is to determine the maximum number of clauses

that can be satisfied by any assignment. Since MAX-SAT generalizes the decision prob-

lem SAT, it is also computationally intractable unless P = NP. One approach to tackling

this problem is to design polynomial-time approximation algorithms. However, it is com-

putationally hard to compute an approximate solution that satisfies a number of clauses

arbitrarily close to the optimal. More precisely, MAX-SAT is APX-complete, indicating

that it does not admit a polynomial-time approximation scheme (PTAS) unless P = NP

(Feige and Goemans, 1995; Arora and Safra, 1998; Arora et al., 1998; Hastad, 2001). There-

fore, there has been extensive study to find the best possible approximation factors for this

problem, particularly for MAX-k-SAT , the restricted case of MAX-SAT where each clause

contains at most k literals.

There has been extensive research on SAT beyond worst-case performance, including

random (average-case) (Selman et al., 1996) and semi-random models (Roughgarden, 2021,
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Section 9), smoothed analysis (Feige, 2007), stability analysis (Kun and Reyzin, 2014, Sec-

tion 2), parameterized complexity (Roughgarden, 2021, Section 2), and SAT-solver heuris-

tics such as DPLL and CDCL (Roughgarden, 2021, Section 25). We focus on the emerging

paradigm of learning-augmented algorithms (Mitzenmacher and Vassilvitskii, 2022), also

known as “algorithms with predictions”. In this paradigm, a machine learning method

provides a prediction (or “advice”) about the input or the optimal solution, and the al-

gorithm uses this prediction to improve its performance, with guarantees that depend on

the accuracy of the prediction. This approach has been applied to numerous algorithmic

tasks, particularly NP-complete problems such as MAX-CUT, MAX-k-LIN, Independent

Set and Clustering, among others (Ghoshal et al., 2025; Cohen-Addad et al., 2024; Braver-

man et al., 2024; Bampis et al., 2024; Dong et al., 2025; Bampis et al., 2025; Ergun et

al., 2021; Gamlath et al., 2022; Nguyen et al., 2023). This paper focuses on studying the

canonical NP-complete problem of SAT.

2.1.1 Problem Formulation

Let ϕ(x) = C1∧C2∧ · · · ∧Cm be a Boolean formula in conjunctive normal form (CNF)

over variables x = x1, x2, . . . , xn, consisting of m clauses C1, C2, . . . , Cm.

Definition 2.1.1 (SAT). The Satisfiability Problem asks whether there exists a truth as-

signment σ : {x1, . . . , xn} → {0, 1} to a CNF formula ϕ such that ϕ(x)|σ = 1, i.e., all

clauses Ci are satisfied under σ. When each clause in ϕ contains at most k literals, the
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problem is referred to as k-SAT. If every clause contains exactly k literals, it is known as

MAX-Ek-SAT.

Definition 2.1.2 (MAX-SAT). Given a CNF formula ϕ, the MAX-SAT problem seeks a

truth assignment σ : {x1, . . . , xn} → {0, 1} that maximizes the number of clauses Ci for

which Ci|σ = 1, i.e., the number of clauses satisfied by σ. When each clause in ϕ contains at

most k literals, the problem is referred to as MAX-k-SAT. If every clause contains exactly

k literals, it is known as MAX-Ek-SAT .

Let x∗ = {x∗1, . . . , x∗n} be a fixed optimal solution to either SAT or MAX-SAT. We

consider two models of advice: one provides full certainty on a subset of the values in x∗,

and the other offers noisy information about all values in x∗.

Definition 2.1.3 (Subset Advice). The subset advice consists of a random subset of in-

dices S ⊂ {1, . . . , n} along with the ground-truth assignment x∗ restricted to these indices

{x∗i }i∈S, where each i is included in S independently with probability ϵ for all i = 1, . . . , n.

Definition 2.1.4 (Label Advice). The label advice is an assignment x̃ ∈ {0, 1}n that

contains noise relative to a ground-truth optimal assignment x∗. For each i = 1, . . . , n,

independently, we have

x̃i =


x∗i with probability 1+ϵ

2 ,

1− x∗i with probability 1−ϵ
2 .
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It is important to note that the randomness in the label advice is sampled once and

fixed (i.e., the oracle returns the same answer if queried multiple times), which is standard

in the literature on learning-augmented algorithms. Otherwise, one could trivially boost

the algorithm’s probability of success. See the discussion of persistent vs. non-persistent

noise in (Braverman et al., 2024).

Moreover, as noted by (Ghoshal et al., 2025), the subset advice model is stronger than

the label advice model, since label advice x̃ can be simulated given subset advice.

2.1.2 Our Contributions

Under the learning-augmented framework, we study the SAT and MAX-SAT problems

with advice. Here, we highlight our contributions and provide a road map of the paper.

In Section 2.2, we study the decision problem of k-SAT with advice and improve the

running time of state-of-the-art algorithms. Specifically, we incorporate subset advice

into a family of algorithms known as PPZ (Section 2.2.1) and PPSZ (Section 2.2.2). As

both algorithms run in exponential time in the worst case, we present our results as im-

provements on the base constant of the exponent, summarized in Table I. For PPZ, we

improve the running time from 2(1−
1
k
) to 2(1−

1
k

1−ϵk

1−ϵ
)(1−ϵ), and for PPSZ we improve the

base of the exponent by a multiplicative factor of 2−c(ϵ,k), where c(ϵ, k) > 0. In particular,

for 3-SAT the base constant of the exponent becomes 2(
ϵ

1−ϵ
+2 ln (2−2ϵ)−1+o(1)) for ϵ < 1

2

comparing to 22 ln 2−1+o(1) without advice, and when ϵ ≥ 1/2, the running time becomes

sub-exponential. We also provide a hardness result for 3-SAT with subset advice under

ETH (Section 2.2.3).
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In Section 2.3, we study the optimization problem of MAX-SAT and its variants MAX-

k-SAT, aiming to improve the approximation factors of polynomial-time algorithms. With

subset advice (Section 2.3.1), we show that any α-approximation algorithm for a variant of

MAX-SAT can be turned into an approximation of α+(1−α)ϵ by incorporating the subset

advice in a black-box fashion. To complement this result, we establish hardness of approx-

imation for MAX-3-SAT with subset advice, assuming Gap-ETH (Section 2.3.2). With

label advice, we focus specifically on the MAX-2-SAT problem (Section 2.3.3), extending

the quadratic programming approach for MAX-2-LIN from (Ghoshal et al., 2025) to ob-

tain a near-optimal approximation for instances whose average degree exceeds a threshold

depending only on the amount of advice.

Comparison to prior work. Under the subset and label advice models, the recent

works of (Ghoshal et al., 2025) and (Cohen-Addad et al., 2024) both study closely related

problems: MAX-CUT, MAX-k-LIN, and MAX-2-CSP. In particular, (Ghoshal et al., 2025)

studies MAX-k-LIN for k = 2, 3, 4, which includes MAX-CUT as a special case. For

their positive results, they design algorithms in the weaker label advice model and give

near-optimal solutions to MAX-2-LIN, under the assumption that the instance has large

average degree. For their negative results, they show conditional hardness for MAX-3-LIN

and MAX-4-LIN in the stronger subset advice model. The work of (Cohen-Addad et al.,

2024) provides positive results in both advice models. With label advice, they achieve an

αGW +Ω(ϵ4) approximation for MAX-CUT and MAX-2-CSP based on a notion of “wide”

and “narrow” graphs and their respective properties. Notably, their label advice model
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assumes only pairwise independence, whereas both ours and (Ghoshal et al., 2025) assume

mutual independence. With subset advice, they achieve αGW + Ω(ϵ2) and αRT + Ω(ϵ)

approximations for MAX-CUT1. Both of these works study the optimization problem, but

not the decision problem.

2.1.3 Related Work

Learning-augmented algorithms. The idea of using additional information, such as a

prediction about the future or a suggestion about the solution, to improve an algorithm’s

performance originated in the field of online algorithms (Devanur and Hayes, 2009; Vee et

al., 2010). The formal framework was introduced by Lykouris and Vassilvitskii (Lykouris

and Vassilvitskii, 2021), who defined the key notions of consistency and robustness for

evaluating algorithm performance. Consistency refers to improved performance when the

predictions are accurate, while robustness ensures that the algorithm performs comparably

to a standard, prediction-free algorithm even when the predictions are unreliable. Numer-

ous algorithmic problems have been studied in this framework, including caching, paging,

the ski rental problem, online bipartite matching, scheduling, load balancing, and online

facility location (Purohit et al., 2018; Mitzenmacher, 2020; Lattanzi et al., 2020; Rohatgi,

2020; Wei and Zhang, 2020; Lykouris and Vassilvitskii, 2021; Antoniadis et al., 2023).

For broader context, see the survey (Mitzenmacher and Vassilvitskii, 2022) and the online

database of papers in the field (Lindermayr and Megow, 2025).

1αGW = 0.878 (Goemans and Williamson, 1994), αRT = 0.858 (Raghavendra and Tan, 2012).
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SAT. Improvements over exhaustive search in the worst case were achieved by a family

of deterministic algorithms based on branching (Monien and Speckenmeyer, 1985; Schier-

meyer, 1993; Rodošek, 1996; Kullmann, 1999). Another family of algorithms is based on

local search, initiated by the randomized algorithm of (Schoning, 1999), and later improved

(and in some cases derandomized) by subsequent works (Hofmeister et al., 2002; Baumer

and Schuler, 2003; Iwama and Tamaki, 2004; Moser and Scheder, 2011; Liu, 2018). A

third family of randomized algorithms is based on random restrictions, initiated by Paturi,

Pudlak and Zane (Paturi et al., 1997) and Paturi, Pudlák, Saks, and Zane (Paturi et al.,

2005), known as the PPZ and PPSZ algorithms. (Hertli, 2014a; Hertli, 2014b) improved

the analysis of PPSZ, which was later simplified by (Scheder and Steinberger, 2017) and

slightly improved by (Qin and Watanabe, 2020). A variant of PPSZ, named biased PPSZ,

was introduced by Hansen, Kaplan, Zamir, and Zwick (Hansen et al., 2019), and an im-

proved analysis of PPSZ by (Scheder, 2024) currently represents the state of the art, with

1.307n for 3-SAT.

MAX-SAT. (Goemans and Williamson, 1994) achieved a significant breakthrough by in-

troducing a semidefinite programming (SDP) relaxation combined with randomized round-

ing, resulting in a 0.878-approximation algorithm for MAX-2-SAT. Building upon this,

(Feige and Goemans, 1995) improved the approximation ratio to 0.931 by applying a ro-

tation method prior to randomized rounding. (Zwick, 2000) further refined the analysis of

these algorithms. Subsequently, (Matuura and Matsui, 2001) improved the approximation

ratio to 0.935 by employing a skewed distribution during the rounding phase. Finally,
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Lewin, Livnat, and Zwick (Lewin et al., 2002) combined these techniques (SDP relax-

ation, rotation, and skewed distribution rounding) to develop an algorithm achieving a

0.940-approximation for MAX-2-SAT. Under the Unique Games Conjecture (UGC), this

0.940-approximation is proven to be optimal, indicating that no polynomial-time algorithm

can achieve a better approximation ratio for MAX-2-SAT unless the UGC is false (Brak-

ensiek et al., 2024; Austrin, 2007). Assuming only that P ̸= NP, the best achievable

approximation ratio is approximately 0.954, as established by (Hastad, 2001).

A semidefinite programming relaxation technique was also applied to MAX-3-SAT,

where (Karloff and Zwick, 1997) achieved a 7/8-approximation algorithm1. For the case

where each clause contains exactly three literals (MAX-Ek-SAT), (Johnson, 1973) showed

that a simple random assignment achieves a 7/8-approximation as well. (Hastad, 2001)

later proved that this is optimal, showing that no polynomial-time algorithm can achieve

a better approximation ratio unless P = NP. For the general MAX-SAT problem, the

current best-known approximation factor is 0.796, obtained by Avidor, Berkovitch, and

Zwick (Avidor et al., 2005).

2.2 Improvements on the Running Time of the Decision Problem

In this section, we show how subset advice can improve the running time for k-SAT using

algorithms in the family of “random restriction algorithms” (Paturi et al., 1997; Paturi et

1This guarantee holds for satisfiable instances, and there is strong evidence suggesting the algo-
rithm achieves the same approximation ratio for unsatisfiable instances as well.
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al., 2005; Hansen et al., 2019; Scheder and Steinberger, 2017), initiated by the influential

PPZ algorithm by Paturi, Pudlák, and Saks. We start with the relatively straightforward

PPZ algorithm (Paturi et al., 1997), and then dive into the more involved PPSZ algorithm

(Paturi et al., 2005; Hertli, 2014a). A summary of existing results and our improvements

can be found in Table I.

Original Subset Advice

PPZ

ck = 21−1/k

c3 ≈ 1.587

(Paturi et al., 1997)

c′k ≤ c
(1−ϵ)
k

Theorem 2.2.1

PPSZ

ck = 21−Rk+o(1)

c3 ≈ 1.308

(Paturi et al., 2005)

for ϵ < k−2
k−1 : c′k = ck · 2−ϵk , where ϵ > ϵk > 0

for ϵ ≥ k−2
k−1 : c′k = 2o(1) , sub-exponential time

Theorem 2.2.2

TABLE I: Exact exponential-time algorithms for k-SAT.
All algorithms are of the form O∗(ck)

n, where O∗(·)n hides polynomial factors. Rk and ϵk
are constants depending on k. See Equations (2.1) and (2.2) for details.

We consider the Unique-k-SAT problem (i.e., instances with at most one satisfying

assignment) for simplicity. According to (Hertli, 2014a; Scheder and Steinberger, 2017;

Scheder, 2024), Unique-k-SAT bounds can be lifted to general k-SAT with multiple satis-

fying assignments. In particular, the generalization from (Hertli, 2014a) use the results on
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Unique-k-SAT in a black-box fashion and show that the same bounds hold for k-SAT, there-

fore we analyze the improvements on Unique-k-SAT, and our results apply to k-SAT as

well. (Cf. Theorems 1, 2, 7 (Hertli, 2014a) and Theorem 11 (Scheder and Steinberger,

2017).)

In Algorithm 2.1 (Paturi et al., 1997; Hertli, 2014a), we incorporate the subset advice

into both PPZ and PPSZ: with inputs S = ∅ (i.e. ϵ = 0) and D = 1, Algorithm 2.1

recovers the PPZ algorithm; with inputs S = ∅ (i.e. ϵ = 0) and D = o
(

n
logn

)
, Algorithm

2.1 recovers the PPSZ algorithm. We use the notation ϕ = ϕ|σ to denote reducing a formula

ϕ based on some partial assignment σ, i.e., given ϕ and σ, remove the clauses satisfied by

variables in σ as well as literals set to false by σ.

Algorithm 2.1: PPZ/PPSZ with subset advice (Paturi et al., 1997; Hertli, 2014a)

Input: (i) k-CNF formula ϕ where V is the set of variables in ϕ, (ii) random
subset advice S where each variable is included with probability ϵ, (iii)
implication parameter D, (iv) number of iterations T .

Initialize: Let σ be the empty assignment on V .
1. For each assignment b ∈ {0, 1} for variable xi in S, let σ(xi) = b and ϕ = ϕ|σ.
2. Choose a random permutation π of the remaining variables.

3. For each variable xi in the order of π:

• Enumerate over all sets of D clauses: if the value of xi is forced to be
b ∈ {0, 1} by some of these sets (given previously assigned variables), then set
σ(xi) = b and ϕ = ϕ|σ.
• Else, set σ(xi) = 0 or 1 uniformly at random and ϕ = ϕ|σ.

4. If σ is a satisfying assignment, return σ. Otherwise, repeat steps 2-3 at most T
times. If a satisfying assignment was not found, return “unsatisfiable”.
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2.2.1 PPZ Algorithm for k-SAT With Subset Advice

First, we briefly introduce some analysis of the PPZ algorithm. Although the original

analysis of PPZ (Paturi et al., 1997) applies to general k-SAT, it is more involved, and

we adopt the simplified arguments summarized in (Hansen et al., 2019), which assume a

unique satisfying assignment.

Under the uniqueness assumption, each variable xi has a “critical clause” Cxi , where

the literal associated with xi is the only one set to true in the clause. The assignments of

variables are either “forced” or “guessed”: if a variable xi appears in the permutation π

after all other variables in Cxi , that is, if during the execution of the algorithm there exists

a unit clause involving xi or xi, then xi is forced, and its literal is set to true. Since the

permutation is random, the probability that xi is forced is at least 1/k. If the variable is

not forced, then it is guessed uniformly at random. The running time improves when more

variables are forced.

Denote by G(π) the number of guessed variables given the order of π. If the formula is

satisfiable, we can lower bound the success probability of one iteration of the randomized

algorithm

Pr[All guessed variables are correct] = Eπ

[
2−G(π)

]
≥ 2−Eπ [G(π)],

which follows from Jensen’s inequality. Note that we can analyze the probability of each

variable being guessed individually. We repeat this process for T = O∗ (2Eπ [G(π)]
)
iterations
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to succeed with high probability, ensuring a Monte Carlo algorithm guarantee. Alterna-

tively, we can have a Las Vegas algorithm that is always correct, but its running time

becomes a random variable with expectation T . Thus, without advice, the running time is

shown to be O∗
(
2(1−

1
k )n
)
. In the following Theorem, we show that the running time can

be improved exponentially with subset advice.

Theorem 2.2.1 (PPZ (Paturi et al., 1997) with subset advice). Consider the decision

problem of k-SAT. Given subset advice S where each variable is included independently with

probability ϵ, the running time of the PPZ algorithm O∗(ck)
n can be improved exponentially,

in particular, the base constant becomes c′k = 2

(
1− 1

k
1−ϵk

1−ϵ

)
(1−ϵ)

, comparing to ck = 2(1−
1
k )

without advice.

Proof. We upper bound Eπ [G(π)] by analyzing the probability of a variable being forced

in PPZ with subset advice:

Pπ[xi /∈ S and is forced]

≥ Pπ[xi /∈ S, and all the other variables in Cxi either in S or appear in π before xi]

≥
k−1∑
j=0

(
k − 1

j

)
ϵj(1− ϵ)k−j 1

k − j
(where j variables in this clause appear in S)

=
1

k

k−1∑
j=0

(
k

j

)
ϵj(1− ϵ)k−j

=
1

k

 k∑
j=0

(
k

j

)
ϵj(1− ϵ)k−j −

(
k

k

)
ϵk(1− ϵ)k−k


=

1

k

(
1− ϵk

)
.
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Therefore Eπ[G(π)] = (1−ϵ)n− 1
k

(
1− ϵk

)
n = n(1−ϵ)

(
1− 1

k
1−ϵk

1−ϵ

)
. The base constant

of the running time with subset advice is c′k = 2

(
1− 1

k
1−ϵk

1−ϵ

)
(1−ϵ)

. Comparing to ck = 21−
1
k

of the original PPZ algorithm, we have exponential improvement on the running time

depending on the advice. ■

2.2.2 PPSZ Algorithm for k-SAT With Subset Advice

The PPSZ algorithm improves upon the PPZ algorithm by introducing a preprocessing

step called “D-bounded resolution” (Paturi et al., 2005), which was later relaxed to a

concept called “D-implication” in an adapted version of PPSZ by (Hertli, 2014a), which

we adopt here. The idea is that a variable can be forced even if not all the variables in

the critical clause appeared before it (as analyzed in PPZ). In PPSZ, we force a value for

a variable by enumerating over all sets of D clauses to check whether the variable takes

the same value in all satisfying assignments consistent with these D clauses. If so, the

variable is forced to this value, otherwise, we guess randomly. The probability of a variable

being forced increases compared to PPZ, which leads to a better running time. We take

D = D(n) to be a slowly growing function of n, e.g., D = o
(

n
logn

)
, so that the enumeration

still runs in reasonable time.

First we summarize the analysis of the PPSZ algorithm (Paturi et al., 2005). We choose

the random permutation indirectly. For each variable, we choose a uniformly random

r ∈ [0, 1] representing its “arrival time”, and we determine the order in the permutation by

sorting the arrival times. The reason is that the arrival times are completely independent,
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in contrast to choosing a random permutation directly, where the positions of two variables

are not independent.

By summarizing Lemma 6,7,8 (Paturi et al., 2005), we get

Pπ[xi is forced] ≥
∫ 1

0
Rk(r)dr −∆

(d)
k = Rk −∆

(d)
k , (2.1)

where Rk(r) is the smallest nonnegative solution R to
(
r + (1− r)R

)k−1
= R and Rk :=∫ 1

0 Rk(r)dr. It is shown that Rk(r) is strictly increasing for r ∈
[
0, k−2

k−1

]
, and Rk(r) = 1 for

r ∈
[
k−2
k−1 , 1

]
. The asymptotic error of convergence satisfies 0 ≤ ∆

(d)
k ≤

3
(d−1)(k−2)+2 where d

is the minimum hamming distance between satisfying assignments. Assuming uniqueness,

∆
(d)
k = o(1), and goes to 0 as D goes to infinity.

It is shown that Rk = 1
k−1

∑∞
j=1

1
j(j+ 1

k−1)
for k ≥ 3. Similarly to the PPZ algorithm,

we perform T = O∗ (2Eπ [G(π)]
)
iterations, where here Eπ[G(π)] = n

(
1−Rk +∆

(d)
k

)
. For

k = 3, we can explicitly evaluate R3 = 2− 2 ln 2, and T = O∗ (2(2 ln 2−1+o(1))
)n
.

In Theorem 2.2.2 we show that we can improve the running time for k-SAT with subset

advice, then we state the result explicitly for 3-SAT in Corollary 2.2.3.

Theorem 2.2.2 (PPSZ with subset advice for k-SAT). Consider the decision problem

of k-SAT and suppose without advice the PPSZ algorithm runs in time O∗(ck)
n. Given

subset advice S with 0 < ϵ < k−2
k−1 , we improve the base constant of the running time to

c′k = ck · 2−ϵk , where ϵk = ϵ −
∫ ϵ
0 Rk(r)dr. In particular, ϵ > ϵk > 0. For ϵ ≥ k−2

k−1 , the

running time becomes O∗(2o(n)), i.e. sub-exponential.
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Proof. We follow similar arguments as in the proof of (Paturi et al., 2005) for general k ≥ 3.

For each variable in the permutation, we associate it with a uniformly random r ∈ [0, 1]

which represents its “arrival time” according to π. Following Lemma 6,7,8 (Paturi et al.,

2005),

Pπ[xi /∈ S and is forced] ≥ (1− ϵ)

(∫ 1

0
R̃k(r)dr −∆

(d)
k

)
,

where R̃k(r) is the smallest nonnegative solution R̃ to
[
ϵ+ (1− ϵ)

(
r + (1− r)R̃

)]k−1
= R̃.

Comparing to the equation for R, here each branch in the “critical clause tree” is more

likely to be cut by time r due to the advice: if the variable associated with the branch is

in the subset advice, the branch is cut, otherwise the original recursive expression applies.

Observe that by a change of variable with u = g(r) = ϵ + (1 − ϵ)r, we can replace R̃k(r)

with Rk(u), the the smallest nonnegative solution to R = [u+ (1− u)R]k−1, which has the

same form as in the original PPSZ.
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We evaluate the probability of a variable being forced and the value of Eπ[G(π)],

Pπ[xi /∈ S and is forced] ≥ (1− ϵ)

(∫ 1

0
R̃k(r)dr −∆

(d)
k

)
≥
∫ 1

0
R̃k(r)(1− ϵ)dr −∆

(d)
k

=

∫ g−1(1)

g−1(ϵ)
Rk(g(r))g

′(r)dr −∆
(d)
k

=

∫ 1

ϵ
Rk(u)du−∆

(d)
k

= Rk −∆
(d)
k −

∫ ϵ

0
Rk(r)dr.

Eπ[G(π)] = n

[
(1− ϵ)−

(
Rk −∆

(d)
k −

∫ ϵ

0
Rk(r)dr

)]
= n

(
1−Rk +∆

(d)
k − ϵk

)
, (2.2)

where ϵk = ϵ −
∫ ϵ
0 Rk(r)dr. Since 0 ≤ Rk(r) < 1 for r ∈

[
0, k−2

k−1

]
, for ϵ < k−2

k−1 we have

ϵ > ϵk > 0. Compare to ck = 21−Rk+∆
(d)
k without advice, the improved base constant is

c′k = ck · 2−ϵk .

Notably, in the original PPSZ, variables arrive “late” in the permutation with r ∈

[k−2
k−1 , 1] are forced almost surely. Given subset advice with ϵ > k−2

k−1 , if a variable is not

included in the advice, the probability that it is forced goes to 1. Under the uniqueness

assumption we have ∆
(d)
k = o(1), so Eπ[G(π)] becomes o(n), i.e., a sub-linear number of

variables are guessed, resulting in sub-exponential running time. Refer to (Paturi et al.,
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2005; Hertli, 2014a) for more rigorous analyses on PPSZ as well as discussions in (Hansen

et al., 2019). ■

Corollary 2.2.3 (PPSZ with subset advice for 3-SAT). Consider the decision problem of

3-SAT . Given subset advice S where each variable is included independently with proba-

bility ϵ, the running time of the PPSZ algorithm O∗(ck)
n can be improved exponentially, in

particular, the base constant becomes c3 = 2(
ϵ

1−ϵ
+2 ln (2−2ϵ)−1+o(1)) for ϵ < 1

2 comparing to

c3 = 22 ln 2−1+o(1) without advice, and for ϵ ≥ 1
2 , the running time becomes O∗(2o(n)), i.e.

sub-exponential.

Proof. Recall that Rk(r) is the smallest nonnegative solution R to
(
r+(1−r)R

)k−1
= R.

Now we focus on the case that k = 3 and solve for R3(r),

R3(r) =


(

r
1−r

)2
0 ≤ r ≤ 1

2

1 1
2 ≤ r ≤ 1

.

Then we evaluate ϵ3,

ϵ3 = ϵ−
∫ ϵ

0
R3(r)dr

= ϵ−
(

1

1− ϵ
+ 2 ln (1− ϵ)− 1 + ϵ

)
= − 1

1− ϵ
− 2 ln (1− ϵ) + 1.
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Now we apply Theorem 2.2.2. Recall that without advice R3 = 2 − 2 ln 2 and c3 =

22 ln 2−1+o(1), therefore

c′3 = c3 · 2−ϵ3

= 22 ln 2−1+o(1)−ϵ3

= 2(
ϵ

1−ϵ
+2 ln (2−2ϵ)−1+o(1)).

■

2.2.3 Hardness of 3-SAT With Subset Advice

We state a hardness result for 3-SAT given subset advice assuming the Exponential

Time Hypothesis (ETH) below.

Conjecture 2.2.4 (ETH (Impagliazzo and Paturi, 2001)). There exists δ > 0 such that

no algorithm can solve 3-SAT in O(2δn) time where n is the number of variables.

Theorem 2.2.5 (Hardness of 3-SAT with subset advice). Assuming the ETH, there exists

ϵ0 > 0 such that for all ϵ ≤ ϵ0, there is no sub-exponential time algorithm for 3-SAT given

subset advice where each variable is included with probability ϵ.

Proof. Let ϵ0 < δ, where δ is the constant in the ETH. Suppose there is an algorithm that

runs in sub-exponential time f(n) and solves 3-SAT given subset advice with parameter

ϵ ≤ ϵ0. Fix a subset of size ϵn, we can simulate a subset advice by enumerating all possible
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assignments then run the algorithm, thereby solving 3-SAT in time O(2ϵn ·f(n)) ≤ O(2δn),

contradicting ETH. ■

2.3 Improving the Approximation Factor for the Optimization Problem

In this section we study the optimization problem of MAX-SAT with advice in order to

improve the approximation factors of polynomial time algorithms. First we show that by

incorporating the subset advice in a black-box fashion into any approximation algorithm,

we gain an Ω(ϵ) improvement over the original approximation factor. Then we focus on

MAX-2-SAT with label advice. Inspired by the work of (Ghoshal et al., 2025), we extend

their work on MAX-2-LIN and adapt their techniques to the more general problem of

MAX-2-SAT.

2.3.1 MAX-SAT With Subset Advice

Given a subset advice S, we incorporate it into an approximation algorithm with the

following two-step process, and state the performance guarantee in Theorem 2.3.1.

1. Set the variables in S based on the advice, remove all satisfied clauses and unsatisfied

literals;

2. Run the approximation algorithm of choice on the reduced instance.

Theorem 2.3.1 (MAX-SAT with subset advice). Consider a MAX-SAT instance and

an α-approximation algorithm. Suppose we have subset advice S where each variable is

included independently with probability ϵ, then the approximation ratio can be improved to
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α+ (1− α)ϵ.

In particular, the approximation ratio for MAX-SAT is at least 0.796 + 0.204ϵ based on

α ≥ 0.796 achieved by (Avidor et al., 2005).

Proof. Given a MAX-SAT instance with m clauses on n variables, suppose m∗ ≤ m

clauses are satisfied in an optimal assignment x∗. For any clause that is satisfied in OPT,

we assume (pessimistically) that the clause is satisfied by exactly one of its literals in x∗.

Given subset advice S, where each variable is included independently with probability ϵ,

each literal’s assignment in OPT is revealed with probability ϵ. In particular, the satisfied

literal is revealed with probability ϵ, which reduces this clause. In expectation, step 1

reduces ϵm∗ of the satisfiable clauses. In step 2, (1− ϵ)m∗ of the satisfiable clauses remain,

and an α-approximation algorithm will satisfy at least α(1− ϵ)m∗ of them.

In total, the number of satisfied clauses is at least ϵm∗ + α(1− ϵ)m∗, and the approxi-

mation ratio is α′ = ϵ+ α(1− ϵ) = α+ (1− α)ϵ. ■

Our result for MAX-SAT holds in general for the optimization problem of Boolean

satisfiability, including MAX-2-SAT , MAX-3-SAT , and the performance ratio depends

on the state-of-the-art approximation algorithm for the specific problem, as stated by the

following corollaries.

Corollary 2.3.2 (MAX-2-SAT with subset advice). Given subset advice S where each vari-

able is included independently with probability ϵ, the approximation ratio for MAX-2-SAT is

at least 0.940 + 0.06ϵ based on α ≥ 0.940 achieved by (Lewin et al., 2002).
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Corollary 2.3.3 (MAX-3-SAT with subset advice). Given subset advice S where each vari-

able is included independently with probability ϵ, the approximation ratio for MAX-3-SAT is

at least 7
8 +

1
8ϵ where α ≥ 7

8 for fully satisfiable instances according to (Karloff and Zwick,

1997)1.

Without advice, the corresponding inapproximability bound assuming P ̸= NP is 0.9545

for MAX-2-SAT and 7
8 for MAX-3-SAT (even on fully satisfiable instances) (Hastad, 2001).

Assuming the Unique Games Conjecture, the 0.940 approximation for MAX-2-SAT is op-

timal (Brakensiek et al., 2024).

2.3.2 Hardness of MAX-3-SAT With Subset Advice

We state a hardness result for MAX-3-SAT with subset advice below, assuming the Gap

Exponential Time Hypothesis (Gap-ETH). Alternatively, instead of assuming Gap-ETH,

we could assume the Exponential Time Hypothesis (ETH) together with the Linear-Size

PCP Conjecture (cf. (Dinur, 2016; Manurangsi and Raghavendra, 2016)).

Conjecture 2.3.4 (Gap-ETH (Dinur, 2016; Manurangsi and Raghavendra, 2016)). There

exist constants δ, γ such that given MAX-3-SAT instance ϕ, no O(2δn)-time algorithm can

distinguish between the case that sat(ϕ) = 1 and the case that sat(ϕ) ≤ 1− γ, where sat(ϕ)

denotes the maximum fraction of satisfiable clauses.

1It is conjectured that α ≥ 7
8 holds for arbitrary MAX-3-SAT instances as well.
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Theorem 2.3.5 (Hardness of MAX-3-SAT with subset advice). Assuming the Gap-ETH,

there exists ϵ0 = ϵ0(δ, γ) > 0 such that for all ϵ ≤ ϵ0, there is no sub-exponential time algo-

rithm for MAX-3-SAT given subset advice with parameter ϵ, such that given a satisfiable

instance returns a solution that satisfies at least a (1− γ)-fraction of the clauses.

Proof. Let ϵ0 < δ in the Gap-ETH. Suppose there is an algorithm that runs in sub-

exponential time f(n), and given a fully satisfiable instance of MAX-3-SAT as well as a

subset advice with parameter ϵ ≤ ϵ0, returns a solution satisfying at least a (1−γ)-fraction

of the clauses. Given input ϕ, we fix a subset of size ϵn and simulate a subset advice

by enumerating all possible assignments, then run the algorithm. If ϕ is fully satisfiable,

eventually we will get a solution satisfying at least a (1 − γ)-fraction of the clauses; on

the other hand, if sat(ϕ) < 1 − γ, no solution can satisfy a (1 − γ)-fraction, thereby we

can distinguish between the two cases in time O(2ϵn · f(n)) ≤ O(2δn), contradicting Gap-

ETH. ■

2.3.3 MAX-2-SAT With Label Advice

Given a label advice to an optimization problem, we first evaluate the performance of

directly adopting the advice as a solution. Suppose we are given a label advice x̃ to a

MAX-Ek-SAT problem based on a ground-truth optimal assignment x∗. Consider a clause

C satisfied by x∗. We assume the worst-case where exactly one literal in C is set to true



36

by x∗ to obtain a lower-bound on the probability of C being satisfied by x̃, which gives us

the approximation factor,

αk ≥ Px̃[C is satisfied by x̃ | C is satisfied by x∗] = 1−
(
1− ϵ

2

)(
1 + ϵ

2

)k−1

.

For comparison, let βk denote the approximation factor of a random assignment, where

βk = 1 − 1
2k
. Unlike subset advice, the direct application of label advice does not imme-

diately improve approximation performance. On the one hand, for k = 2, following the

advice improves upon random assignment (α2 > β2), but does not surpass the current

best approximation ratio of 0.94 unless ϵ ≥ 0.872. Moreover, for k ≥ 3, unless ϵ is suffi-

ciently large, following the label advice does not even outperform random assignment. For

example, α3 < β3 unless ϵ ≥ 0.618.

This motivates more refined methods for incorporating label advice, and in this section

we focus exclusively on the MAX-2-SAT problem. We take inspiration from the prior work

of (Ghoshal et al., 2025) on the closely related MAX-CUT and MAX-2-LIN problems, which

can be viewed as special cases of MAX-2-SAT via reduction. We modify the algorithm of

(Ghoshal et al., 2025) and adapt their analysis to achieve similar results for MAX-2-SAT.

Given a MAX-2-SAT formula ϕ with m clauses and n variables, we consider the 2n

literals corresponding to the variables, i.e., pad the variables with xn+1, . . . , x2n, and replace

xi with xn+i in ϕ. Following the convention of (Zwick, 2000) and (Lewin et al., 2002), we

define a vector y ∈ {−1, 1}2n+1 with respect to an assignment on literals x ∈ {0, 1}2n in
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the following way: fix y0 = 1 representing “false”, and for i = 1, . . . , 2n: yi = 1 if xi = 0,

yi = −1 if xi = 1.

Define the adjacency matrix on the 2n literals with an additional row and column of 0

at index 0 to match the dimension of y, i.e., A ∈ R(2n+1)×(2n+1) where

Aij =


1 if (xi ∨ xj) ∈ ϕ,

0 otherwise.

Given y and A as defined above, the number of satisfied clauses equals to the integer

quadratic form formulated by (Goemans and Williamson, 1994):

#SAT(y) =
∑

(i,j)∈ϕ

3− y0yi − y0yj − yiyj
4

=
3

4
m− 1

4

∑
(i,j)∈ϕ

(y0yi + y0yj)−
1

4

∑
(i,j)∈ϕ

yiyj

=
3

4
m− 1

4

∑
i∈[2n]

y0yidi −
1

8
⟨y,Ay⟩ (where di is the degree of literal i)

=
3

4
m− 1

8
f(y),

where f(y) := 2
∑

i∈[2n]
y0yidi + ⟨y,Ay⟩. Note that di’s are constants given ϕ.

In Algorithm 2.2, we modify the objective of the quadratic program from (Ghoshal et

al., 2025) with the quadratic form for MAX-2-SAT and the result is stated in Theorem
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2.3.6. The proof follows the analysis of (Ghoshal et al., 2025), and we include our modified

proof for completeness.

Algorithm 2.2: MAX-2-SAT with label advice (Ghoshal et al., 2025)

1: Input: (i) Adjacency matrix A ∈ R(2n+1)×(2n+1), (ii) advice vector ỹ ∈ {−1, 1}2n+1

based on the advice x̃ ∈ {0, 1}n.
2: Output: Solution x̂ ∈ {0, 1}n.
3: Solve the quadratic program:

min F (y, ỹ) = 2
∑
i∈[2n]

y0yidi + ⟨y,Aỹ/ϵ⟩+ ∥A(y − ỹ/ϵ)∥1

subject to: y0 = 1, yi ∈ [−1, 1], yi = −yi+n.

4: Round the real-valued solution y coordinate-by-coordinate to integer-valued solution
ŷ ∈ {−1, 1}2n+1 such that f(ŷ) ≤ f(y).

5: Return x̂ where x̂i = − ŷi−1
2 for i = 1, . . . , n.

Theorem 2.3.6 (MAX-2-SAT with label advice). For an unweighted MAX-2-SAT instance,

suppose we are given label advice x̃ with correct probability 1+ϵ
2 and the instance has aver-

age degree ∆ ≥ Ω
(
1
ϵ2

)
, then Algorithm 2.2 finds solution x̂ in polynomial time such that

at least OPT ·
(
1−O

(
1

ϵ
√
∆

))
clauses are satisfied in expectation over the randomness of

the advice.
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Proof. The proof follows from a chain of inequalities in expectation over the randomness

the advice.

1. f(ŷ) ≤ f(y), where y is the QP solution, and ŷ is the rounding of y. This follows

from the same argument as in (Ghoshal et al., 2025).

2. f(y) ≤ F (y, ỹ), where F (y, ỹ) is the minimum value of the QP attained at solution

y. This step follows from Lemma 2.3.7, which is an extension of Claim 3.2 from

(Ghoshal et al., 2025).

3. F (y, ỹ) ≤ F (y∗, ỹ), where y∗ is the vector corresponding to the ground-truth optimal

solution x∗. This step directly follows from the optimality of the QP solution y, and

the fact that y∗ is feasible to the QP.

4. F (y∗, ỹ) ≤ f(y∗) + m · O( 1
ϵ
√
∆
). This step follows from Lemma 2.3.8, which is an

extension of Lemma 3.3 from (Ghoshal et al., 2025).

Putting these together, and we may assume OPT ≥ 3
4m,

f(ŷ) ≤ f(y∗) +m ·O
(

1

ϵ
√
∆

)
,

#SAT(ŷ) =
3

4
m− 1

8
f(ŷ)

≥ 3

4
m− 1

8
f(y∗)−m ·O

(
1

ϵ
√
∆

)
≥ OPT−OPT ·O

(
1

ϵ
√
∆

)
≥ OPT ·

(
1−O

(
1

ϵ
√
∆

))
. ■



40

Lemma 2.3.7. For y ∈ [−1, 1]2n+1, f(y) ≤ F (y, ỹ).

Proof. This Lemma is a modified version of Claim 3.2 (Ghoshal et al., 2025), we include

a full proof for completeness.

f(y) = 2
∑
i∈[2n]

y0yidi + ⟨y,Ay⟩

= 2
∑
i∈[2n]

y0yidi + ⟨y,Aỹ/ϵ⟩+ ⟨y,A(y − ỹ/ϵ)⟩

≤ 2
∑
i∈[2n]

y0yidi + ⟨y,Aỹ/ϵ⟩+ ∥y∥∞ · ∥A(y − ỹ/ϵ)∥1

= 2
∑
i∈[2n]

y0yidi + ⟨y,Aỹ/ϵ⟩+ ∥A(y − ỹ/ϵ)∥1

= F (y, ỹ),

where the inequality follows from Hölder’s inequality. ■

Lemma 2.3.8. Eỹ[F (y∗, ỹ)] ≤ f(y∗) + 2
ϵ

√
mn.

Note that 2
ϵ

√
mn = m ·O( 1

ϵ
√
∆
), following the definition of ∆ = m

n .

Proof. Let z = y∗ − ỹ/ϵ. First we calculate the mean and variance of ỹi and zi.

E[ỹi] =
1 + ϵ

2
y∗i +

1− ϵ

2
(−y∗i ) = ϵy∗i ,

E[zi] = 0,

E
[
z2i
]
=

1 + ϵ

2
(y∗i − y∗i /ϵ)

2 +
1− ϵ

2
(y∗i + y∗i /ϵ)

2 =
1− ϵ2

ϵ2
.
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Consider

Eỹ[F (y∗, ỹ)] = 2
∑
i∈[2n]

y∗0y
∗
i di + Eỹ[⟨y∗, Aỹ/ϵ⟩] + Eỹ[∥Az∥1]

= 2
∑
i∈[2n]

y∗0y
∗
i di + ⟨y∗, AEỹ[ỹ/ϵ]⟩+ Eỹ[∥Az∥1]

= 2
∑
i∈[2n]

y∗0y
∗
i di + ⟨y∗, Ay∗⟩+ Eỹ[∥Az∥1]

= f(y∗) + Eỹ[∥Az∥1]

According to the proof of Lemma 3.3 (Ghoshal et al., 2025), the expectation term

Eỹ[∥Az∥1] ≤
√
2n Eỹ[∥Az∥2]

≤
√
2n
√
E
[
z2i
]
· ∥A∥2F

≤
√
2n

√
1− ϵ2

ϵ2
∥A∥F

≤ 2

ϵ

√
mn,

since ∥A∥2F = 2m. ■

We formally define the MAX-2-LIN problem and show a folklore reduction to MAX-2-

SAT.

Definition 2.3.9 (MAX-2-LIN). In the (unweighted) MAX-2-LIN problem, we are given

a set of binary variables {zi}ni=1 ∈ {±1}n and m constraints of the form zi · zj = cij where



42

cij ∈ {±1}. The goal is to find an assignment ẑ ∈ {±1}n that maximize the total number

of satisfied constraints.

Given a MAX-2-LIN instance on n variables and m constraints, we can reduce it to

MAX-2-SAT on n variables and M = 2m clauses in the following way:

• For MAX-2-LIN constraint zi · zj = +1:

add 2 clauses in MAX-2-SAT: (xi ∨ xj) ∧ (xi ∨ xj);

• For MAX-2-LIN constraint zi · zj = −1:

add 2 clauses in MAX-2-SAT: (xi ∨ xj) ∧ (xi ∨ xj).

This reduction preserves approximation as stated in Proposition 2.3.10 below, and given

label advice, our Theorem 2.3.6 is a generalization of Theorem 1.4 from (Ghoshal et al.,

2025).

Proposition 2.3.10. Under the reduction above, a (1−O(δ))-approximation to MAX-2-SAT

corresponds to a (1−O(δ))-approximation to MAX-2-LIN.

Proof. Given a solution x to the MAX-2-SAT problem, we can translate it to a solution

z to the MAX-2-LIN problem by setting zi = 1 if xi = 1, and zi = −1 if xi = 0.

Notice that in the reduction, for each of the constraint and its 2 corresponding clauses,

the constraint is satisfied if and only if both clauses are true, and the constraint is not

satisfied if and only if exactly one of the clauses is true. Therefore, #LIN = #SAT −m.

Denote the value of an optimal solution to MAX-2-LIN as m∗, and the value of an optimal
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solution to MAX-2-SAT as M∗, and notice that m∗ = M∗−m. Given an assignment x that

satisfies (1−O(δ)) ·M∗ clauses in MAX-2-SAT , the number of constraints in MAX-2-LIN

satisfied by corresponding z is

#LIN = #SAT−m

= (1−O(δ)) ·M∗ −m

= (1−O(δ)) · (m∗ +m)−m

= (1−O(δ)) ·m∗ −O(δ) ·m

= (1−O(δ)) ·m∗, since we may assume m∗ = Θ(m).

Given label advice, our Theorem 2.3.6 is a generalization of Theorem 1.4 from (Ghoshal

et al., 2025). By mapping {−1, 1} to {0, 1}, an advice to the MAX-2-LIN instance can

be translated as an advice to the MAX-2-SAT instance with the same ϵ. Furthermore,

the degree of the MAX-2-LIN instance is ∆ = 2m
n which is equal to the degree of the

MAX-2-SAT instance M
n , so the same average degree assumption applies to both problems

as well. Therefore we recover the solution to MAX-2-LIN and generalize the previous

results from the “symmetric” constraint satisfaction problems to “non-symmetric” SAT

problems. ■
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2.4 Discussion

In this work, we showed how subset advice can be incorporated to improve the run-

ning time of algorithms for k-SAT that currently achieve the best known performance in

worst-case analysis. For the optimization problem MAX-SAT and its variants, we incorpo-

rated subset advice into any algorithm and showed that the approximation factor improves

linearly with the advice parameter. We also proved that, assuming ETH and Gap-ETH,

these are the best possible results for 3-SAT and MAX-3-SAT. Using label advice, we ob-

tained near-optimal results for MAX-2-SAT instances where the average degree exceeds a

threshold depending only on the amount of advice. This generalizes previous results for

MAX-CUT and MAX-2-LIN. Open questions regarding the label advice include designing

algorithms for k-SAT, as well as incorporating label advice into SDP-based methods to

solve more general problems of MAX-k-SAT. An interesting direction for future work is to

explore and compare different advice models, such as proving a formal separation between

the label and subset advice models as it is plausible that the label advice model constitutes

a weaker model. We would also like to explore a variation on the label advice model, where

we are allowed to make a few queries to an oracle with non-persistent noise.
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CHAPTER 3

NON-CENTER-BASED CLUSTERING UNDER BILU-LINIAL

STABILITY

This chapter was previously published as Non-Center-Based Clustering Under Bilu-

Linial Stability by Xing Gao and Lev Reyzin (Gao and Reyzin, 2025).

3.1 Introduction

In this paper, we give the first results on minimizing sum-of-diameters (MSD)

and also minimizing sum-of-radii (MSR) clustering under a stability assumption first

introduced by Bilu and Linial (Bilu and Linial, 2012) that is motivated by the observation

that many real-world NP-hard problems can be solved efficiently in practice. Informally,

Bilu-Linial stability assumes the optimal solution for a problem of interest does not

change under small perturbation of the input.

In particular, we give structural properties that show that single-linkage and complete-

linkage algorithms give exact solutions to 2-stable sum-of-diameters (MSD) instances, and

we show that instances that are strictly less than 2-stable are NP-hard under randomized

reductions. For the closely related problem of sum-of-radii clustering (MSR), we also

present some structural properties that allow the single-linkage algorithm to solve 2-stable

instances and the complete-linkage algorithm to solve 3-stable instances.

45
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Many problems have been studied under Bilu-Linial stability, including MAX-CUT (Bilu

and Linial, 2012; Makarychev et al., 2014), max independent set (Angelidakis et al., 2018),

and center-based clustering such as k-means, k-median (Awasthi et al., 2012; Balcan and

Liang, 2016; Angelidakis et al., 2017), k-center (Balcan et al., 2020) and min-sum (Ben-

David and Reyzin, 2014). Other metric based problems include the traveling salesman

problem (Mihalák et al., 2011) and the Steiner tree problem (Freitag et al., 2021). These

works are also closely related to robust algorithms (Makarychev et al., 2014) and certified

algorithms (Makarychev and Makarychev, 2020), as well as to an interesting connection

between stability and independent systems/matroids (Chatziafratis et al., 2017). Despite

extensive research on center-based clustering, the MSD and MSR problems, which possess

distinct, non-center-based structures, have yet to be analyzed under Bilu-Lineal stability.

The MSD and MSR problems are closely related and an exact solution to one is a

2-approximation to the other. Under a general metric, MSD and MSR are both known

to be NP-hard (Doddi et al., 2000; Gibson et al., 2010). There are various approximation

algorithms for these problems (see e.g. (Charikar and Panigrahy, 2001)), as well as exact

algorithms studied under different metrics (Behsaz and Salavatipour, 2015; Hansen and

Jaumard, 1987; Capoyleas et al., 1991; Gibson et al., 2012).

3.2 Preliminaries

Given a clustering instance (P, d) where P is a set of n points and d(·, ·) is a metric

on P , we study the problem of dividing the points into k clusters {C1, . . . , Ck} under a
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non-center-based objective, namely the MSD objective, where the goal is to minimize the

sum of diameters of all the clusters. The diameter of a cluster C is

ρ(C) := max
(x,y)∈C

d(x, y).

A closely related objective that minimizes the sum of radii is known as MSR, and the

radius is

r(C) := min
c∈C

max
p∈C

d(c, p).

Notice that a solution to MSR is a 2-approximation to MSD and vice versa, because for

each cluster we have r ≤ ρ ≤ 2r, and

i=k∑
i=1

r∗i ≤
j=k∑
j=1

ρj ,

i=k∑
i=1

ρ∗i ≤
j=k∑
j=1

2rj ,

where r∗i , ρ
∗
i correspond to the radii and diameters of the optimal MSR or MSD solution,

and rj , ρj correspond to any feasible solution.

We use dist(C1, C2) to represent the distance between two clusters, which is the distance

between the closest pair of points from each cluster, i.e.,

dist(C1, C2) := min
a∈C1,b∈C2

d(a, b).

We denote the optimal clustering as OPT := {C∗
1 , . . . , C

∗
k} and its value as cost(OPT).
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We focus on the MSD problem under the notion of stability first introduced by Bilu

and Linial (Bilu and Linial, 2012), which is usually referred to as “perturbation resilience”

in the context of clustering (Awasthi et al., 2012).

Definition 3.2.1 (γ-Perturbation). Given a clustering instance (P, d), we say a function

d′ : P × P → [0,∞) is a γ-perturbation of (P, d) if ∀x, y ∈ P , we have d(x, y) ≤ d′(x, y) ≤

γ · d(x, y). Note that d′ may not be a metric.

Definition 3.2.2 (Perturbation Resilience). For γ > 1, we say a clustering instance

(P, d) is γ-perturbation-resilient if for any γ-perturbation d′, the unique optimal clustering

{C∗
1 , . . . , C

∗
k} of (P, d) stays the same under d′, i.e., OPT = OPT′ where OPT′ is the

optimal solution of the perturbed instance.

3.3 Algorithm for MSD Under Stability

In this section we first present some properties of MSD under stability assumptions, then

we use these properties to show that the single-linkage and complete-linkage algorithms

combined with dynamic programming finds the optimal clustering of 2-stable instances.
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3.3.1 Properties Following Stability

C1 ρ1

yx

a

C2ρ2

z

Figure 1: Properties of stable MSD instances.

Lemma 3.3.1 (MSD properties from stability). Given a γ-stable MSD clustering instance,

suppose C1 and C2 are clusters in OPT with diameters ρ1 and ρ2 respectively, then we have

the following:

1. ∀z /∈ C1,∃a ∈ C1 s.t. d(a, z) > γ · ρ1.

2. ∀x, y ∈ C1, ∀z /∈ C1, (γ − 1) · d(x, y) < d(y, z).

In particular, if γ ≥ 2, d(x, y) < d(y, z).

3. (γ − 1) · ρ1 < dist(C1, C2).

In particular, if γ ≥ 2, ρ1 < dist(C1, C2).
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Proof.

1. Suppose not, then under the perturbation where all pair-wise distances in C1 are

perturbed by γ, z can be moved to C1 in OPT′ without increasing the cost so that

OPT′ ̸= OPT, contradicting the stability assumption.

2. Suppose ∃x, y ∈ C1 and z ∈ C2 s.t. (γ − 1) · d(x, y) ≥ d(y, z), which means d(y, z) ≤

(γ−1) ·ρ1. ∀a ∈ C1, we have d(a, y) ≤ ρ1, therefore d(a, z) ≤ d(a, y)+d(y, z) ≤ γ ·ρ1,

contradicting property 1.

3. Suppose not, then ∃y ∈ C1 and z ∈ C2 s.t. d(y, z) ≤ (γ − 1) · ρ1. Again, ∀a ∈ C1

we have d(a, y) ≤ ρ1, therefore d(a, z) ≤ d(a, y) + d(y, z) ≤ γ · ρ1, contradicting

property 1. ■

3.3.2 Algorithms for 2-Stable MSD Instances

Algorithm 3.1: Single-linkage for MSD (Johnson, 1967)

1: C = {{p} | p ∈ P}, start with all singletons;

2: while |C| > k do

3: Merge argmin
Ci,Cj

dist(Ci, Cj);

4: end while

Algorithm 3.2: Complete-linkage for MSD (Johnson, 1967)

1: C = {{p} | p ∈ P}, start with all singletons;

2: while |C| > k do

3: Merge argmin
Ci,Cj

ρ(Ci ∪ Cj);

4: end while
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The single-linkage and complete-linkage algorithms (Johnson, 1967) are popular heuris-

tics for clustering, and they both belong to the family of agglomerative hierarchical clus-

tering algorithms (Schütze et al., 2008). In this section we show that for stable MSD

instances with γ ≥ 2, these simple heuristics produce a tree structure (a.k.a. dendrogram)

where the optimal clustering is a pruning of the tree, and we terminate when there are

k clusters remaining. In contrast, for stable instances of center-based-clustering such as

k-means and k-median, the cost of a cluster depends on the number of points in it as well

as their distances, so the algorithm needs to run until only one cluster remains, then the

optimal k clusters can be found by dynamic programming (Cf. (Angelidakis et al., 2017)

Section 4.2 and (Awasthi et al., 2012) Section 2.3.)

Theorem 3.3.2 (Algorithms for MSD). The single-linkage algorithm (Algorithm 3.1) and

complete-linkage algorithm (Algorithm 3.2) give exact solutions to MSD instances assuming

stability γ ≥ 2.

C∗
1

A

B
C∗

2

A′

Figure 2: Merge clusters during Algorithm 3.1 and 3.2.
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Proof. We show by induction that in both algorithms the clusters after each merge are

laminar to OPT, i.e., inside each remaining cluster, all points belong to the same cluster in

OPT. This technique is inspired by the analysis in (Balcan and Liang, 2016) for k-median

clustering instances.

Base case: singleton clusters are laminar to OPT.

Induction step of merging: consider the clusters formed during the algorithm and a

merge step (see Figure 2). Suppose A ⊂ C∗
1 where ρ(C∗

1 ) = ρ∗1, we know that ∃B ⊂

C∗
1 \A s.t. dist(A,B) ≤ ρ(A∪B) ≤ ρ∗1. Let A

′ ̸⊂ C∗
1 , by the induction hypothesis A′ is fully

contained in some cluster in OPT so without loss of generality we may assume A′ ⊂ C∗
2 , and

ρ(A∪A′) ≥ dist(A,A′) ≥ dist(C∗
1 , C

∗
2 ) > ρ∗1 (by property 3). This means for single-linkage

we have dist(A,B) < dist(A,A′), and for complete-linkage we have ρ(A ∪B) < ρ(A ∪A′),

therefore the argmin pair of clusters chosen by the algorithms must belong to the same

cluster in OPT, and all the clusters remain laminar to OPT after the merge. ■

3.4 A Matching Lower Bound for MSD

3.4.1 Non-Approximability of MSD Clustering

The following theorem from (Doddi et al., 2000) states the non-approximability result

for the MSD problem without any stability assumptions. We restate the theorem and the

reduction setup here, and we will use the same reduction to show the NP-hardness result

for MSD instances with 2− ϵ stability.
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Theorem 3.4.1 (Prop. 2 (Doddi et al., 2000)). Unless P = NP, for any ϵ > 0, no

polynomial time algorithm for the problem can provide a solution which satisfies the bound

on the number of clusters and whose total diameter is within a factor 2− ϵ of the optimal

value.

The result was shown using reduction from the clique problem. Given a clique problem

to determine whether there exists a clique of size J in the graph G = (V,E), we can reduce

it to a MSD problem using the 2-1-metric: set P = V , and d(u, v) = 1 if (u, v) ∈ E,

otherwise d(u, v) = 2. The number of clusters is set to k = n + 1 − J . If there exists a

clique of size J , cost(OPTMSD) = 1 consisting of 1 cluster of diameter 1 containing all the

vertices in the clique, and n−J singleton clusters with diameter 0 for each of the remaining

vertex; otherwise cost(OPTMSD) ≥ 2.

3.4.2 Hardness Under Stability Assumptions

In this section, we provide a matching lower-bound of 2− ϵ on the stability parameter.

The result is formally stated in Theorem 3.4.2.

Theorem 3.4.2. Unless P = NP = RP, no polynomial time algorithm can solve a (2− ϵ)-

stable instance of the sum-of-diameters clustering problem for any ϵ > 0.

Notice that the reduction used in Theorem 3.4.1 produces a (2 − ϵ)-stable clustering

instance if there exists a unique clique of size J in the clique problem. In other words,

solving (2 − ϵ)-stable MSD instances is at least as hard as the Clique Promise Problem,

which is a variation on the Clique problem where it is promised that there exists a unique



54

optimal solution. We show the hardness of the Clique Promise Problem in Theorem 3.4.3,

and then Theorem 3.4.2 follows.

Theorem 3.4.3 (Clique Promise Problem). The Clique Promise Problem (CPP), where

the instance is promised to have a unique largest clique, is NP-hard under randomized

reduction.

Theorem 3.4.3 follows by combining two existing results. Lemma 3.4.5 states that SAT

is parsimoniously reducible to the Clique problem, so we can apply Lemma 3.4.4 and choose

A to be the Clique problem, which proves Theorem 3.4.3.

Lemma 3.4.4 (USAT Corollary 3.4 (Valiant and Vazirani, 1985)). Let A be any NP-

complete problem to which satisifability is parsimoniously reducible. The following “promise

problem” is NP-hard under randomized reduction:

Input: an instance x of A; Output: a solution to x; Promise: #A(x) = 1.

Lemma 3.4.5 (#Clique is #P-complete (Fortnow and Gasarch, 2023)). There is a parsi-

monious reduction from SAT to Clique.

Here we include a modified version of the proof from (Fortnow and Gasarch, 2023) for

completeness.

Proof. Step 1: #SAT ≤p #3SAT.

Consider a SAT instance f , we will reduce it to a 3SAT formula f ′ where there is a one-to-
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one correspondence between any satisfiable assignment to f and f ′. First introduce new

variables a, b, c and new clauses

(a ∨ b ∨ c) ⇐⇒ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c)

∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ∧ (a ∨ b ∨ c) ,

so that f ′ is satisfiable if and only if a, b, c are all set to 0.

1. For clauses with 1 literal x1, replace it with (x1 ∨ a ∨ b) ⇐⇒ x1 ;

2. For clauses with 2 literals x1, x2, replace it with (x1 ∨ x2 ∨ a) ⇐⇒ (x1 ∨ x2) ;

3. For clauses with 3 literals, do nothing;

4. For clauses with ≥ 4 literals (x1 ∨ x2 ∨ y), where y is a disjunction of ≥ 2 literals,

repeatedly reduce the number of literals by one by replacing the clause with

C = (x1 ∨ x2 ∨ w) ∧ (x1 ∨ x2 ∨ w)

∧ (x1 ∨ x2 ∨ w) ∧ (x1 ∨ x2 ∨ w) ∧ (w ∨ y) .

Consider any satisfiable assignment to f ,

• if x1 ∨ x2, i.e. x1 = 0, x2 = 0, y = 1, and C ⇐⇒ w ∧ (w ∨ y), so w = 1 in any

satisfiable assignment to f ′ ;

• if x1 ∨ x2, C ⇐⇒ w ∧ (w ∨ y), so w = 0 in any satisfiable assignment to f ′ .
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Step 2: #3SAT ≤p #Clique.

Consider #3 SAT instance f = C1 ∧ . . . ∧ Ck. Construct a graph G:

• Vertices: for each clause Ci introduce 7 vertices corresponding to the 7 assignments

that satisfy C ;

• Edges: an edge exists between 2 vertices if and only if the assignments represented

by the vertices do not contradict each other. In particular, there are no edges among

vertices from the same clause.

There is a one-to-one correspondence between a satisfiable assignment to f and a clique of

size k in G. ■

It remains an open question to prove a similar lower bound for the MSR objective.

3.5 Algorithm for MSR Under Stability

In this section we show that the MSR objective is also polynomial-time solvable at 2-

stability or higher. We begin with showing some properties of MSR following from stability

assumptions.
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3.5.1 Properties Following Stability

c1
B1 r1

p1

c2
B2r2

p2

Figure 3: Properties of stable MSR instances.

Lemma 3.5.1 (MSR properties from stability). Given a γ-stable MSR clustering instance,

suppose B1 and B2 are clusters in OPT centered at c1, c2 with radii r1 and r2 respectively,

then we have the following:

1. ∀p2 /∈ B1, d(c1, p2) > γ · r1.

2. d(c1, c2) >
γ
2 (r1 + r2).

In particular, if γ > 2, d(c1, c2) > r1 + r2, i.e., clusters are separated.

3. If γ ≥ 2, each point belongs to its closest center, i.e., ∀p1 ∈ B1, d(p1, c1) <

d(p1, c2) ∀c2 that is a center of another cluster.
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4. (γ − 1) · r1 < dist(B1, B2).

(γ − 1) · d(p1, c1) < d(p1, p2) ∀p1 ∈ B1, p2 ∈ B2.

In particular, if γ ≥ 2, r1 < dist(B1, B2) and d(p1, c1) < d(p1, p2).

If γ ≥ 3, ρ(B1) ≤ 2r1 < dist(B1, B2) ≤ ρ(B1 ∪B2).

5. Notably we don’t have “center proximity”, a property implied by perturbation re-

silience used in (Awasthi et al., 2012) instead of perturbation resilience, i.e., it’s

possible that γ · d(p1, c1) > d(p1, c2).

Proof.

1. Suppose not, and consider the perturbation where ∀p1 ∈ B1, d(c1, p1) is perturbed by

γ, then we can move p2 to B1 in OPT′ without increasing the cost so that OPT′ ̸=

OPT, contradicting the stability assumption.

2. Following property 1, d(c1, c2) > γ · r1 and d(c1, c2) > γ · r2, combined we have

d(c1, c2) >
γ
2 (r1 + r2).

3. Suppose there exists another cluster’s center c2 s.t. d(p1, c2) ≤ d(p1, c1), then

d(c1, c2) ≤ d(p1, c1) + d(p1, c2) ≤ 2r1 ≤ γ · r1, contradicting property 1.

4. Suppose ∃p1 ∈ B1, p2 ∈ B2 s.t. d(p1, p2) ≤ (γ−1) ·r1, therefore d(c1, p2) ≤ d(c1, p1)+

d(p1, p2) ≤ γ · r1, contradicting property 1.

Suppose ∃p1 ∈ B1, p2 ∈ B2 s.t. d(p1, p2) ≤ (γ − 1) · d(p1, c1) ≤ (γ − 1) · r1, therefore

d(c1, p2) ≤ d(c1, p1) + d(p1, p2) ≤ γ · r1, contradicting property 1.
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ab1

c1
d(a, b2) = 2.1

d(c1, a) = d(c1, b1) = 1

b2

c2

Figure 4: A 3-stable MSR instance without the center proximity property.

5. In Figure 4, we show a counter example where γ ·d(p1, c1) > d(p1, c2) with γ = 3 and

the number of clusters k = 2.

OPT = d(a, c1) + d(b2, c2) = 1 + ϵ. Perturb d(a, c1)→ 3, then OPT→ 3 + ϵ.

Consider an alternative solution OPT′: move a to c2, OPT′ = d(b1, c1) + d(a, c2) =

1+2.1+ ϵ, so the example is 3 stable, but 3 = 3d(a, c1) > d(a, c2) = 2.1+ ϵ, violating

center proximity. ■

3.5.2 Algorithms for Stable MSR Instances

Now we are ready to analyze Algorithms 3.1 and 3.2 for the MSR objective.

Theorem 3.5.2 (Algorithms for MSR). The single-linkage algorithm (Algorithm 3.1) gives

exact solution to MSR if γ ≥ 2 and the complete-linkage algorithm (Algorithm 3.2) gives

exact solution if γ ≥ 3.

Proof. We show that in both algorithms the clusters after each merge are laminar to OPT

by induction.

Single-linkage: Assume γ ≥ 2 and we have r∗1 < dist(C∗
1 , C

∗
2 ) by property 4.

Base case: singleton clusters are laminar to OPT.
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Induction step of merging: suppose A ⊂ C∗
1 , we know ∃B ⊂ C∗

1 \A s.t. dist(A,B) ≤ r∗1

(let either A or B contain the center ci). Let A
′ ̸⊂ C∗

1 , by induction A′ is fully contained in

some cluster in OPT so w.o.l.g. we may assume A′ ⊂ C∗
2 and dist(A,A′) ≥ dist(C∗

1 , C
∗
2 ) >

r∗1. This means dist(A,B) < dist(A,A′), therefore the argmin pair of clusters chosen by

the algorithm must belong to the same cluster in OPT, and all the clusters remain laminar

to OPT after the merge.

Complete-linkage: Assume γ ≥ 3 and we have ρ(C∗
1 ) < dist(C∗

1 , C
∗
2 ) by property 4.

Base case: singleton clusters are laminar to OPT.

Induction step of merging: suppose A ⊂ C∗
1 , we know ∃B ⊂ C∗

1\A s.t. ρ(A∪B) ≤ ρ(C∗
1 ).

Let A′ ̸⊂ C∗
1 , by induction A′ is fully contained in some cluster in OPT so w.o.l.g. we

may assume A′ ⊂ C∗
2 and ρ(A ∪ A′) ≥ dist(A,A′) ≥ dist(C∗

1 , C
∗
2 ) > ρ(C∗

1 ). This means

ρ(A ∪B) < ρ(A ∪A′), therefore the argmin pair of clusters chosen by the algorithm must

belong to the same cluster in OPT, and all the clusters remain laminar to OPT after the

merge. ■
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CHAPTER 4

SEMI-RANDOM NOISY AND ONE-BIT MATRIX COMPLETION

WITH NONCONVEX PRIMAL-DUAL FRAMEWORK

4.1 Introduction

We study the problem of recovering a low-rank matrix X∗ from incomplete and noisy

observations Y , where X∗ has rank at most r and Y is supported on a subset of indices

Ω. Matrix completion has been well-studied under the uniform observation model, where

each entry of X∗ is revealed independently with some fixed probability p, known as the

sampling rate.

However, the standard assumption that the entries are observed uniformly at random

may fail to capture more realistic scenarios in which the observation pattern may exhibit

mild or even adversarial non-uniformity. Take collaborative filtering as an example: ob-

servations might be heavily concentrated on a few blocks of the matrix, as some groups of

users might be more active to provide feedback, or some products are more popular.

In this paper, we focus on a model mis-specification known as the semi-random model

for matrix recovery, introduced by (Cheng and Ge, 2018), where the observation probabili-

ties are unknown (and not uniform in general) but lower-bounded by some p. Alternatively,

the semi-random model can be viewed as a two-stage process: first, each entry is observed
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with probability p (same as in the uniform observation model), then additional entries from

X∗ may be revealed adversarially.

Most existing results on matrix completion under semi-random observations focus on

real-valued or noiseless observations. In practice, however, observations are often noisy,

quantized, or binary, even though the underlying signal is continuous. For example, user

ratings may be restricted to integers between 1 and 5, or in the extreme case, take binary

value like an upvote or downvote on a post. This motivates the need to study more general

and realistic models, such as noisy matrix completion and one-bit matrix completion, which

we formally define below.

Noisy matrix completion. In this setting, each observed entry is subject to additive

i.i.d. noise. Specifically, the observed data matrix takes the form:

∀(j, k) ∈ Ω : Yjk = X∗
jk + Ejk,

where E is a noise matrix in which each entry is i.i.d. sub-exponential1 with E[Ejk] = 0

and Var[Ejk] =
ν2

d1d2
. We consider the least-squares loss function F :

F (X) =
1

2p

∑
(j,k)∈Ω

(Xjk − Yjk)
2. (4.1)

1Throughout the chapter we restrict to sub-exponential random variables whose sub-exponential
norms are on the same order as their standard deviations, which include many classical light-tailed
distributions.



63

One-bit matrix completion. Originally studied by (Davenport et al., 2014), in this

setting observations are quantized to binary values in the following way:

∀(j, k) ∈ Ω : Yjk =


+1, X∗

jk + Ejk ≥ 0

−1, X∗
jk + Ejk < 0

,

where E is a noise matrix in which each entry is i.i.d. with mean E[Ejk] = 0 and Var[Ejk] =

ν2

d1d2
. Equivalently, we may consider the observations as following some discrete probability

distribution parameterized by the original real-valued entries. In this case, let f be the

cumulative distribution function (cdf) of −Ejk, then the observations can be formulated

with a probit (probabilistic unit) model:

∀(j, k) ∈ Ω, Yjk =


+1, with probability f(X∗

jk)

−1, with probability 1− f(X∗
jk)

.

We consider the negative log-likelihood loss function F :

F (X) = − 1

pd1d2

∑
(j,k)∈Ω

[
1(Yjk = 1)·log

(
f(Xjk)

)
+1(Yjk = −1)·log

(
1− f(Xjk)

)]
. (4.2)
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These two settings have been extensively studied under the uniform observation model,

but remain largely unexplored in the semi-random setting 1. Prior techniques (Cheng and

Ge, 2018), which rely on the quadratic structure of the loss, do not apply directly to these

more general settings. The noisy and one-bit models introduce new challenges due to their

non-quadratic losses and non-linear (often discrete) observations. This leads us to the

question we study in this work:

Can we design efficient algorithms for noisy and one-bit matrix completion

with provable recovery guarantees under semi-random observations?

To answer this, we consider the following nonconvex optimization problem with loss

function F (X), where X is replaced with its Burer-Monteiro factorization (Burer and

Monteiro, 2003)

min
U∈C1,V ∈C2

F (UV ⊤), (4.3)

where C1 ⊂ Rd1×r and C2 ⊂ Rd2×r guarantee the rank of the product matrix X = UV ⊤ is

at most r. This factorized formulation is preferred in practice, since it avoids the computa-

tionally expensive SVD step with convex relaxation approaches as discussed in the related

work section.

1The work of (Kelner et al., 2024) also studies semi-random (noisy) matrix completion, but
under a different observation model than the one considered in this paper. See the related work
section for further discussion.
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Following the nonconvex approach, we adopt the primal-dual framework proposed in

(Zhang et al., 2018b), which provides a global landscape analysis via Lagrangian duality.

This framework not only characterizes all stationary points of the nonconvex objective,

but also supports algorithmic extensions to various loss functions applicable to a broad

family of low-rank matrix recovery problems, including the standard least-squares loss for

noiseless matrix completion, its noisy variant, and the log-likelihood loss used in one-bit

matrix completion. However, their analysis relies on the uniform observation model, where

every entry is observed with a fixed probability p, and cannot be directly applied to the

semi-random setting. To address the limitations of standard nonconvex methods under

semi-random inputs, (Cheng and Ge, 2018) establish a connection to spectral graph theory

and design a preprocessing algorithm based on spectral sparsification. This procedure

reweights the observed entries to achieve spectral similarity to the uniform observation

model and provably eliminates spurious local minima in the case of least-squares loss.

In this work, we unify these two threads to establish recovery guarantees for both

noisy and one-bit matrix completion under semi-random model. Specifically, we develop

a weighted version of the regularity conditions required in the primal-dual analysis, spe-

cialized to the spectrally reweighted observations. We subsequently prove that the approx-

imation error induced by preprocessing does not significantly weaken the final recovery

guarantee. This connection allows us to extend the primal-dual paradigm to semi-random

models in both the noisy and one-bit observation regimes, which are beyond the scope of

either prior work.
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4.1.1 Our Contributions

We provide a unified algorithmic framework for a broad class of matrix completion

problems, including the noisy and one-bit settings, in the semi-random observation model.

Specifically, we show the following result:

Theorem 4.1.1 (Informal, see Theorem 4.3.5). Let X∗ ∈ Rd×d be a rank-r, β-incoherent

matrix with largest singular value σ1. Suppose the observation is subject to entry-wise i.i.d.

noise ∥E∥2F ≤ ν2. Assume each entry is observed with probability at least p = poly(r,log d)
d ,

with m observations in total. Let ϵ = O
(√

log d
pd

)
. For a broad class of general loss

functions (including those applicable to noisy and one-bit matrix completion), there exists

an algorithm that runs in time Õ(m · poly(r, log d)) and with high probability outputs a

rank-r factorization UV ⊤ satisfying,

∥UV ⊤ −X∗∥2F ≤ ϵpoly(β, σ1, ν, r, log d).

This result recovers prior guarantees for the quadratic loss and provides a nearly-linear

time solver for semi-random matrix completion under noisy and one-bit settings. We now

outline our main contributions below:

• Spectral similarity-based preprocessing for general losses. We observe that

the spectral sparsification-based reweighting method of (Cheng and Ge, 2018), orig-

inally developed for quadratic loss in the noiseless setting, extends to broader obser-

vation models. In particular, we apply the reweighting where the entries are scaled
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entry-wise to achieve ϵ-spectral similarity to uniform observations and remains com-

patible with general loss functions, including those with noise.

• Primal-dual analysis under semi-random observations. We revisit the primal-

dual framework of (Zhang et al., 2018b), originally analyzed under the uniform ob-

servation model. Our analysis demonstrates that once the regularity conditions are

restored via reweighting, its guarantees remain valid with semi-random inputs.

• Weighted regularity conditions and error guarantees. We establish weighted

versions of the regularity conditions (4.2.2) and the deviation condition (4.2.3) that

are designed for the reweighted observations produced by the preprocessing algorithm

of (Cheng and Ge, 2018). In particular, we show that these weighted conditions

hold with high probability after the preprocessing (Lemma 4.3.3 and Lemma 4.3.4).

Compared to the uniform model, this incurs only a polylogarithmic overhead in

recovery error, sample complexity, and runtime.

• Provable guarantees for noisy and one-bit matrix completion. As concrete

examples, we present results for semi-random noisy matrix completion and for one-

bit matrix completion (Corollary 4.4.1 and Corollary 4.4.2), which to our knowledge

has not previously been studied in the semi-random setting.

4.1.2 Technical Overview

At a high level, our approach combines two previously disjoint components, global

reweighting and primal-dual analysis, into a unified framework for solving matrix com-
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pletion problems under the semi-random observation model. We begin by applying the

preprocessing algorithm of (Cheng and Ge, 2018), which rescales observed entries to pro-

duce a reweighted matrix spectrally similar to uniform observations. This allows us to

recover key structural properties that typically fail under semi-random inputs. We then

incorporate the resulting weights into the loss function to form a weighted objective, and

prove that it satisfies suitable regularity conditions. Finally, we apply the primal-dual

framework of (Zhang et al., 2018b) to solve the resulting constrained nonconvex problem.

The overall algorithm runs in nearly-linear time and applies broadly to noisy, quantized,

and other nonstandard observation models. We elaborate on each component below.

Preprocessing. The primal-dual analysis of (Zhang et al., 2018b) requires the loss

function satisfies the RSC, RSS, and deviation conditions. These conditions are no longer

guaranteed under the semi-random observation model. To restore them, we apply the

preprocessing algorithm of (Cheng and Ge, 2018). The key idea in (Cheng and Ge, 2018)

is to relate matrix indices to edges in a bipartite graph. Given a matrix X ∈ Rd1×d2 , define

the complete bipartite graph G = (V1, V2, E) where |V1| = d1 and |V2| = d2 correspond to

the row and column indices of X. Let H denote the semi-random subgraph of G obtained

by first sampling each edge independently with probability p, followed by the adversarial

addition of edges to reach a total of m. The preprocessing algorithm assigns weights to

the edges of H so that the resulting weighted graph is ϵ-spectrally-similar to the complete

graph G. We represent these weights as a matrix W ∈ Rd1×d2 , where Wij = we supported

on the edges of H. (Cheng and Ge, 2018) provides a nearly-linear time algorithm that
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outputs a weight matrix W which achieves ϵ-spectral-similarity, where ϵ = O
(√

log d
pd

)
.

We include some technical results on the preprocessing algorithm in Section 4.6.1, and

provide additional properties on W to accompany prior results, stated as Lemmas 4.5.1

and 4.5.2.

Primal-dual framework. In the analysis of (Zhang et al., 2018b), the nonconvex ob-

jective is reformulated by stacking U ∈ Rd1×r and V ∈ Rd2×r as Z = [U ;V ] ∈ R(d1+d2)×r

and introducing inequality constraints hi(Z) = ∥Zi∥22 − α for all i ∈ [d1 + d2] to enforce

the incoherence conditions. A regularization term γ
4∥U

⊤U − V ⊤V ∥2F is added to balance

U and V , yielding the objective

min
Z=[U ;V ],

U∈Rd1×r,V ∈Rd2×r

G(Z) = F (UV ⊤) +
γ

4

∥∥∥U⊤U − V ⊤V
∥∥∥2
F
, subject to hi(Z) ≤ 0 ∀ i, (4.4)

where F is a problem-specific loss function.

(Zhang et al., 2018b) analyze the dual objective under the KKT conditions (Karush,

1939; Kuhn and Tucker, 2013), and show that there are no spurious local minima in the

primal objective (4.4) if F satisfies certain regularity conditions. We include the result as

Theorem 4.2.4 in the Preliminaries.

Weighted loss and regularity conditions. Suppose we are given a matrix comple-

tion problem with loss function F , which satisfies the regularity conditions required by

the primal-dual framework under the uniform observation model. Our goal is to solve

this problem in the semi-random model, where each entry is observed with probabil-
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ity at least p. In our unified framework, we begin by applying a preprocessing algo-

rithm to achieve ϵ-spectral similarity. We then incorporate the resulting weight matrix

W into F , yielding a weighted loss function FW . Specifically, we consider the uniform

loss function in the form of F (X) =
∑

j,k∈Ω
1
pFjk(Xjk), and the weighted loss function is

FW (X) =
∑

j,k∈ΩWjkFjk(Xjk). We then establish weighted versions of the RSC, RSS, and

deviation conditions for FW . This enables the application of the primal-dual framework to

solve the optimization problem under the semi-random model. Full details are provided in

Section 4.3.

4.1.3 Related Work

Matrix completion. Matrix completion is a popular type of low-rank matrix recovery

problems with applications in collaborative filtering, image restoration (Rennie and Srebro,

2005; Zhang et al., 2013), etc. The line of work (Candes and Recht, 2008; Candès and Tao,

2010; Recht, 2011) shows that the convex relaxation via nuclear norm minimization can

be solved by SDP in time Õ(md2.5) (Jiang et al., 2020; Huang et al., 2022) with sample

complexity Ω(dr). Using the more efficient nonconvex approach, success has been shown

using gradient descent with good, or sometimes even random, initialization (Keshavan et

al., 2010; Jain et al., 2013; Hardt and Wootters, 2014; Chen and Wainwright, 2015; Zhao

et al., 2015; Sun and Luo, 2016; Zheng and Lafferty, 2016; Gu et al., 2016; Tu et al.,

2016; Wang et al., 2017; Xu et al., 2017; Zhang et al., 2018a; Chen et al., 2020; Gu et al.,

2023; Xu et al., 2023). There are also Lagrangian-based analyses of nonconvex objectives

(Zhang et al., 2018b; Nie et al., 2018). Another direction of nonconvex research (De Sa et
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al., 2015; Ge et al., 2016; Ge et al., 2017; Park et al., 2017; Chen and Li, 2019; Zhu et al.,

2018; Zhu et al., 2021) aim to study the global optimization landscape to show that there

are no spurious local optima. The recent work of (Kelner et al., 2023b) achieves almost

theoretically optimal sample complexity and running time.

One-bit matrix completion. Inspired by one-bit compressive sensing (Boufounos and

Baraniuk, 2008), (Davenport et al., 2014) originally formulated the problem for matrices,

and provided theoretical minimax error bound of O(
√

rd
m ). (Cai and Zhou, 2013), (Eamaz

et al., 2023; Eamaz et al., 2024) study the problem using the convex relaxation approach,

and (Ni and Gu, 2016), (Zhang et al., 2018b) provided nonconvex solutions that match the

minimax statistical error bound up to logarithmic factors and algorithms that converge at

linear rate. (Lan et al., 2014), (Shen et al., 2019) study quantized matrix completion with

corruption, and (Chen et al., 2023) studies estimators for quantized heavy-tailed data.

Non-uniform model. Apart from the well-studied uniform observation model for ma-

trix completion, another direction of research studies weighted matrix completion under

non-uniform observation models, such as deterministic sampling, where the sampling prob-

abilities follow some non-uniform distribution specific to the problem. See e.g. (Lee and

Shraibman, 2013; Heiman et al., 2014; Bhojanapalli and Jain, 2014; Li et al., 2016; Fou-

cart et al., 2020; Ashraphijuo et al., 2017; Bhojanapalli et al., 2014; Pimentel-Alarcón et

al., 2016; Meka et al., 2009; Liu et al., 2019). Under the non-uniform sampling model

where each entry is observed with probability pij bounded above and below, (Chen and Li,
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2022; Chen and Li, 2024) study matrix completion under both Frobenius and entry-wise

error bounds.

Semi-random model. While also a non-uniform observation model, the semi-random

model does not assume any specific sampling pattern, other than requiring that each entry

is observed with probability at least p. This model was first introduced to combinatorial

optimization problems such as graph coloring, planted clique, stochastic block models,

clustering etc (Blum and Spencer, 1995; Feige and Kilian, 2001; Perry and Wein, 2017;

Mathieu and Schudy, 2010; Makarychev et al., 2012). It was later applied to low-rank

matrix recovery (Cheng and Ge, 2018), sparse linear regression (Kelner et al., 2023a),

and matrix sensing (Gao and Cheng, 2024). Closely related to this work, (Kelner et

al., 2024) studies semi-random noisy matrix completion with an non-adaptive adversary,

while our work does not require this restriction. In contrast to our global reweighting

approach, (Kelner et al., 2024) uses projected gradient descent with iterative reweighting

guaranteed by a “short-flat decomposition” technique. They provide close to low-rank

solution in nearly-linear time, with an error bound in terms of ℓ∞ norm (entry-wise measure

of noise and error) instead of the more commonly used Frobenius norm (global measure).

While the focus and technical tools of (Kelner et al., 2024) differ from ours, both works

address similar challenges posed by semi-random observations under noise. Our results

are complementary: we provide Frobenius-norm guarantees under a broad family of loss

functions using a different reweighting mechanism, and our framework directly supports

one-bit matrix completion.
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4.2 Preliminaries

4.2.1 Notation

We write [n] for the set of integers {1, ..., n}. Denote the ith standard basis vector as

ei. For a matrix A, we use ∥A∥2, ∥A∥F and ∥A∥max for the operator norm, Frobenius

norm and the maximum absolute entry of A respectively. We write ∥A∥∞, ∥A∥1 for the

maximum ℓ1-norms of the rows and columns of A respectively. We denote the ith row of

A as Ai, and the maximum ℓ2 norm of rows of A as ∥A∥2,∞.

For matrices A,B ∈ Rd1×d2 , we denote their inner product as ⟨A,B⟩, which is defined as:

⟨A,B⟩ = tr(A⊤B) =
∑

j,k AjkBjk. Given subset of entries Ω ⊂ [d1]× [d2], define ⟨A,B⟩Ω =∑
(j,k)∈ΩAjkBjk; given weight matrix W ∈ Rd1×d2 , define ⟨A,B⟩W =

∑
j,k WjkAjkBjk.

We write ∥A∥2Ω for ⟨A,A⟩Ω, and ∥A∥2W for ⟨A,A⟩W . Symmetric matrix A ∈ Rd×d is called

positive semidefinite (PSD) if x⊤Ax ≥ 0 ∀x ∈ Rd, and we write A ≼ B if A and B have

the same dimension and B −A is PSD.

For a weighted undirected graph G = (V,E,w) with n vertices and weights we ≥ 0 for

each edge e = (i, j), let D ∈ Rn×n be a diagonal matrix containing the weighted degree

of each vertex, i.e. Dii =
∑

(i,j)∈E
w(i,j). Let A ∈ Rn×n be the adjacency matrix of G, i.e.

Aij = Aji = w(i,j). The Laplacian matrix of G is defined as L := D−A. Fix some arbitrary

orientation for each edge e = (i, j) ∈ E, we can represent it with vector be ∈ Rn where

be[i] = 1 and be[j] = −1, and L =
∑
e∈E

webeb
⊤
e .
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4.2.2 Assumptions on the Ground Truth Matrix

Throughout the paper we assume the ground truth matrix X∗ ∈ Rd1×d2 and let

d = max(d1, d2). Assume X∗ has rank r ≪ d. Suppose X∗ has compact SVD X∗ =

ŨΣṼ ⊤, where Ũ and Ṽ are orthogonal matrices in Rd1×r and Rd2×r respectively, and

Σ = diag(σ1, ..., σr), the diagonal matrix with the singular values of X∗ on its diagonal.

It is well known that matrix completion is impossible if the ground truth matrix is too

sparse, which means most of the observed entries will be 0. A common solution in previous

work is to impose the incoherence condition on X∗ defined below.

Definition 4.2.1 (Incoherence Condition (Candès and Recht, 2009)). A rank-r matrix

X ∈ Rd1×d2 with SVD X = ŨΣṼ ⊤ is said to be incoherent with parameter β if

∥∥∥Ũ∥∥∥
2,∞
≤
√

βr

d1
and

∥∥∥Ṽ ∥∥∥
2,∞
≤
√

βr

d2
.

Let α1 =
√

βrσ1

d1
, α2 =

√
βrσ1

d2
. We define the following constraint sets

C1 := {U ∈ Rd1×r | ∥U∥2,∞ ≤ α1},

C2 := {V ∈ Rd2×r | ∥V ∥2,∞ ≤ α2},

C := {UV ⊤ | U ∈ C1, V ∈ C2}.

Given X∗ = ŨΣṼ ⊤, we can alternatively write X∗ as X∗ = U∗V ∗⊤, where U∗ = ŨΣ1/2 ∈

Rd1×r and V ∗ = Ṽ Σ1/2 ∈ Rd2×r. We assume X∗ satisfies the incoherence condition,
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therefore ∥U∗∥2,∞ ≤ α1 and ∥V ∗∥2,∞ ≤ α2, i.e., X
∗ ∈ C. Let α = α1α2 = βrσ1√

d1d2
, so that

∥X∗∥max ≤ α.

4.2.3 Conditions on the Loss Function

Quadratic loss function is popular due to the isometric property of its Hessian, which

a general loss function is no longer guaranteed to satisfy. A common alternative is to

enforce a pair of regularity conditions known as the Restricted Strong Convexity (RSC) and

Restricted Strong Smoothness (RSS) conditions (Agarwal et al., 2012), which we formally

state below.

Definition 4.2.2 (RSC and RSS Conditions (Agarwal et al., 2012)). The loss function

F is said to satisfy the Restricted Strong Convexity condition with parameter µ, and the

Restricted Strong Smoothness condition with parameter L if ∀X1, X2 ∈ Rd1×d2 with rank

at most 6r:

F (X1) ≥ F (X2) + ⟨∇F (X2), X1 −X2⟩+
µ

2
∥X1 −X2∥2F ,

F (X1) ≤ F (X2) + ⟨∇F (X2), X1 −X2⟩+
L

2
∥X1 −X2∥2F .

To control the statistical error due to observation noise, the deviation condition is

introduced by (Loh and Wainwright, 2012) for linear regression on vectors. A similar

condition is used by (Zhang et al., 2018b) on the gradient of the loss function with respect

to X∗, and we restate the definition below.
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Definition 4.2.3 (Deviation Condition (Zhang et al., 2018b)). The loss function F is

said to satisfy the deviation condition if ∥∇F (X∗)∥2 ≤ δ with high probability, where the

deviation bound δ depends on the sampling rate p and the observation noise ν.

For the one-bit matrix completion problem where the noise −Ejk follows distribution

with cdf f , denote the entry-wise standard deviation of noise Std[Ejk] = τ = ν√
d1d2

. It

is common practice to replace f with its standardization g, where f(x) = g(x/τ). For

example, g(z) = Φ(z) in the case of Gaussian noise, where Φ(z) is the standard Gaussian

distribution function. We define the dimension free signal-to-noise ratio ρ = α
τ = βrσ1

ν .

Note that we only care about the value of g restricted to |x| ≤ ρ due to the assumption

that ∥X∗∥max ≤ α. For one-bit matrix completion to be feasible, a steepness assumption

(Davenport et al., 2014) is imposed on the distribution function used in the probit model.

We control the steepness of the standardized distribution function g(x) by the quantity sρ

defined as

sρ = sup
|x|≤ρ

|g′(x)|
g(x)(1− g(x))

, (4.5)

which is a constant given ρ and g(x).

4.2.4 Error Guarantee of the Primal-Dual Framework

Here we include the main result from (Zhang et al., 2018b), which states the general

error guarantee of the primal-dual framework under regularity conditions.
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Theorem 4.2.4 (General error bound, Theorem 3.8 (Zhang et al., 2018b)). Assume loss

function F satisfies the RSC and RSS conditions (4.2.2) with parameter µ and L such that

L/µ ∈ (1, 18/17), as well as the deviation condition (4.2.3) with deviation bound δ. For

all local minima Z = [U ;V ] of the optimization objective (4.4), with high probability the

reconstruction error satisfies ∥∥∥UV ⊤ −X∗
∥∥∥2
F
≤ Γrδ2,

where Γ is a constant depending on the condition number L
µ . Specifically, Γ = 10

(10µ−9L−γ−3c)c

for c = 18µ−17L
12 , and γ in the primal objective (4.4) is chosen such that µ − L/2 ≤ γ <

min{(22µ− 19L)/4, (3L− 2µ)/2}.

4.3 Our Results Under Semi-Random Preprocessing

4.3.1 Weighted Regularity Conditions

First we study the effect of preprocessing on the conditions required by the primal-

dual framework. Given a matrix completion problem which the primal-dual framework is

applicable under the uniform observation model, suppose it has objective function (4.4)

where the loss function F satisfies the RSC and RSS conditions (4.2.2) with parameters

µ and L, as well as the deviation condition (4.2.3) with δ. As discussed before, in the

semi-random model with sampling rate at least p, we first run the preprocessing algorithm

to achieve spectral similarity ϵ = O
(√

log d
pd

)
, apply the resulting weight matrix W to the

loss function F , and obtain a weighted objective function (4.4) with FW .
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To establish weighted regularity conditions in general, we state the following assump-

tions on the loss function in general, and later verify that these additional assumptions are

satisfied by the two specific examples we study in this paper.

Assumption 4.3.1. For uniform loss function F (X) =
∑

j,k∈Ω
1
pFjk(Xjk) satifying RSC

and RSS with parameters µ and L, for X1, X2 ∈ C we assume

F (X1)− F (X2)− ⟨∇F (X2), X1 −X2⟩ =
1

2

∑
j,k∈Ω

1

p
Kjk(X1,jk −X2,jk)

2,

for some Kjk where µ ≤ Kjk ≤ L for all j, k.

Assumption 4.3.2. For uniform loss function F (X) =
∑

j,k∈Ω
1
pFjk(Xjk), we assume

∇F (X∗) =
∑

(j,k)∈Ω

1

p
bjk(X

∗)eje
⊤
k ,

where each bjk(X
∗) is a sub-exponential random variable given X∗, and is i.i.d with mean

0 and variance s2 = O( 1
d2
) possibly depending on the distribution of the noise Ejk.

The following lemma states the RSC and RSS conditions for FW .

Lemma 4.3.3 (Weighted RSC and RSS conditions). Under Assumption 4.3.1, given F

satisfying the RSC and RSS with parameters µ and L, and FW weighted by the prepro-

cessing algorithm to ϵ-spectral-similarity, ∀X1, X2 ∈ C (Definition 4.2.1), if ∥X1 −X2∥2F ≥

O(β2r2σ2
1ϵ), then we can establish the RSC and RSS conditions on FW at X1 and X2 with

parameters µW = (1− c)µ and LW = (1 + c)L, for a sufficiently small constant c.
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Proof. Let X1, X2 ∈ C and D = X1 −X2.

By Assumption 4.3.1,

F (X1)− F (X2)− ⟨∇F (X2), X1 −X2⟩ =
1

2

∑
j,k∈Ω

1

p
KjkD

2
jk.

For the weighted loss function,

FW (X1)− FW (X2)− ⟨∇FW (X2), X1 −X2⟩ =
1

2

∑
j,k∈Ω

KjkWjkD
2
jk.

We first show the upper bound for RSS:

1

2

∑
j,k∈Ω

KjkWjkD
2
jk ≤

L

2

∑
j,k∈Ω

WjkD
2
jk

=
L

2
∥X1 −X2∥2W

≤ L

2
(1 + c)∥X1 −X2∥2F ,

where the last inequality follows from Lemma 4.5.1: since ∥X1 −X2∥2F ≥ O(β2r2σ2
1ϵ), we

have
∣∣∣∥X1 −X2∥2W − ∥X1 −X2∥2F

∣∣∣ ≤ c · ∥X1 −X2∥2F for a small constant c.

The lower bound for RSC follows similarly, thus we establish the RSC and RSS con-

ditions with parameters µW = (1 − c)µ and LW = (1 + c)L provided X1 and X2 are

sufficiently far apart. ■

The next lemma states the effect of preprocessing on the deviation condition.
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Lemma 4.3.4 (Weighted deviation condition). Under Assumption 4.3.2, given F in the

uniform observation model and let FW be weighted by the preprocessing algorithm to ϵ-

spectral-similarity, w.h.p. we have δ2W = ∥∇FW (X∗)∥22 ≤ O(s2d2ϵ log d).

Proof. By Assumption 4.3.2, ∇F (X∗) =
∑

(j,k)∈Ω

1
pbjk(X

∗)eje
⊤
k , after preprocessing we can

write

∇FW (X∗) =
∑

(j,k)∈Ω

Wjkbjk(X
∗)eje

⊤
k =

∑
(j,k)∈Ω

Zjk,

where Zjk = Wjkbjk(X
∗)eje

⊤
k .

We will bound its operator norm using matrix Bernstein inequality (Theorem 4.6.6).

First, we calculate

∑
(j,k)∈Ω

E
[
ZjkZ

⊤
jk

]
=

∑
(j,k)∈Ω

E
[
b2jk(X

∗)W 2
jkeje

⊤
j

]
= s2

∑
(j,k)∈Ω

W 2
jkeje

⊤
j ,

which is a diagonal matrix, therefore

∥∥∥ ∑
(j,k)∈Ω

E
[
ZjkZ

⊤
jk

]∥∥∥
2
= s2max

j

∑
k

W 2
jk

≤ s2∥W∥max ·max
j

∑
k

Wjk

= s2∥W∥max · ∥W∥∞

= O(s2ϵ
√

d1d2d2),

where the last step is due to Lemma 4.6.2 and 4.5.2.
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Similarly, we can show that
∥∥∥ ∑
(j,k)∈Ω

E
[
Z⊤
jkZjk

]∥∥∥
2
= O(s2ϵ

√
d1d2d1).

Since bjk(X
∗) is sub-exponential with mean 0 and variance s2, we have E[Zjk] = 0, and

∥Zjk∥Ψ1
≤ O(sWjk) = O(sdϵ). We can apply Theorem 4.6.6 by setting σ2 = O(s2d2ϵ) and

R = O(sdϵ). We have Pr

[∥∥∥ ∑
(j,k)∈Ω

Zjk

∥∥∥
2
≥ t

]
≤ 2d · exp( −t2

2σ2+2Rt/3
), and simple calculation

shows that the second order term dominates. Choosing t = cσ
√
log d for some constant c,

we have
∥∥∥ ∑
(j,k)∈Ω

Zjk

∥∥∥
2
≤ t with probability at least 1 − d−(c2−1). Final result follows by

plugging in the value of t. ■

Condition number and deviation bound. The preprocessing step incurs a small

cost in the condition number L/µ, increasing it by a factor of 1+c
1−c for some small constant

c. For the deviation bound, observe that under the same condition as Lemma 4.3.4, the

loss function F in the uniform observation model satisfies the deviation condition with

δ2 = ∥∇F (X∗)∥22 ≤ O
(
s2 d log dp

)
, as shown in Lemma 4.6.5 (Zhang et al., 2018b; Agarwal

et al., 2012). Comparing the two deviation bounds δ2W and δ2, preprocessing increases the

bound by a factor of O(ϵpd).

4.3.2 General Error Bound for Semi-Random Matrix Completion

With the weighted RSC and RSS conditions as well as the weighted deviation condition

established in the previous section, we now extend Theorem 4.2.4, which states the opti-

mality of the primal-dual framework, to derive a general error bound in the semi-random

model.
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Theorem 4.3.5 (General semi-random error bound). Given a matrix completion prob-

lem that satisfies the conditions in Theorem 4.2.4 as well as the additional Assumptions

4.3.1 and 4.3.2 under the uniform observation model, consider the same problem under

the semi-random model after preprocessing to ϵ-spectral-similarity, where ϵ = O
(√

log d
pd

)
given observation probability at least p. For all local minima [U ;V ] of objective (4.4) with

the weighted loss FW , w.h.p. the error satisfies

∥∥∥UV ⊤ −X∗
∥∥∥2
F
≤ max

{
O(β2r2σ2

1ϵ),Γrs
2d2ϵ log d

}
,

where Γ is a constant depending on µW and LW . Given m observed entries, the overall

running time is Õ(m · poly(r, log d)).

Proof. In the semi-random model with loss function weighted by preprocessing, first we

apply Lemma 4.3.3 to establish the RSC and RSS conditions on FW , increasing the con-

dition number L/µ by a factor of 1+c
1−c , which affects Γ by a constant factor as well.

Then Lemma 4.3.4 provides the deviation condition. Now we can apply Theorem 4.2.4

to get the error bound
∥∥UV ⊤ −X∗∥∥2

F
≤ Γrs2d2ϵ log d. In addition, in the case that

Lemma 4.3.3 does not apply with respect to X1 = UV ⊤ and X2 = X∗, we immediately

have
∥∥UV ⊤ −X∗∥∥2

F
≤ O(β2r2σ2

1ϵ). Combining these two cases gives the overall error

bound. ■

Running time. The objective (4.4), with either uniform or weighted loss, can be solved

by the Augmented Lagrangian Method in (Zhang et al., 2018b; Nocedal and Wright, 2006)
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with running time Õ(mr + dr2), where the dominant cost is computing ∇ZG iteratively.

The preprocessing algorithm from (Cheng and Ge, 2018) takes time Õ(m/ϵO(1)), where

ϵ−1 = poly(r, log d). Therefore our total running time is Õ(m · poly(r, log d)), compared to

Õ(mr) in the uniform observation model.

4.4 Applications to Noisy and One-Bit Matrix Completion

In this section we showcase two specific examples in the semi-random model, namely

noisy matrix completion and one-bit matrix completion. Since these two examples were

demonstrated using the primal-dual analysis under the uniform observation model in

(Zhang et al., 2018b), we directly apply Theorem 4.3.5 and state the results as corol-

laries here. We also include a self-contained version of the proofs in Section 4.6.3 and

4.6.4.

Corollary 4.4.1 (Semi-random noisy matrix completion). For a noisy matrix completion

problem under the semi-random observation model with observation probability at least

p = O
(
r4 log3 d

d

)
, suppose the ground truth matrix X∗ ∈ Rd1×d2 has rank r and satisfies

the incoherence condition with parameter β, and entries are subject to i.i.d noise Ejk with

variance ν2

d1d2
. Using weights from the preprocessing algorithm, w.h.p. all local minima

UV ⊤ of the weighted objective satisfy

∥∥∥UV ⊤ −X∗
∥∥∥2
F
≤ max

{
O

(
β2σ2

1

√
r4 log d

pd

)
, O

ν2

√
r2 log3 d

pd

}.
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Proof. In the uniform observation model, it is shown by Corollary 4.1 (Zhang et al., 2018b)

that loss function (4.1) satisfies the conditions in Theorem 4.2.4, therefore we only need to

verify the additional Assumptions 4.3.1 and 4.3.2.

Recall the uniform loss function (4.1) and compute its gradient:

∇F (X) =
∑

(j,k)∈Ω

1

p
(Xjk − Yjk)eje

⊤
k

=
∑

(j,k)∈Ω

1

p
bjk(X)eje

⊤
k ,

evaluating at X∗, bjk(X
∗) = Ejk. By assumption, each Ejk is i.i.d sub-exponential with

mean 0, variance ν2

d1d2
, satisfying Assumption 4.3.2 with s2 = ν2

d1d2
.

For Assumption 4.3.1, we have:

F (X1)− F (X2)− ⟨∇F (X2), X1 −X2⟩

=
1

2

∑
(j,k)∈Ω

1

p
[(X1,jk − Yjk)

2 − (X2,jk − Yjk)
2]−

∑
(j,k)∈Ω

1

p
(X2,jk − Yjk)(X1,jk −X2,jk)

=
1

2

∑
(j,k)∈Ω

1

p
[(X1,jk +X2,jk − 2Yjk)(X1,jk −X2,jk)− (2X2,jk − 2Yjk)(X1,jk −X2,jk)]

=
1

2

∑
(j,k)∈Ω

1

p
(X1,jk −X2,jk)

2,

satisfying Assumption 4.3.1 with Kjk = 1 for all j, k. Note that according to (Zhang et al.,

2018b), the choice of L = 44
43 and µ = 42

43 .
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We can apply Theorem 4.3.5,
∥∥UV ⊤ −X∗∥∥2

F
≤ max

{
O(β2r2σ2

1ϵ), O(rν2ϵ log d)
}
. Ac-

cording to Lemma 4.6.2, given sampling rate p, the preprocessing algorithm can achieve

ϵ = O
(√

log d
pd

)
, plugging in ϵ gives the error bounds. ■

Corollary 4.4.2 (Semi-random one-bit matrix completion). For a one-bit matrix comple-

tion problem under the semi-random observation model with observation probability at least

p = O
(
r4 log3 d

d

)
, suppose the ground truth matrix X∗ ∈ Rd1×d2 has rank r and satisfies

the incoherence condition with parameter β, and the cdf in the observation model satis-

fies the steepness condition (4.5) with parameter sρ. Using weights from the preprocessing

algorithm, w.h.p. all local minima UV ⊤ of the weighted objective function satisfy

∥∥∥UV ⊤ −X∗
∥∥∥2
F
≤ max

{
O

(
β2σ2

1

√
r4 log d

pd

)
, O

s2ρ

√
r2 log3 d

pd

}.
Proof. In the uniform observation model, it is shown by Corollary 4.3 (Zhang et al., 2018b)

that loss function (4.2) satisfies the conditions in Theorem 4.2.4, therefore we only need to

verify the additional Assumptions 4.3.1 and 4.3.2.

Recall the loss function (4.2) and write it in its standardized form:

F (X) = − 1

pd1d2

∑
(j,k)∈Ω

[
1(Yjk = 1) · log

(
f(Xjk)

)
+ 1(Yjk = −1) · log

(
1− f(Xjk)

)]

=
1

d1d2

∑
(j,k)∈Ω

1

p

[
1(Yjk = 1) · log

(
g(Xjk/τ)

)
+ 1(Yjk = −1) · log

(
1− g(Xjk/τ)

)]
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Compute its gradient,

∇F (X) =
1

d1d2τ

∑
(j,k)∈Ω

1

p
bjk(X)eje

⊤
k ,

where

bjk(X) =− 1(Yjk = 1) ·
g′(Xjk/τ)

g(Xjk/τ)
+ 1(Yjk = −1) ·

g′(Xjk/τ)

1− g(Xjk/τ)
.

At X∗,

bjk(X
∗) =


−g′(X∗

jk/τ)

g(X∗
jk/τ)

with probability g(X∗
jk/τ),

g′(X∗
jk/τ)

1−g(X∗
jk/τ)

with probability 1− g(X∗
jk/τ).

Therefore E[bjk(X∗)] = 0. Next we compute the variance:

Var[bjk(X
∗)] = E

[
b2jk(X

∗)
]
− E[bjk(X∗)]2

=

[
g′(X∗

jk/τ)

g(X∗
jk/τ)

]2
· g(X∗

jk/τ) +

[
g′(X∗

jk/τ)

1− g(X∗
jk/τ)

]2
· (1− g(X∗

jk/τ))

=
g′2(X∗

jk/τ)

g(X∗
jk/τ)(1− g(X∗

jk/τ))

=

(
|g′(X∗

jk/τ)|
g(X∗

jk/τ)(1− g(X∗
jk/τ)

)2

· g(X∗
jk/τ)(1− g(X∗

jk/τ))

≤ s2ρ.
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The last step follows from the definition of sρ and the fact that g(·) is a cumulative dis-

tribution function and its range is [0, 1]. Each
bjk(X

∗)
d1d2τ

is sub-exponential with mean 0,

variance
s2ρ

d4τ2
=

s2ρ
d2ν2

, satsifying Assumption 4.3.2.

To verify Assumption 4.3.1, for all X1, X2 ∈ C, applying the Mean Value Theorem to

the second order remainder, ∃M = tX1 + (1− t)X2 for some t ∈ [0, 1] such that:

F (X1)− F (X2)− ⟨∇F (X2), X1 −X2⟩ =
1

2
vec(X1 −X2)

⊤∇2F (M) vec(X1 −X2).

Compute the Hessian of the loss function (4.2):

∇2F (X) =
1

ν2

∑
(j,k)∈Ω

1

p
Bjk(X) vec(eje

⊤
k ) vec(eje

⊤
k )

⊤,

where

Bjk(X) = 1(Yjk = 1) ·
(
g′2(Xjk/τ)

g2(Xjk/τ)
−

g′′(Xjk/τ)

g(Xjk/τ)

)
+ 1(Yjk = −1) ·

(
g′′(Xjk/τ)

1− g(Xjk/τ)
+

g′2(Xjk/τ)(
1− g(Xjk/τ)

)2
)
.

Two parameters were introduced in (Ni and Gu, 2016) to control the quadratic lower and

upper bounds of the second-order Taylor expansion of the log-likelihood function:
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µρ = min

{
inf
|x|≤ρ

(
g′2(x)

g2(x)
− g′′(x)

g(x)

)
, inf
|x|≤ρ

(
g′2(x)

(1− g(x))2
+

g′′(x)

1− g(x)

)}
,

Lρ = max

{
sup
|x|≤ρ

(
g′2(x)

g2(x)
− g′′(x)

g(x)

)
, sup
|x|≤ρ

(
g′2(x)

(1− g(x))2
+

g′′(x)

1− g(x)

)}
.

Evaluating at M = tX1 + (1 − t)X2, we have |Mjk/τ | ≤ ρ (recall the signal to noise

ratio ρ = α
τ ), so that µρ ≤ Bjk(M) ≤ Lρ for all j, k, and

F (X1)− F (X2)− ⟨∇F (X2), X1 −X2⟩ =
1

2ν2

∑
(j,k)∈Ω

1

p
Bjk(M)⟨eje⊤k , X1 −X2⟩2

=
1

2

∑
(j,k)∈Ω

1

p
Kjk(X1,jk −X2,jk)

2,

where
µρ

ν2
≤ Kjk ≤ Lρ

ν2
. Note that according to (Zhang et al., 2018b), µ = 42

43
µρ

ν2
and

L = 44
43

Lρ

ν2
, therefore we satisfy Assumption 4.3.1 with µ ≤ Kjk ≤ L.

We can apply Theorem 4.3.5,
∥∥UV ⊤ −X∗∥∥2

F
≤ max

{
O(β2r2σ2

1ϵ), O(rs2ρϵ log d)
}
. Note

that the 1/ν2 factor cancels out, since the RSS and RSC parameters µ,L are of scale 1/ν2

due to the scaling of the loss function, therefore Γ = O(ν2). According to Lemma 4.6.2,

given sampling rate p, the preprocessing algorithm can achieve ϵ = O
(√

log d
pd

)
, plugging

in ϵ gives the error bounds. ■

Sampling rate and error. In the uniform observation model, for both problems (Zhang

et al., 2018b) requires sampling rate p = O
(
r2 log d

d

)
, and achieves error rate O

(
r2 log d

pd

)
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and O
(
r log d
pd

)
for the two respective terms in the bound. In comparison, our results in the

semi-random model incur an additional factor of O(r2 log2 d) in both the required sampling

rate and the error.

4.5 Supporting Lemmas

In this section, we present our supporting lemmas: Lemmas 4.5.1 and 4.5.2. We make

use of prior results from the preprocessing procedure of (Cheng and Ge, 2018), which we

include in Section 4.6.1 as Theorem 4.6.1 and Lemmas 4.6.2, 4.6.3, and 4.6.4 for com-

pleteness. Our lemmas make use of these prior results, and together they characterize the

properties of the weight matrix W that are essential for establishing the parameters used

in the weighted RSC, RSS, and deviation conditions.

Lemma 4.5.1 is a consequence of Lemma 4.6.4 and 4.6.2, which bounds the deviation

of Frobenius norm of a matrix after applying weight matrix W on it.

Lemma 4.5.1. Suppose the preprocessing step produces weight matrix W that achieves

ϵ-spectral-similarity. For all M1,M2 from the constraint set C,

either
∣∣∣∥M1 −M2∥2W − ∥M1 −M2∥2F

∣∣∣ ≤ c · ∥M1 −M2∥2F for some small constant c,

or ∥M1 −M2∥2F ≤ O(β2r2σ2
1ϵ).

Proof. Based on the definition for constraint set C, we can write M1 = U1V
⊤
1 and M2 =

U2V
⊤
2 for some U1, U2 ∈ C1 and V1, V2 ∈ C2, where C1 = {U ∈ Rd1×r | ∥U∥2,∞ ≤ α1}, and

C2 = {V ∈ Rd2×r | ∥V ∥2,∞ ≤ α2}. let X = [U1, U2] ∈ Rd1×2r and Y = [V1,−V2] ∈ Rd2×2r,

so that M1 −M2 = XY ⊤.
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Following Lemma 4.6.2, suppose ∥W − J∥2 ≤ Cϵ
√
d1d2 for some constant C. We have

the following inequality:

∣∣∣∣∥∥∥XY ⊤
∥∥∥2
W
−
∥∥∥XY ⊤

∥∥∥2
F

∣∣∣∣ ≤ ∥W − J∥2 · ∥X∥F · ∥Y ∥F · ∥X∥2,∞ · ∥Y ∥2,∞

≤ ∥W − J∥2 ·
√
d1∥X∥2,∞ ·

√
d2∥Y ∥2,∞ · ∥X∥2,∞ · ∥Y ∥2,∞

=
√

d1d2 · ∥W − J∥2 · ∥X∥
2
2,∞ · ∥Y ∥

2
2,∞

≤ Cϵd1d2α
2
1α

2
2

≤ Cϵd2α2.

The first inequality is an application of Lemma 4.6.4, the second inequality comes the shape

of X and Y , the third inequality is due to the bound on ∥W − J∥2, and the last inequality

comes from d = max (d1, d2) and the definition of C1 and C2.

We consider two separate cases:

Case 1: if
∥∥XY ⊤∥∥2

F
≥ C

c ϵd
2α2, then:

∣∣∣∣∥∥∥XY ⊤
∥∥∥2
W
−
∥∥∥XY ⊤

∥∥∥2
F

∣∣∣∣ ≤ Cϵd2α2 ≤ c ·
∥∥∥XY ⊤

∥∥∥2
F
.

Case 2: otherwise
∥∥XY ⊤∥∥2

F
≤ C

c ϵd
2α2, then:

∥∥∥XY ⊤
∥∥∥2
F
≤ C

c
ϵd2

β2r2σ2
1

d1d2
= O

(
β2r2σ2

1ϵ
)
. ■
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Lemma 4.5.2 makes use of Lemma 4.6.3 and Theorem 4.6.1 to provide an upper bound

on the maximum value in W , which is an additional property of W to accompany Lemma

4.6.2.

Lemma 4.5.2. Suppose the preprocessing step produces weight matrix W that achieves

ϵ-spectral-similarity. Then we have ∥W∥max = O(ϵ
√
d1d2).

Proof. Let G denote a d1 × d2 complete bipartite graph (corresponding to the full ma-

trix), and H denote the semi-random graph generated by including each edge of G with

probability at least p, i.e., edges in H correspond to the the observed indices in Ω. Apply

weights W on H to get weighted graph H̃. Let L = D − A be the Laplacian of G, where

D is the degree matrix and A is the adjacency matrix. Similarly write L̃ = D̃ − Ã for H̃.

Let J ∈ Rd1×d2 be the all ones matrix, I1 ∈ Rd1×d1 , I2 ∈ Rd2×d2 be identity matrices of

corresponding dimensions, we have:

L =

d2I1 −J

−J⊤ d1I2

 L̃ =

 D̃1 −W

−W⊤ D̃2

 assuming D̃ =

D̃1 0

0 D̃2



Following Theorem 4.6.1, (1− ϵ)L ≼ L̃ ≼ L. For all x ∈ R(d1+d2):

(1− ϵ)x⊤Lx ≤ x⊤L̃x (4.6)
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Consider x = [
√
d1ej ;

√
d2ek] where ej ∈ Rd1 , ek ∈ Rd2 are standard basis vectors. We have

the following quadratic forms:

x⊤Lx = d1d2I1,jj + d2d1I2,kk − 2
√

d1d2Jjk

x⊤L̃x = d1D̃1jj + d2D̃2kk − 2
√
d1d2Wjk

By Lemma 4.6.3, D̃1jj ≤ d2 and D̃2kk ≤ d1, so the quadratic forms simplify to:

x⊤Lx = 2d1d2 − 2
√
d1d2 (4.7)

x⊤L̃x ≤ 2d1d2 − 2
√
d1d2Wjk (4.8)

Combining (4.6) (4.7) and (4.8), we have:

2d1d2 − 2ϵd1d2 − 2
√
d1d2 + 2ϵ

√
d1d2 ≤ 2d1d2 − 2

√
d1d2Wjk

=⇒ Wjk ≤ ϵ
√

d1d2 + 1− ϵ

= O(ϵ
√
d1d2) since ϵd = ω(1) ■

4.6 Relevant Results and Omitted Proofs

4.6.1 Relevant Previous Results

We include some relevant results from (Cheng and Ge, 2018) here. The preprocessing

algorithm assigns weights to the edges of the semi-random graph H so that the resulting
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weighted graph is ϵ-spectrally-similar to a complete graph G. For sufficiently large p,

(Cheng and Ge, 2018) proves the existence of weights w∗
e with spectral similarity parameter

ϵ0 = O
(√

log d
pd

)
, so that we can Theorem 4.6.1 with L as the Laplacian of G, E as the

edge set of H, and ϵ = ϵ0.

Theorem 4.6.1 (Semi-random preprocessing, Theorem 3.1 (Cheng and Ge, 2018)). Fix

ϵ ≥ 0, ϵ0 ≤ 1/10, and let L be the Laplacian of a d1 × d2 bipartite graph. Given a set of m

edges E, let vector be ∈ Rd1+d2 represent an edge e ∈ E, where e = (i, j) for some i ∈ [d1],

j ∈ [d2], and be[i] = 1, be[j] = −1. Assume there exists weights w∗
e ≥ 0 such that

(1− ϵ0)L ≼
∑
e∈E

w∗
ebeb

⊤
e ≼ (1 + ϵ0)L.

We can find a set of weights we ≥ 0 in time Õ(m/ϵO(1)), such that with high probability,

(1−O(ϵ0)− ϵ)L ≼
∑
e∈E

webeb
⊤
e ≼ L.

Lemma 4.6.2 (Spectral properties of the weight matrix, Corollary 3.4 (Cheng and Ge,

2018)). For a matrix completion problem under the semi-random setup, given ϵ > 0, there

exist p = O
(
log d
dϵ2

)
such that if each entry of X∗ is observed with probability at least p, then

with high probability we can compute a weight matrix W ∈ Rd1×d2 in time Õ(m/ϵO(1)) that

achieves ϵ-spectral-similarity, such that W is supported on Ω and ∥W∥1 ≤ d1, ∥W∥∞ ≤

d2, ∥W − J∥2 = O(ϵ
√
d1d2) where J is the all-ones matrix.
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Lemma 4.6.3 (Closeness of Laplacian and adjacency matrix, Lemma 3.6 (Cheng and Ge,

2018)). Let L = D−A and L̃ = D̃− Ã be two graph Laplacians, where D, D̃ are the degree

matrices and A, Ã are the adjacency matrices of the graphs. If (1− ϵ)L ≼ L̃ ≼ L, then we

have (1− ϵ)Dii ≼ D̃ii ≼ Dii and
∥∥∥D−1/2(Ã−A)D−1/2

∥∥∥
2
≤ 3ϵ.

Lemma 4.6.4 (Preserving the norm via spectral properties, Lemma 4.3 (Cheng and Ge,

2018)). For any matrices X ∈ Rd1×r, Y ∈ Rd2×r and W ∈ Rd1×d2, we have

∣∣∣∣∥∥∥XY ⊤
∥∥∥2
W
−
∥∥∥XY ⊤

∥∥∥2
F

∣∣∣∣ ≤ ∥W − J∥2 · ∥X∥F · ∥Y ∥F · ∥X∥2,∞ · ∥Y ∥2,∞,

where J is the all-ones matrix.

4.6.2 Relevant Matrix Concentration Bounds

For completeness we include a lemma in contrast to Lemma 4.3.4, on the operator norm

of the gradient (deviation bound) in the uniform case.

Lemma 4.6.5 (Lemma B.2 (Zhang et al., 2018b),(Negahban and Wainwright, 2012)).

Consider noisy matrix completion with the uniform observation model. Suppose the noise

entry Ejk follows i.i.d zero mean distribution with variance s2. Then with probability at

least 1− c1/d, we have

∥∥∥∥∥∥1p
∑

(j,k)∈Ω

Ejkeje
⊤
k

∥∥∥∥∥∥
2

2

≤ c2s
2d log d

p
,

where c1 c2 are universal constants and p = |Ω|
d1d2

.



95

The following theorem provides a tail bound on the operator norm of a sum of random

matrices.

Theorem 4.6.6 (Matrix Bernstein inequality, Theorem 1.6 (Tropp, 2012)). Consider a

finite sequence {Zk} ⊂ Rd1×d2 of independent random matrices. Assume that each random

matrix satisfies E[Zk] = 0 and ∥Zk∥2 ≤ R almost surely, define

σ2 := max

{∥∥∥∑
k

E
[
ZkZ

⊤
k

]∥∥∥
2
,
∥∥∥∑

k

E
[
Z⊤
k Zk

]∥∥∥
2

}
,

then ∀t > 0,

Pr

[∥∥∥∑
k

Zk

∥∥∥
2
≥ t

]
≤ (d1 + d2) · exp

(
−t2

2σ2 + 2Rt/3

)
.

Note that as mentioned in (Negahban and Wainwright, 2012), according to (Vershynin,

2010) the same bound holds if each Zk is sub-exponential with R = ∥Zk∥Ψ1
, the sub-

exponential (Orlicz) norm of Zk.

4.6.3 Self-Contained Proof of Corollary 4.4.1

Proof of Corollary 4.4.1. Consider the weighted loss function and its gradient:

FW (X) =
1

2

∑
(j,k)∈Ω

Wjk(Xjk − Yjk)
2,

∇FW (X) =
∑

(j,k)∈Ω

Wjk(Xjk − Yjk)eje
⊤
k .



96

In order to achieve the error bound of the primal-dual framework in Theorem 4.2.4, we

first need to verify the RSC and RSS conditions (4.2.2). For all X1, X2 ∈ C,

FW (X1)− FW (X2)− ⟨∇FW (X2), X1 −X2⟩

=
1

2

∑
(j,k)∈Ω

Wjk[(X1,jk − Yjk)
2 − (X2,jk − Yjk)

2]−
∑

(j,k)∈Ω

Wjk(X2,jk − Yjk)(X1,jk −X2,jk)

=
1

2

∑
(j,k)∈Ω

Wjk[(X1,jk +X2,jk − 2Yjk)(X1,jk −X2,jk)− (2X2,jk − 2Yjk)(X1,jk −X2,jk)]

=
1

2

∑
(j,k)∈Ω

Wjk(X1,jk −X2,jk)
2

=
1

2
∥X1 −X2∥2W .

By Lemma 4.5.1, either ∥X1 −X2∥2W ≤ (1 ± c)∥X1 −X2∥2F for some constant c ≤ 1
40 ; or

∥X1 −X2∥2F ≤ O(β2r2σ2
1ϵ), and we take X1 = UV ⊤, X2 = X∗ so that

∥∥UV ⊤ −X∗∥∥2
F
=

O(β2r2σ2
1ϵ).

Consider the first case:

(1− c)∥X1 −X2∥2F ≤ ∥X1 −X2∥2W ≤ (1 + c)∥X1 −X2∥2F ,

thus we can establish RSC and RSS conditions with µ = 39/40 and L = 41/40.



97

Next we verify the deviation condition (4.2.3). Consider the gradient at X∗,

∇FW (X∗) =
∑

(j,k)∈Ω

Wjk(X
∗
jk − Yjk)eje

⊤
k

=
∑

(j,k)∈Ω

WjkEjkeje
⊤
k ,

where each Ejk is i.i.d with mean 0, variance ν2

d1d2
. According to Lemma 4.3.4, we have

∥∇FW (X∗)∥22 = O( ν2

d1d2
ϵd2 log d) = O(ν2ϵ log d) =: δ2.

We have established all the necessary conditions to apply the error bound in Theorem

4.2.4, which gives us
∥∥UV ⊤ −X∗∥∥2

F
≤ Γrδ2 where Γ is a constant depending on µ and L.

Given sampling rate p, the preprocessing algorithm can achieve ϵ =
√

log d
pd according to

Lemma 4.6.2. Putting things together we have
∥∥UV ⊤ −X∗∥∥2

F
= O

(
ν2
√

r2 log3 d
pd

)
. Recall

the error bound
∥∥UV ⊤ −X∗∥∥2

F
= O(β2r2σ2

1ϵ) = O
(
β2σ2

1

√
r4 log d

pd

)
from the edge case in

Lemma 4.5.1, combining both terms gives us the overall error bound. ■

4.6.4 Self-Contained Proof of Corollary 4.4.2

Proof of Corollary 4.4.2. Consider the weighted loss function and write it in its stan-

dardized form:

FW (X) = − 1

d1d2

∑
(j,k)∈Ω

Wjk

[
1(Yjk = 1) · log

(
f(Xjk)

)
+ 1(Yjk = −1) · log

(
1− f(Xjk)

)]

=
1

d1d2

∑
(j,k)∈Ω

Wjk

[
1(Yjk = 1) · log

(
g(Xjk/τ)

)
+ 1(Yjk = −1) · log

(
1− g(Xjk/τ)

)]
.
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Compute its gradient and Hessian with respect to X:

∇FW (X) =
1

d1d2τ

∑
(j,k)∈Ω

Wjkbjk(X)eje
⊤
k ,

∇2FW (X) =
1

d1d2τ2

∑
(j,k)∈Ω

WjkBjk(X) vec(eje
⊤
k ) vec(eje

⊤
k )

⊤,

where ej , ek are standard basis vectors in Rd1 , Rd2 , and vec(·) is the vectorization operator,

and

bjk(X) = −1(Yjk = 1) ·
g′(Xjk/τ)

g(Xjk/τ)
+ 1(Yjk = −1) ·

g′(Xjk/τ)

1− g(Xjk/τ)
,

Bjk(X) = 1(Yjk = 1) ·
(
g′2(Xjk/τ)

g2(Xjk/τ)
−

g′′(Xjk/τ)

g(Xjk/τ)

)
+ 1(Yjk = −1) ·

(
g′′(Xjk/τ)

1− g(Xjk/τ)
+

g′2(Xjk/τ)(
1− g(Xjk/τ)

)2
)
.

Two parameters were introduced in (Ni and Gu, 2016) to control the quadratic lower

and upper bounds of the second-order Taylor expansion of the log-likelihood function:

µρ = min

{
inf
|x|≤ρ

(
g′2(x)

g2(x)
− g′′(x)

g(x)

)
, inf
|x|≤ρ

(
g′2(x)

(1− g(x))2
+

g′′(x)

1− g(x)

)}
,

Lρ = max

{
sup
|x|≤ρ

(
g′2(x)

g2(x)
− g′′(x)

g(x)

)
, sup
|x|≤ρ

(
g′2(x)

(1− g(x))2
+

g′′(x)

1− g(x)

)}
.

Recall the signal to noise ratio ρ = α
τ and |Xjk/τ | ≤ ρ, so that for all indices (j, k), µρ ≤

Bjk(X) ≤ Lρ.
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We first need to verify the RSC and RSS conditions (4.2.2). For all X1, X2 ∈ C, by

applying the Mean Value Theorem to the second order remainder, ∃M = tX1 + (1− t)X2

for some t ∈ [0, 1] such that

FW (X1)− FW (X2)− ⟨∇FW (X2), X1 −X2⟩

=
1

2
vec(X1 −X2)

⊤∇2FW (M) vec(X1 −X2)

=
1

2ν2

∑
(j,k)∈Ω

WjkBjk(M)⟨eje⊤k , X1 −X2⟩2

=
1

2ν2
∥X1 −X2∥2W⊙B ,

where W ⊙B ∈ Rd1×d2 such that (W ⊙B)jk = WjkBjk(M).

By Lemma 4.5.1, either ∥X1 −X2∥2W ≤ (1 ± c)∥X1 −X2∥2F for some constant c ≤ 1
40 ;

or ∥X1 −X2∥2F ≤ O(β2r2σ2
1ϵ), and we take X1 = UV ⊤, X2 = X∗ so that

∥∥UV ⊤ −X∗∥∥2
F
=

O(β2r2σ2
1ϵ).

Consider the first case:

(1− c)∥X1 −X2∥2F ≤∥X1 −X2∥2W ≤ (1 + c)∥X1 −X2∥2F ,

(1− c)µρ

2ν2
∥X1 −X2∥2F ≤

1

2ν2
∥X1 −X2∥2W⊙B ≤

(1 + c)Lρ

2ν2
∥X1 −X2∥2F ,

therefore we can establish RSC and RSS conditions with parameters µ = (1− c)µρ/ν
2 and

L = (1 + c)Lρ/ν
2.

Next we verify the deviation condition (4.2.3).
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Consider ∇FW (X∗) = 1
d1d2τ

∑
(j,k)∈Ω

Wjkbjk(X
∗)eje

⊤
k where

bjk(X
∗) =


−g′(X∗

jk/τ)

g(X∗
jk/τ)

with probability g(X∗
jk/τ),

g′(X∗
jk/τ)

1−g(X∗
jk/τ)

with probability 1− g(X∗
jk/τ).

Therefore E[bjk(X∗)] = 0. Next we compute the variance:

Var[bjk(X
∗)] = E

[
b2jk(X

∗)
]
− E[bjk(X∗)]2

=

[
g′(X∗

jk/τ)

g(X∗
jk/τ)

]2
· g(X∗

jk/τ) +

[
g′(X∗

jk/τ)

1− g(X∗
jk/τ)

]2
· (1− g(X∗

jk/τ))− 0

=
g′2(X∗

jk/τ)

g(X∗
jk/τ)(1− g(X∗

jk/τ))

=

(
|g′(X∗

jk/τ)|
g(X∗

jk/τ)(1− g(X∗
jk/τ)

)2

· g(X∗
jk/τ)(1− g(X∗

jk/τ))

≤ s2ρ

The last step follows from the definition of sρ and the fact that g(·) is a cumulative

distribution function and its range is [0, 1]. By Lemma 4.3.4, ∥∇FW (X∗)∥22 = 1
d21d

2
2τ

2 ·

O(s2ρϵd
2 log d) = 1

d1d2ν2
·O(s2ρϵd

2 log d) = O(s2ρϵ log d/ν
2) =: δ2.

We have established all the conditions required for Theorem 4.2.4 which gives the er-

ror bound
∥∥UV ⊤ −X∗∥∥2

F
≤ Γrδ2. Based on our choice of µ and L, Γ = Γ′ν2 where Γ′

is a constant depending on µρ and Lρ which are constants given standardized distribu-

tion function g and the dimension free signal to noise ratio ρ. Given sampling rate p,



101

the preprocessing algorithm can achieve ϵ =
√

log d
pd according to Lemma 4.6.2. Putting

things together we have
∥∥UV ⊤ −X∗∥∥2

F
≤ O

(
s2ρ

√
r2 log3 d

pd

)
. Recall the error bound∥∥UV ⊤ −X∗∥∥2

F
= O(β2r2σ2

1ϵ) = O
(
β2σ2

1

√
r4 log d

pd

)
from the edge case in Lemma 4.5.1,

combining both terms gives us the overall error bound. ■



CHAPTER 5

ROBUST MATRIX SENSING IN THE SEMI-RANDOM MODEL

This chapter was previously published as Robust Matrix Sensing in the Semi-Random

Model by Xing Gao and Yu Cheng (Gao and Cheng, 2024).

5.1 Introduction

Low-rank matrix recovery is a popular inverse problem with many applications in ma-

chine learning such as collaborative filtering, image compression, and robust principal com-

ponent analysis (PCA) (Rennie and Srebro, 2005; Fazel et al., 2008; Candès et al., 2011).

In this paper, we study one of the most basic low-rank matrix recovery problems namely

matrix sensing (Candes et al., 2006; Recht et al., 2010). In the matrix sensing problem,

we want to reconstruct a low-rank ground-truth matrix X∗ ∈ Rd1×d2 from a collection of

sensing matrices {Ai}ni=1 and the corresponding linear measurements bi = ⟨Ai, X⟩.

For notational convenience, we define a sensing operator A[·] : Rd1×d2 → Rn such that

A[X] = b with bi = ⟨Ai, X⟩ for i = 1 . . . n. The goal is to solve the following rank-

constrained optimization problem:

min
X∈Rd1×d2

∥A[X]− b∥22 subject to rank(X) ≤ r.

102
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As optimizing over low-rank matrices are often computationally hard, one common ap-

proach is to replace the non-convex low-rank constraint with its convex-relaxation, which

results in the following nuclear norm minimization problem (Recht et al., 2010):

min
X∈Rd1×d2

∥X∥∗ subject to A[X] = b. (5.1)

Another widely-used approach in practice is to consider the unconstrained non-convex

factorized parametrization (Recht et al., 2010; Ge et al., 2017; Bhojanapalli et al., 2016):

min
U∈Rd1×r,V ∈Rd2×r

∥∥∥A[UV ⊤]− b
∥∥∥2
2
. (5.2)

and solve it with some form of gradient descent or alternating minimization.

Existing convex and non-convex approaches all rely on certain assumptions. A standard

assumption in the literature is that the sensing matrices satisfy the Restricted Isometry

Property (RIP), which means that the sensing matrices approximately preserve the norm

of a low-rank matrix. (Formally, 1
L ·∥X∥

2
F ≤

1
n

∑n
i=1 ⟨Ai, X⟩2 ≤ L·∥X∥2F given rank(X) ≤ r

for some parameters r and L.)

In this paper, we relax the RIP condition on the sensing matrices and study a robust

version of the problem, which is often referred to as the semi-random model. More

specifically, an adversary “corrupts” the input data by providing any number of additional

sensing matrices Ai that are adversarially chosen, but the corresponding measurements
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bi = ⟨Ai, X
∗⟩ remain consistent with the ground truth matrix X∗. Consequently, only a

subtset of the sensing matrices satisfy the RIP condition and the rest of them are arbitrary.

This is an intermediate scenario between the average case and the worst case, which arises

more frequently in practice.

To the best of our knowledge, we are the first to study the matrix sensing problem

in this semi-random model. Formally, we consider the following adversary: suppose that

originally there was a collection of RIP sensing matrices {Ai}mi=1 (“good” matrices), then

the adversary augmented some arbitrary {Ai}ni=m+1 (“bad” matrices) and then shuffled all

the sensing matrices. The algorithm is then given the measurements based on the “good”

and “bad” matrices together. The combined sensing matrices are no longer guaranteed to

satisfy the RIP condition, but there exists a subset (indicated by an indicator vector w∗)

that does, i.e., 1
L · ∥X∥

2
F ≤

∑n
i=1w

∗
i ⟨Ai, X⟩2 ≤ L · ∥X∥2F , where w∗

i = 1
m on the original

“good” matrices and w∗
i = 0 on the “bad” matrices added by the adversary. In general,

the subset may be replaced by a convex combination and the indicator vector by a simplex.

Inspired by the adversary for semi-random vector regression in (Kelner et al., 2023a), we

refer to this condition as weighted RIP (wRIP) and formally define it in Definition

5.2.2.

Since the wRIP condition is a more general assumption than RIP, existing solutions

that rely on RIP might fail under the semi-random model with wRIP condition. As stated

in (Kelner et al., 2023a), this type of adversary does not break the problem from an

“information-theoretic perspective”, but affects the problem computationally. In partic-
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ular, existing non-convex approaches for matrix sensing (e.g., 5.2) may get stuck at bad

local minima as the RIP condition is necessary for proving landscape results regarding

the non-convex objective (see, e.g., the counter-examples provided in (Bhojanapalli et al.,

2016). The convex relaxation approach (5.1) does continue to work in the semi-random

model, because the augmented linear measurements are consistent with the ground-truth

matrix X∗ which simply provides additional optimization constraints. However, convex

approaches are often less desirable in practice and can become computationally prohibitive

when d1, d2 > 100 as pointed out in (Recht et al., 2010).

5.1.1 Our Contributions

The limitations of existing algorithms motivate us to pose and study the problem of

semi-random matrix sensing in this paper. We summarize our main contributions below:

• Pose and study matrix sensing in the semi-random model. We introduce the

more general wRIP condition on matrix sensing as a relaxation of the typical RIP

assumption, and provide a solution that is more robust to input contamination. Our

work will serve as a starting point for the design of more efficient robust algorithms for

matrix sensing, as well as other low-rank matrix problems, in the semi-random model.

• Design an efficient robust algorithm for semi-random matrix sensing. Our

algorithm is guaranteed to converge to a global optimum which improves on the existing

non-convex solution (Bhojanapalli et al., 2016) that can get stuck in bad local optima

in the semi-random model, while achieving a comparable running time as existing con-
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vex solution (Recht et al., 2010), informally stated in Theorem 5.1.1 below. A formal

statement can be found in Theorem 5.3.1.

• Adapt a reweighting scheme for semi-random matrix sensing. In contrast to

the non-convex approach that failed and the convex approach that avoided the challenge

posed by the adversary altogether, we study a new approach that directly targets the

semi-random adversary instead. We develop an algorithm using an iterative reweighting

approach inspired by (Kelner et al., 2023a): in each iteration, the algorithm reweights

the sensing matrices to combat the effect of the adversary and then takes a weighted

gradient step that works well based on the current solution.

• Exploit the connection between sparsity and low-rankness. Observing a du-

ality between sparse vectors and low-rank matrices, we draw a parallel between linear

regression and matrix sensing problems. By exploring the structural similarities and

differences between vector and matrix problems, we are able to extend and generalize

the work of (Kelner et al., 2023a) on semi-random sparse vector recovery to the higher

dimensional problem of semi-random matrix sensing. We emphasize that even though

the generalization from vector to matrix problems is natural, the analysis behind the

intuition is often nontrivial and involves different mathematical tools.

We state a simplified version of our main algorithmic result assuming Gaussian design.

The more general result is stated as Theorem 5.3.1 in Section 5.3.
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Theorem 5.1.1 (Semi-random matrix sensing). Suppose the ground-truth matrix X∗ ∈

Rd1×d2 satisfies rank(X∗) ≤ r and ∥X∗∥F ≤ poly(d). Let A1, . . . , An be the sensing ma-

trices and let bi = ⟨Ai, X
∗⟩ be the corresponding measurements. Suppose there exists a

(hidden) set of Ω(dr) sensing matrices with i.i.d. standard Gaussian entries, and the re-

maining sensing matrices are chosen adversarially, where d = max(d1, d2).

There exists an algorithm that can output X ∈ Rd1×d2 such that ∥X −X∗∥F ≤ ϵ with

high probability in time Õ(ndω+1r log(1/ϵ)) 1 where ω < 2.373 is the matrix multiplication

exponent.

5.1.2 Overview of Our Techniques

Since there exists a subset (or a convex combination in general) of the sensing matrices

that satisfy the RIP condition, a natural strategy is to reverse the effect from the adversary

by reweighting the sensing matrices so that they satisfy the RIP condition. However, it is

NP-hard to verify RIP condition on all low-rank inputs, so it is unclear how to preprocess

and “fix” the input in the beginning and then apply existing solutions to matrix sensing.

Instead, we make a trade-off between the frequency of reweighting and the requirement

on the weights by adopting an iterative reweighting approach: in each iteration, we only

aim to find a set of weights so that the weighted matrices satisfy some desirable properties

(not necessarily RIP) with respect to the current estimate X (as opposed to all low-rank

matrices).

1Throughout the paper, we write Õ(f(n)) for O(f(n) polylog f(n)) and similarly for Ω̃(·).
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Inspired by the workflow in (Kelner et al., 2023a), our semi-random matrix sensing

algorithm (Algorithm 5.1) repeatedly calls a halving algorithm to reduce the error of our

estimate arbitrarily small. The halving algorithm (Algorithm 5.2) contracts the upper

bound on ∥X −X∗∥F , which is the error between our current estimate X and the ground

truth X∗, each time it is run. Inside this algorithm is a gradient descent style loop, where

in each iteration we try to minimize a weighted objective function, which is essentially the

weighted ℓ2-norm of A[Xt] − b (the distance to X∗ “measured” by the sensing matrices),

where the weights are provided by an oracle implemented in Algorithm 5.3. The algorithm

proceeds by taking a step opposite to the gradient direction, and the step is then projected

onto a nuclear-norm-bounded ball which is necessary for the weight oracle to continue

working in the next step. As we mentioned before, the weights from the oracle need to

satisfy some nice properties with respect to the current iteration estimate Xt. Ideally,

the property should: firstly, ensure the gradient step makes enough progress towards X∗;

secondly, can be derived from the wRIP condition so that we know such a requirement is

feasible; and lastly, be easily verifiable as opposed to the NP-hard RIP condition.

With the first requirement in mind, we define the weight oracle as in Definition 5.2.5,

adapted from the vector version in (Kelner et al., 2023a). The oracle output should satisfy

two properties, namely the progress and decomposition guarantees, and together they en-

sure the gradient step makes good enough progress toward X∗. Intuitively speaking, the

progress guarantee ensures the gradient step is large in the direction parallel to the “actual”

deviation X −X∗ (as opposed to only reducing the “measured” deviation A[X] − b) and
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thus will make significant progress, while the decomposition guarantee ensures the gradient

step has small contribution and effect in other directions thus will not cancel the progress

after the projection. While the progress guarantee is quantified as an inner product, we

introduce a concept called “norm-decomposition” (Definition 5.2.4), the matrix analogy of

the “short-flat-decomposition” of vectors (Kelner et al., 2023a), to capture the decomposi-

tion guarantee, and we will provide more details later. For the second requirement, we can

loosely relate the two oracle guarantees to the wRIP condition: the (large) progress guar-

antee makes use of the lower bound in wRIP condition
∑n

i=1w
∗
i ⟨Ai,

X
∥X∥F

⟩2 ≥ 1
L , and the

(small) decomposition guarantee makes use of the upper bound
∑n

i=1w
∗
i ⟨Ai,

X
∥X∥F

⟩2 ≤ L.

We introduce a condition called decomposable wRIP (dRIP) (Definition 5.2.3) to for-

mally capture this relation, and we will show that it follows from the wRIP condition thus

we can achieve such an oracle. Lastly, we will show that the oracle properties can be easily

verified, meeting our third requirement.

A formal statement and a road map that leads to our main result can be found in

Section 5.3.

5.1.3 Related Work

Matrix sensing (RIP). There are two main types of existing solutions. The convex-

relaxation formulation 5.1 of the problem can be posed as a semidefinite program via

the standard form primal-dual pair (Recht et al., 2010), where the primal problem has a

(d1 + d2)
2 semidefinite constraint and n linear constraints. State of the art SDP solver

(Jiang et al., 2020) requires running time of Õ(nd2.5) where d = max(d1, d2). The other
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approach uses non-convex formulation 5.2 to reduce the size of the decision variable from

d2 to dr, improving computational efficiency. It is shown in (Bhojanapalli et al., 2016)

that there are no spurious local minima given RIP sensing matrices and incoherent linear

measurements in the non-convex approach, however, it is no longer applicable in the semi-

random model.

Semi-random model. First introduced by (Blum and Spencer, 1995), the semi-random

model has been studied for various graph problems (Feige and Kilian, 2001; Perry and

Wein, 2017; Mathieu and Schudy, 2010; Makarychev et al., 2012). Previously the work of

(Cheng and Ge, 2018) applied the semi-random model to the matrix completion problem,

and recently (Kelner et al., 2023a) studied sparse vector recovery in this model.

Semi-random matrix completion. Low-rank matrix problems such as matrix com-

pletion and matrix sensing have similar optimization landscapes (Ge et al., 2017), thus

development in one often lends insight to another. Prior work (Cheng and Ge, 2018) on

the closely-related problem of matrix completion under the semi-random model showed

that all bad local optima can be eliminated by reweighting the input data via a preprocess-

ing step. It exploits the connection between the observation data matrix and the Laplacian

matrix of a complete bipartite graph, and gives a reweighting algorithm to preprocess the

data in a black-box manner. However, the analogous approach for matrix sensing requires

reweighting a set of matrices to satisfy RIP, which is a condition that is NP-hard to check,

thus is not practical in the matrix sensing problem.
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Semi-random linear regression. In order to overcome the barrier of the reweighting

or preprocessing approach mentioned earlier, we take inspiration from the work of (Kelner

et al., 2023a) on sparse vector recovery under the semi-random model. One of their main

contributions is the “short-flat decomposition”, which is a property that can be efficiently

verified for a given vector (locally), instead of verifying the RIP condition for all sparse

vectors (globally). They provide a projected gradient descent style algorithm, where the

rows of the sensing matrix are reweighted differently in each iteration to ensure a “short-flat

decomposition” exists for the gradient. We draw a parallel between the problem of sparse

vector regression and low-rank matrix sensing, and extend their work on linear regression

of sparse vectors to the more generalized problem of sensing low-rank matrices.

5.2 Preliminaries

5.2.1 Notation

Throughout the paper, we denote the ground-truth low-rank matrix as X∗. We assume

X∗ ∈ Rd1×d2 , rank(X∗) = r, and d1, d2 have the same order of magnitude. Let d =

max(d1, d2).

We write [n] for the set of integers {1, ..., n}. We use ∆n for the nonnegative probability

simplex in dimension n, and Rn
≥0 for the set of vectors with nonnegative coordinates in Rn.

For a vector x, we denote its ℓ1, ℓ2, and ℓ∞-norms as ∥x∥1, ∥x∥2 and ∥x∥∞ respectively,

and write the ith coordinate in x as xi. For a matrix A, we use ∥A∥∗, ∥A∥2, and ∥A∥F for

the nuclear, spectral (operator), and Frobenius norms of A respectively. For a matrix A,



112

we use A(k) = argminrank(A′)≤k ∥A−A′∥F to denote the best rank-k approximation of A;

or equivalently, given the SVD of A =
∑r

i=1 σiuiv
⊤
i , we have A(k) =

∑k
i=1 σiuiv

⊤
i where

σ1, ..., σk are the top k singular values of A.

We write tr(A) for the trace of a square matrix A. For matrices A,B ∈ Rd1×d2 , we write

⟨A,B⟩ for their entrywise inner product ⟨A,B⟩ = ⟨A,B⟩ = tr(A⊤B) =
∑

j,k AjkBjk. A

symmetric matrix A ∈ Rd×d is positive semidefinite (PSD) if and only if A = U⊤U for some

matrix U , and we write A ≼ B if A and B have the same dimension and B −A is positive

semidefinite. We write exp (A) as the matrix exponential of A; if A is diagonalizable as

A = UDU−1 then exp(A) = U exp(D)U−1.

5.2.2 Definitions

We formally define the matrix sensing operator and observation vector below.

Definition 5.2.1 (Matrix Sensing Operator). Given a collection of sensing matrices A =

{Ai}ni=1 ⊂ Rd1×d2, we define the sensing operator A[·] : Rd1×d2 → Rn such that A[X] = b

where bi = ⟨Ai, X⟩ for X ∈ Rd1×d2.

In other words, we have b :=
∑n

i=1 ⟨Ai, X⟩ei where ei is the ith standard basis vector in

Rn. Throughout the paper, we use either A or {Ai}ni=1 to represent the sensing matrices.

To consistently recover a rank-r matrix in general, the number of measurements n

should be at least (d1+d2−r)r (Candes and Plan, 2011), hence we assume n = Ω̃(dr) where

Ω̃ suppresses log factors. In most matrix sensing literature, it is standard to impose the

Restricted Isometry Property (RIP) condition on the sensing matrices. The RIP condition
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states that A[·] is approximately an isometry on low-rank matrices, which means the ℓ2-

norm of the observation vector is close to the Frobenius norm of X∗.

In this paper, we consider a semi-random model and relax the RIP condition as follows:

we require that there exist weights {w∗
i }ni=1 (or w∗ ∈ ∆n) so that the weighted sensing

matrices {
√
w∗
iAi}ni=1 satisfy the RIP condition. We call this relaxed assumption the

wRIP (weighted RIP) condition, following the convention in (Kelner et al., 2023a).

We formally define RIP and wRIP conditions below.

Definition 5.2.2 (RIP and wRIP Conditions). We say a collection of sensing matrices

A = {Ai}ni=1 ⊂ Rd1×d2 satisfies the RIP (Restricted Isometry Property) condition with

parameters r, L, and ρ if the following conditions hold for all X ∈ Rd1×d2 with rank(X) ≤ r:

1. Boundedness: ∥Ai∥2 ≤ ρ;

2. Isometry: 1
L · ∥X∥

2
F ≤

1
n

∑n
i=1 ⟨Ai, X⟩2 ≤ L · ∥X∥2F .

Further, we say A = {Ai}ni=1 satisfies the wRIP (weighted RIP) condition with param-

eters r, L, ρ, if ∃w∗ ∈ ∆n such that the following conditions hold for all X ∈ Rd1×d2 with

rank(X) ≤ r:

1. Boundedness: ∥Ai∥2 ≤ ρ;

2. Isometry: 1
L · ∥X∥

2
F ≤

∑n
i=1w

∗
i ⟨Ai, X⟩2 ≤ L · ∥X∥2F .

Notice that wRIP is a relaxation of the RIP condition, because we can choose w∗
i = 1/n

for all i in the standard RIP setting. More importantly, wRIP is strictly weaker. For
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example, wRIP allows a (possibly majority) fraction of the sensing matrices to be chosen

adversarially. We want to emphasize that the algorithm does not know w∗ — one of the

main challenges of semi-random matrix sensing is that finding w∗ seems computationally

hard, because it is NP-hard to check the RIP condition.

For presenting our algorithm and analysis, we introduce a variant of the wRIP condition

called dRIP (decomposable-wRIP), inspired by Assumption B.1 in (Kelner et al., 2023a).

Definition 5.2.3 (dRIP Condition). We say a collection of sensing matrices A = {Ai}ni=1 ⊂

Rd1×d2 satisfies the dRIP (decomposable wRIP) condition if ∃w∗ ∈ ∆n and constants

L,K, r, ρ ≥ 1, such that for all V ∈ Rd1×d2 satisfying ∥V ∥F ∈ [14 , 1], ∥V ∥∗ ≤ 2
√
2r:

1. Boundedness: ∥Ai∥2 ≤ ρ;

2. Isometry:

1
L ≤

∑n
i=1w

∗
i ⟨Ai, V ⟩2 ≤ L, equivalently 1

L ≤
∑n

i=1w
∗
i u

2
i ≤ L where ui = ⟨Ai, V ⟩;

3. Decomposability:

∃(L, 1
K
√
r
)-norm-decomposition of G∗ =

∑n
i=1w

∗
i ⟨Ai, V ⟩Ai =

∑n
i=1w

∗
i uiAi.

Definition 5.2.4 (Norm Decomposition). We say a matrix G has a (CF , C2)-norm-

decomposition if ∃S and E s.t. G = S + E, and ∥S∥F ≤ CF , ∥E∥2 ≤ C2.

The main difference with wRIP is that dRIP requires the additional “decomposition”

property. Observe that G∗ is the (weighted) gradient at the point V . At a high level, we

would like to decompose the gradient into two matrices, one with small Frobenius norm
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and the other one with small operator norm. Our matrix norm-decomposition is inspired

by the “short-flat-decomposition” for vectors in (Kelner et al., 2023a).

In Section 5.4, we will explain the motivation behind the norm decomposition as well

as how to efficiently verify such a decomposition exists. We will also show that the dRIP

condition is closely related to wRIP (by choosing parameters within a constant factor of

each other) in Section 5.6.3.

A crucial component in our algorithm is a weight oracle inspired by (Kelner et al., 2023a)

that produces a nonnegative weight on each sensing matrix (the weights are in general

different in each iteration), such that the weighted gradient step moves the current solution

closer to X∗. The oracle should output weights that satisfy certain properties which we

term progress and decomposition guarantees. The purpose of these two guarantees is

further explained in the proof of Lemma 5.4.2 in Section 5.6.1.

Definition 5.2.5 (Weight Oracle). We say an algorithm O is a (Cprog, CF )-oracle, if

given as input n matrices A = {Ai}ni=1 ⊂ Rd1×d2 and an vector u = A[V ] ∈ Rn where

V ∈ Rd1×d2, ∥V ∥F ∈ [14 , 1], and ∥V ∥∗ ≤ 2
√
2r, the algorithm O(A, u, δ) returns a weight

vector w ∈ Rn
≥0 such that the following conditions hold with probability at least 1− δ:

1. Progress guarantee:
∑n

i=1wiu
2
i ≥ Cprog;

2. Decomposition guarantee: ∃(CF ,
Cprog

6
√
r
) norm-decomposition of G =

∑n
i=1wiuiAi.

Note that the progress guarantee is equivalent to ⟨G,V ⟩ ≥ Cprog.
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Finally we define numerical rank which we use in our analysis. Numerical rank serves

as a lower bound for the rank of a matrix based on its nuclear norm and Frobenius norm.

That is, we always have Rankn(A) ≤ rank(A).

Definition 5.2.6 (Numerical Rank). The numerical rank of A is Rankn(A) =
∥A∥2∗
∥A∥2F

.

5.3 Semi-Random Matrix Sensing

In this section, we present our main algorithm (Algorithm 5.1) for semi-random matrix

sensing. With high probability Algorithm 5.1 recovers the ground-truth matrix X∗ to

arbitrary accuracy, formally stated in Theorem 5.3.1.

Algorithm 5.1: SemiRandomMatrixSensing(R0, ϵ, δ,A, b)
1: Input: R0 ≥ ∥X∗∥F , b = A[X∗], ϵ > 0, δ ∈ (0, 1);
2: Output: Xout s.t. ∥Xout −X∗∥F ≤ ϵ .
3: X0 ← 0, T ← log R0

ϵ , δ′ ← δ
T , R← R0;

4: for 0 ≤ t ≤ T do
5: Xt+1 ← HalveError(Xt, R,O, δ′,A, b), R← R

2 ;
6: end for
7: Return Xout ← XT ;

Theorem 5.3.1 (Matrix sensing under wRIP). Suppose the ground-truth matrix X∗ ∈

Rd1×d2 satisfies rank(X∗) ≤ r and ∥X∗∥F ≤ R0. Suppose the sensing matrices A = (Ai ∈

Rd1×d2)ni=1 satisfy (r, L, ρ)-wRIP (as in Definition 5.2.2). Let b = A[X∗] ∈ Rn be the

corresponding measurements. For any ϵ, δ > 0, Algorithm 5.1 can output X ∈ Rd1×d2

such that ∥X −X∗∥F ≤ ϵ with probability at least 1 − δ. Algorithm 5.1 runs in time
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O(ndω polylog (d) log (Lδ log R0
ϵ )rρ2L4 log R0

ϵ ) where d = max(d1, d2) and ω < 2.373 is the

matrix multiplication exponent.

Theorem 5.1.1 is a direct corollary of Theorem 5.3.1 under Gaussian design.

Proof of Theorem 5.1.1. When there are Ω(dr) sensing matrices with i.i.d. standard

Gaussian entries, the input sensing matrices satisfy (r, L, ρ)-wRIP for L = O(1) and ρ =

O(d1/2) with probability at least 1 − 1
poly(d) . This follows from a standard proof for RIP

and the fact that we can ignore any sensing matrices with ∥Ai∥2 ≫ d1/2. We assume that

the wRIP condition is satisfied.

By Theorem 5.3.1, when L = O(1), ρ = O(d1/2), R0 = poly(d) and δ = 1
poly(d) ,

Algorithm 5.1 can output a solution X such that ∥X −X∗∥F ≤ ϵ with high probability.

The runtime of Algorithm 5.1 can be simplified to Õ(ndω+1r log(1/ϵ)). ■

We first provide a road map for our analysis for proving Theorem 5.3.1:

• Our main algorithm runs a “halving” subroutine for log R0
ϵ iterations to reduce the error

to ϵ. Each call to this subroutine reduces the upper bound on the distance between the

current solution and the ground truth X∗ by half. This halving subroutine runs in time

O(ndω polylog (d) log (Lδ · log
R0
ϵ )rρ2L4) according to Lemmas 5.4.2 and 5.4.3.

• In Section 5.4, we present the halving algorithm (Algorithm 5.2). It depends on a

(Ω(1), O(1))-oracle, and Lemma 5.4.1 shows that the oracle guarantees can be easily

verified. The algorithm’s correctness and running time are analyzed in Lemma 5.4.2

and Lemma 5.4.3.
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• In Section 5.5 we present the weight oracle required by the halving algorithm. We

first show in Lemma 5.5.1 that the wRIP condition implies that the sensing matrices

satisfy the dRIP condition tailored to the design of the oracle. Then we present an

implementation of the oracle in Algorithm 5.3 based on the dRIP condition, and analyze

its correctness and running time in Lemma 5.5.3 and Lemma 5.5.6.

5.4 Algorithm for Halving the Error

In this section, we present Algorithm 5.2 (HalveError). Algorithm 5.2 takes an estimate

Xin with ∥Xin −X∗∥F ≤ R and outputs Xout such that ∥Xout −X∗∥F ≤
R
2 . This is the

matrix version of the HalfRaidusSparse (Kelner et al., 2023a) algorithm for vectors.

Algorithm 5.2: HalveError(Xin, R,O, δ,A, b) (Kelner et al., 2023a)

1: Input: Rank-r matrix Xin ∈ Rd1×d2 , ∥Xin −X∗∥F ≤ R, O is a (1, 12L2)-oracle for A
with failure probability δ ∈ (0, 1), linear measurements b = A[X∗] .

2: Output: Xout ∈ Rd1×d2 s.t. ∥Xout −X∗∥F ≤
R
2 w.p. ≥ 1− δ and rank(Xout) ≤ r .

3: X0 ← Xin, X = {X ∈ Rd1×d2 | ∥X −Xin∥∗ ≤
√
2rR}, η = 1

288L4 , T = 6
η .

4: for 0 ≤ t ≤ T do
5: ut ← 1

R(A[Xt]− b) ; /* ut = A[Xt−X∗

R ] where (ut)i =
1
R⟨Ai, Xt −X∗⟩ */

6: wt ← O(A, ut, δ
T ) ;

7: Gt ←
∑n

i=1 (wt)i(ut)iAi ;
8: if O output satisfies the progress and decomposition guarantees on ut then
9: Xt+1 ← argminX∈X ∥X − (Xt − ηRGt)∥2F ;
10: else
11: Return Xout ← (Xt)(r) ; /* Rank-r approximation of Xt */

12: end if
13: end for
14: Return Xout ← (XT )(r) ;
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A crucial requirement of the algorithm is a (Ω(1), O(1))-oracle for A. In each iteration,

the oracle takes a vector ut = A[Xt]−b
R , which is the (normalized) “measured deviation”

between current estimate Xt and X∗, and computes a weight vector wt. The algorithm

then tries to minimize the weighted objective function by gradient descent:

Objective: ft(X) =
1

2

n∑
i=1

(wt)i⟨Ai,
X −X∗

R
⟩
2

, i.e. ft(Xt) =
1

2

n∑
i=1

(wt)i(ut)
2
i ,

Gradient: ∇Xft(X) =

n∑
i=1

(wt)i⟨Ai,
X −X∗

R
⟩Ai, i.e. Gt = ∇Xft(X)|Xt =

n∑
i=1

(wt)i(ut)iAi.

Ideally in the next iteration, we would like to make a step from Xt in the opposite direction

of the gradient Gt with the goal of minimizing the deviation in the next iteration. However,

we cannot take a step exactly in the direction of Gt, and our movement is constrained

within a ball of (nuclear norm) radius
√
2rR centered at Xin, namely the region X = {X |

∥X −Xin∥∗ ≤
√
2rR}. Nuclear norm is used as a proxy to control the rank and Frobenius

norm of Xt simultaneously throughout the algorithm: firstly, since ∥Xin −X∗∥F ≤ R,

it makes sense that in each iteration ∥Xt −Xin∥F ≤ R as well; secondly, while trying

to minimize the difference between Xt and X∗, we also want to ensure the rank of Xt

is relatively small, i.e. rank(Xt) ≤ O(r). To tie things together, we use the following

relationship between rank and numerical rank:

rank(Xt −Xin) ≥ Rankn(Xt −Xin) =
∥Xt −Xin∥2∗
∥Xt −Xin∥2F

.
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Assuming rank(Xt) ≥ rank(Xin) and ∥Xt −Xin∥F ≤ R throughout, then rank(Xt) ≥

∥Xt−Xin∥2∗
2R2 . Roughly speaking, in order for rank(Xt) ≤ O(r), it is necessary that

∥Xt −Xin∥∗ ≤ O(
√
rR), i.e. Xt is inside some nuclear norm ball X of radius O(

√
rR)

centered at Xin. We set the radius of X to be
√
2rR so that X∗ ∈ X , since ∥Xin −X∗∥F ≤

R, rank(Xin −X∗) ≤ 2r therefore ∥X∗ −Xin∥∗ ≤
√
2rR. Thus we confine our movement

within this nuclear norm ball of radius
√
2rR centered at Xin throughout the algorithm,

and take the rank-r approximation of the last Xt to ensure rank(Xout) ≤ r upon the

termination of the algorithm.

To analyze the algorithm, first we show how to check whether the weight oracle output

satisfies the progress and decomposition guarantees. The progress condition
∑n

i=1wiu
2
i ≥ 1

is trivial to verify, and we check whether G is (CF , C2)-decomposable using Lemma 5.4.1,

with details and proof deferred to Section 5.6.1.

Lemma 5.4.1 (Verify norm decomposition). Given a matrix G = UΣV ⊤ =
∑d

i=1 σiuiv
⊤
i

and C2 > 0, suppose σ1 ≥ ... ≥ σk > C2 ≥ σk+1... ≥ σd, then for all ∥E∥2 ≤ C2, we have

∥G− E∥2F ≥
∑k

i=1 (σi − C2)
2.

The following lemmas analyze the algorithm’s correctness and show that it terminates

with the desired distance contraction, as well as its running time. The proof is deferred to

Section 5.6.1.
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Lemma 5.4.2 (Algorithm 5.2: HalveError). Given a (1, 12L2)-oracle for A with failure

probability δ ∈ (0, 1), where A satisfies the dRIP condition 5.2.3, and b = A[X∗], Algorithm

5.2 succeeds with probability at least 1− δ.

Lemma 5.4.3 (Running time of Algorithm 5.2). Algorithm 5.2 with failure probability δ

runs in time O(ndω polylog (d) log L
δ rρ

2L4).

The crucial part of Lemma 5.4.2 shows that if current estimate Xt is sufficiently far

from X∗, i.e. ∥Xt −X∗∥F ≥
1
4R, then according to Lemma 5.5.3 with high probability

the weight oracle produces an output satisfying the progress and decomposition guar-

antees, and each iteration of Algorithm 5.2 decreases the distance to X∗ by a constant

factor: ∥Xt+1 −X∗∥2F ≤
(
1− η

2

)
· ∥Xt −X∗∥2F , thus after sufficient number of iterations

the distance to X∗ will be halved. On the other hand, if the weight oracle fails, with high

probability the current estimate Xt is already sufficiently close to X∗, thus the algorithm

can terminate early.

5.5 Oracle for Reweighting the Input

In this section, we present an algorithm (Algorithm 5.3) that serves as the weight oracle

required by the error-halving algorithm (Algorithm 5.2). Algorithm 5.3 is the matrix ver-

sion of the StepOracle (Kelner et al., 2023a) algorithm for vectors. We first state that, given

proper choices of parameters within a constant factor, the wRIP condition 5.2.2 implies

the dRIP condition 5.2.3, which is a more suitable property for our oracle implementation.

The proof is deferred to Section 5.6.3.



122

Lemma 5.5.1 (wRIP =⇒ dRIP ). If A satisfies wRIP condition 5.2.2 with parameters

r′, L′, ρ, then A satisfies the dRIP condition 5.2.3 with parameters L,K, r, ρ such that

L = Θ(L′), r = Θ(r′), and some constant K ≥ 1.

Now we are ready to present an implementation of the weight oracle in Algorithm 5.3

based on the dRIP condition. This algorithm takes as inputs the dRIP sensing matrices

A and a vector u. If u is an applicable input to the oracle, with high probability the

algorithm outputs a weight vector w satisfying the progress and decomposition guarantees

as in Definition 5.2.5.

First we introduce some potential functions used in the algorithm, adapted from vector

versions from (Kelner et al., 2023a).

Definition 5.5.2 (Potential Functions in Algorithm 5.3). For sensing matrices A =

{Ai}ni=1 and input u ∈ Rn to the oracle, we define the following potential functions on

weight vector w ∈ Rn:

• Progress potential: Φprog(w) =
∑n

i=1wiu
2
i .

• Decomposition potential: Φdc(w) = min∥S∥F≤L∥w∥1

(
µ2 log [F (Gw − S)]

)
+

∥w∥1
4CLr ,

where Gw =
∑n

i=1wiuiAi and F (E) = tr exp
(
E⊤E
µ2

)
.

• Overall potential: Φ(w) = Φprog(w)− CrΦdc(w).

Note that F (E) =
∑d

j=1 exp

(
σ2
j (E)

µ2

)
where σj(E) is the jth singular value of E, due

to properties of the exponential of a diagonalizable matrix.
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The progress and decomposition potential functions control the progress and decom-

position guarantees respectively, and later we will show that the termination condition is

implied by the overall potential Φ ≥ 0. Consequently, by maximizing the overall potential

each round, the algorithm tries to make as much progress as possible while ensuring G is

decomposable.

Algorithm 5.3: Weight oracle O(A, u, δ) (Kelner et al., 2023a)

1: Input: Sensing operator A satisfying dRIP condition 5.2.3, u ∈ Rn .
2: Output: w ∈ Rn such that the algorithm is a (1, 12L2)-oracle as in Definition 5.2.5

with probability ≥ (1− δ).
3: C ← 108, µ← 1√

Cr log d
, η ← 1

Krρ2 log d
, N ′ ← log2

1
δ , N ←

8Ln
η .

4: for 0 ≤ k ≤ N ′ do
5: w0 ← 0;
6: for 0 ≤ t ≤ N do
7: if Φprog(wt) ≥ 1 then
8: Return w ← wt;
9: else
10: Sample i ∈ [n] uniformly random;
11: st ← argmaxs∈[0,η]Φ(wt + sei);
12: wt+1 ← wt + stei;
13: end if
14: end for
15: end for
16: Return w ← 0 ;

Lemma 5.5.3 (Algorithm 5.3: weight oracle). Suppose A satisfies dRIP condition 5.2.3

and u is an applicable input to the weight oracle (that is, u = A[V ] ∈ Rn for some V ∈

Rd1×d2 satisfying ∥V ∥F ∈ [14 , 1] and ∥V ∥∗ ≤ 2
√
2r). Then, Algorithm 5.3 is a (1, 12L2)-

oracle for A (as in Definition 5.2.5) with failure probability at most δ.
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We prove this lemma in two steps: first we show in Lemma 5.5.4 that the output is

valid; then in Lemma 5.5.5 we show that the oracle achieves the success probability. Finally

we analyze the running time of Algorithm 5.3 in Lemma 5.5.6. The proofs follow similar

techniques as the results on vectors (Lemma 11, 13, 14 (Kelner et al., 2023a)), and are

deferred to Section 5.6.2.

Lemma 5.5.4 (Correctness of Algorithm 5.3). If Algorithm 5.3 terminates from the inner

loop, the output satisfies the progress and decomposition guarantees as defined in 5.2.5.

Lemma 5.5.5 (Success probability of Algorithm 5.3). Given A satisfying dRIP condition

and applicable input u, Algorithm 5.3 terminates from the inner loop with probability at

least 1− δ.

Lemma 5.5.6 (Running time of Algorithm 5.3). Algorithm 5.3 with failure probability δ

runs in time O(ndω polylog (d) log 1
δ rρ

2).

Although our weight oracle is inspired by the step oracle in (Kelner et al., 2023a)

for vectors, it is worth noting that Lemma 5.6.2, a key component used in the proof of

Lemma 5.5.5, is significantly different in the matrix case compared to the vector case.

Lemma 5.6.2 upper bounds the increase in Φdc each round, which is then used to provide

a lower bound for the increase in Φ. Combining Lemma 5.6.2 with our earlier remark that

the algorithm terminates when Φ ≥ 0 gives us the number of iterations needed to terminate

with high probability.



125

5.6 Omitted Proofs

5.6.1 Omitted Proofs From Section 5.4

To check whether G is (CF , C2)-decomposable using Lemma 5.4.1, we first consider the

following construction. Suppose the SVD of G is G = UΣV ⊤ =
∑d

i=1 σiuiv
⊤
i . Let S =∑d

i=1 µiuiv
⊤
i with µi = max(σi − C2, 0) and let E =

∑d
i=1 λiuiv

⊤
i with λi = min(C2, σi).

In other words, suppose σ1 ≥ ... ≥ σk > C2 ≥ σk+1... ≥ σd. For i ≤ k (i.e., σi > C2),

let µi = σi − C2 and λi = C2; for i > k (i.e., σi ≤ C2), let µi = 0 and λi = σi. We have

G = S + E with ∥E∥2 ≤ C2, and ∥S∥F =
√∑k

i=1 (σi − C2)2. Then by Lemma 5.4.1, G is

(CF , C2)-norm-decomposable if and only if ∥S∥F ≤ CF because:

• if ∥S∥F ≤ CF , we have a valid (CF , C2)-norm-decomposition for G;

• if ∥S∥F > CF , a valid (CF , C2)-norm-decomposition does not exist for G.

Proof of Lemma 5.4.1. Fix any E with ∥E∥2 ≤ C2. Observe that for all 1 ≤ i ≤ k, we

have u⊤i Gvi = σi and −C2 ≤ u⊤i Evi ≤ C2. Consequently, for all i ≤ k, we have σi > C2

and u⊤i (G− E)vi ≥ σi − C2 > 0.

Let S = G− E, we have

∥S∥2F =
∥∥∥U⊤SV

∥∥∥2
F
=
∑
i,j

(
U⊤SV

)2
ij

≥
d∑

i=1

(
U⊤SV

)2
ii
≥

k∑
i=1

(
U⊤SV

)2
ii

=

k∑
i=1

(u⊤i Svi)
2 ≥

k∑
i=1

(σi − C2)
2. ■
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Proof of Lemma 5.4.2. We will first show that the distance to X∗ decreases by a con-

stant factor after each iteration:

∥Xt+1 −X∗∥2F ≤
(
1− η

2

)
· ∥Xt −X∗∥2F

Consider iteration t in Algorithm 5.2: Xt+1 = argminX∈X ∥X − (Xt − ηRGt)∥2F . Tak-

ing the gradient of ∥X − (Xt − ηRGt)∥2F at X = Xt+1, we get 2[Xt+1 − (Xt − ηRGt)].

Since X∗ ∈ X and Xt+1 is the local minimizer in X :

2⟨Xt+1 − (Xt − ηRGt), Xt+1 −X∗⟩ ≤ 0.

Rearranging the terms gives

2ηR⟨Gt, Xt+1 −X∗⟩ ≤ −2⟨Xt+1 −Xt, Xt+1 −X∗⟩.

To simplify, letD = Xt+1−Xt, Dt = Xt−X∗, Dt+1 = Xt+1−X∗. Note thatD+Dt = Dt+1.

Then the inequality becomes

2ηR⟨Gt, Dt+1⟩ ≤ −2⟨D,Dt+1⟩

= ⟨D −Dt+1, D −Dt+1⟩ − ⟨D,D⟩ − ⟨Dt+1, Dt+1⟩

= ⟨Dt, Dt⟩ − ⟨D,D⟩ − ⟨Dt+1, Dt+1⟩.
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Rearrange terms, we have

∥Dt∥2F − ∥Dt+1∥2F ≥ 2ηR⟨Gt, Dt+1⟩+ ⟨D,D⟩

= 2ηR⟨Gt, Dt⟩+ 2ηR⟨Gt, D⟩+ ⟨D,D⟩. (5.3)

Inequality (5.3) provides a lower bound on the distance contraction after each iteration.

We break the right-hand side into two parts. The first term 2ηR⟨Gt, Dt⟩ corresponds to the

magnitude of the step Gt in the direction Dt = Xt−X∗, which is the progress made by this

step. To lower bound it, we will use the progress guarantee of the (1, 12L2)-oracle. Recall

ut =
1
R(A[Xt] − b) and consider Vt =

1
R(Xt −X∗) = 1

RDt so that ut = A[Vt]. Given that

the oracle’s output satisfies the progress guarantee, which states that
∑n

i=1 (wt)i(ut)
2
i ≥ 1,

we have:

2ηR⟨Gt, Dt⟩ = 2ηR2⟨Gt, Vt⟩

= 2ηR2
〈 n∑
i=1

(wt)i(ut)iAi, Vt

〉
= 2ηR2

n∑
i=1

(wt)i(ut)
2
i

≥ 2ηR2. (5.4)

The remaining term 2ηR⟨Gt, D⟩+⟨D,D⟩might be negative and cancel some of our progress.

A natural attempt is to try to bound it using 2ηR⟨Gt, D⟩+⟨D,D⟩ ≥ −η2R2⟨Gt, Gt⟩. How-
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ever, the wRIP condition of A does not provide any guarantee on ∥Gt∥2F . (In fact, we can

derive that ∥G∥2 ≤ L from wRIP, but the best we can hope for is ∥G∥2F ≤ rank(G) · ∥G∥22

where rank(G) ≤ d.) This motivates the decomposition property in the dRIP condi-

tion 5.2.3 and in the weight oracle. The idea is that even though we cannot directly bound

∥Gt∥F , we can in fact lower bound 2ηR⟨Gt, D⟩+ ⟨D,D⟩ the term by decomposing Gt into

a Frobenius-norm-bounded matrix St, and an operator-norm-bounded matrix Et. Specifi-

cally, we will use the decomposition guarantee of the (1, 12L2)-oracle, which states that

there exists norm-decomposition of Gt = St + Et where ∥St∥F ≤ 12L2 and ∥Et∥2 ≤
1

6
√
r
.

As our movement is confined in X , D = Xt+1 −Xt is nuclear-norm-bounded so the inner

product ⟨Et, D⟩ can be bounded by generalized Holder’s inequality. Recall η = 1
288L4 .

2ηR⟨Gt, D⟩+ ⟨D,D⟩ = 2ηR⟨Et, D⟩+ 2ηR⟨St, D⟩+ ⟨D,D⟩

≥ −2ηR ∥Et∥2 · ∥D∥∗ − η2R2⟨St, St⟩

≥ −2ηR · 1

6
√
r
· 2
√
2rR− η2R2 · 144L4

≥ −3

2
ηR2. (5.5)

Putting inequalities 5.3, 5.4 and 5.5 together:

∥Dt∥2F − ∥Dt+1∥2F ≥ 2ηR2 − 3

2
ηR2 ≥ η

2
· ∥Dt∥2F ,

∥Dt+1∥2F ≤
(
1− η

2

)
· ∥Dt∥2F .
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In the case that the algorithm terminates after T = 6
η iterations,

∥XT −X∗∥2F ≤
(
1− η

2

)T
· ∥Xin −X∗∥2F ≤ exp

(
−ηT

2

)
·R2 ≤ 1

16
R2,

∥Xout −X∗∥F ≤ ∥Xout −XT ∥F + ∥XT −X∗∥F ≤ 2∥XT −X∗∥F ≤
1

2
R.

The last inequality comes from Xout being the best rank-r approximation of XT .

In the case that the algorithm terminates early at Line 11, we can assume with proba-

bility at least 1− δ
T that the weight oracle would have succeeded given applicable input ut.

Then failure to satisfy the progress and decomposition guarantees means that ut is not an

applicable input, which means Vt does not satisfy the norm constraint in the weight oracle.

∥Vt∥∗ ≤ 2
√
2r is guaranteed because Xt ∈ X , and ∥Vt∥F = 1

R∥Xt −X∗∥F is decreasing in

each round, so we must have ∥Vt∥F < 1
4 , which means ∥Xt −X∗∥F < 1

4R. By the same

argument as above, ∥Xout −X∗∥F ≤
1
2R.

Finally, by a union bound on the failure probability of the weight oracle, the algorithm

succeeds with probability at least 1− δ. ■

Proof of Lemma 5.4.3. Algorithm 5.2 has a for-loop that’s repeated for T = O(L4)

times.

Inside the loop, line 5 and 7 takes linear time O(nd2). Computing wt using the oracle

(line 6) runs in time O(ndω polylog (d) log L
δ rρ

2) according to Lemma 5.5.6. Line 8 through

line 12 are all upper bounded by time of SVD, which is on the same order of matrix

multiplication O(dω) (Demmel et al., 2007), with current best of O(d2.373)(Williams, 2014).
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In particular, verifying the oracle guarantees (line 8) can be solved as an eigenvalue problem.

Finding Xt+1 (line 9) is equivalent to projecting X
′
t+1 :=

Xt−ηRGt−Xin√
2rR

onto the unit nuclear

norm ball. We first perform SVD on X ′
t+1 then binary search for the largest truncation

from its singular values to reach the nuclear norm sphere in time O(d log d), and the entire

projection step is dominated by SVD. Finally the output step consists of SVD and matrix

multiplication.

The overall running time of the algorithm is dominated by the weight oracle, so the

total running time is O(ndω polylog (d) log L
δ rρ

2L4). ■

5.6.2 Omitted Proofs From Section 5.5

First we state a couple of lower bounds related to the decomposition potential function,

similar to Lemma 11 (Kelner et al., 2023a) for vectors.

Claim 5.6.1. µ2 log[F (E)] ≥ µ2 log(d) and µ2 log[F (E)] ≥ ∥E∥22.

Proof. For the first lower bound, exp

(
σ2
j (E)

µ2

)
≥ 1 for all j ∈ [d], therefore

F (E) =

d∑
j=1

exp

(
σ2
j (E)

µ2

)
≥ d.

For the second lower bound,

F (E) =
d∑

j=1

exp

(
σ2
j (E)

µ2

)
≥ exp

(
σ2
1(E)

µ2

)
= exp

(
∥E∥22
µ2

)
. ■
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Proof of Lemma 5.5.4. We start with w0 = 0, which means Φprog(w0) = 0, Φdc(w0) =

µ2 log d, and Φ(w0) = 0− Crµ2 log d = −1.

At each round, since st is chosen to maximize Φ(wt + stei), in particular if we choose

st = 0 then Φ(wt+1) = Φ(wt), so Φ(wt+1) ≥ Φ(wt) which is non-decreasing. By defi-

nition Φprog(wt) is also non-decreasing, and increases by at most 1 each round, because

Φprog(wt+1)− Φprog(wt) = stu
2
i ≤ η(∥Ai∥2 ∥V ∥∗)2 ≤ 8ηrρ2 ≤ 8

K log d ≤ 1. Φdc(wt) may not

be monotone, but we have Φdc(wt) ≥ µ2 log d.

Suppose the algorithm terminates at round t during one of the inner loops, which means

Φprog(wt−1) < 1 and 1 ≤ Φprog(wt) < 2.

Progress guarantee: Φprog(wt) =
∑n

i=1 (wt)iu
2
i ≥ 1 is satisfied upon termination.

Decomposition guarantee:

Φ(wt) = Φprog(wt)− CrΦdc(wt) ≥ Φ(w0) = −1,

=⇒ min
∥S∥F≤L∥w∥1

(
µ2 log [F (Gw − S)]

)
+
∥wt∥1
4CLr

= Φdc(wt) ≤
Φprog(wt) + 1

Cr
≤ 3

Cr
,

min
∥S∥F≤L∥wt∥1

(
µ2 log [F (Gwt − S)]

)
≤ 3

Cr
=⇒ ∃ ∥S∥F ≤ L ∥wt∥1 s.t. ∥Gwt − S∥22 ≤

3

Cr
,

and
∥wt∥1
4CLr

≤ 3

Cr
=⇒ ∥wt∥1 ≤ 12L.

So there exist ∥S∥F ≤ 12L2 and ∥E∥2 = ∥G− S∥2 ≤
√
3√
Cr

= 1
6
√
r
which satisfy the

decomposition guarantee.
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Notice that for any round t′ < t, Φprog(wt′) < 1, we also have Φdc(wt′) ≤
Φprog(wt′ )+1

Cr ≤

2
Cr , so Φdc(wt) ≤ 3

Cr throughout the algorithm, which is a fact we will use later in Lemma

5.6.2. ■

Proof of Lemma 5.5.5. We first show the probability that the algorithm terminates

from the inner loop is at least 1
2 , i.e., Pr[Φprog(wt) ≥ 1] ≥ 1

2 for some t ≤ N .

Notice that Φ(wt) = Φprog(wt) − CrΦdc(wt) ≥ 0 =⇒ Φprog(wt) ≥ CrΦdc(wt) ≥

CrΦdc(w0) = 1, therefore the algorithm starts with Φ(w0) = −1 and will terminate once

Φ(wt) ≥ 0 . Also notice that throughout the algorithm Φ(wt) < 1 because Φprog(wt) < 2

and CrΦdc(wt) ≥ 1 (from proof of Lemma 5.5.4).

To prove by contradiction, assume that Pr[Φprog(wt) ≥ 1] < 1
2 for all t ≤ N , i.e.,

Pr[continue] ≥ 1
2 for all rounds. We will lower bound the expected increase in Φ(wt)

each round, and we will show that with sufficiently large N , E[Φ(wN )] ≥ 1 contradicting

Φ(wt) < 1 for all t ≤ N .

Recall that Φ(wt) = Φprog(wt)− CrΦdc(wt), the lower bound for increase in Φprog(wt)

is provided by dRIP condition on A and applicable input u. The upper bound for expected

increase in Φdc(wt) is provided by Lemma 5.6.2.
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Given the algorithm continues at round t ≤ N , consider choosing st = ηw∗
i so that

w′ = wt + ηw∗
i ei, then the expected increase in Φ is at least:

E[Φ(wt+1)− Φ(wt) | continue] = E[Φprog(wt+1)− Φprog(wt)]− CrE[Φdc(wt+1)− Φdc(wt)]

≥ E
[
Φprog(w

′)− Φprog(wt)
]
− CrE

[
Φdc(w

′)− Φdc(wt)
]

=
1

n

n∑
i=1

ηw∗
i u

2
i − Cr

(
E
[
Φdc(w

′)
]
− Φdc(wt)

)
≥ η

Ln
− Cr · η

2CLnr

=
η

2Ln
.

Given the algorithm stops after round t, E[Φ(wt+1)− Φ(wt) | stop] = 0. Overall:

E[Φ(wt+1)− Φ(wt)] = E[Φ(wt+1)− Φ(wt) | continue] · Pr[continue] + 0

≥ η

2Ln
· Pr[continue] .

By choosing a sufficiently large N = 8Ln
η :

E[Φ(wN )] ≥ Φ(w0) +
ηN

2Ln
· Pr[continue] ≥ −1 + ηN

4Ln
≥ 1,

contradicting Φ(wt) < 1. This means each inner loop of the algorithm will terminate with

probability greater than 1
2 . Finally, we boost the success probability to (1 − δ) using the

outer loop with N ′ = log2
1
δ iterations. ■
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Lemma 5.6.2 provides a crucial bound used in the proof. Even though it achieves similar

result as Lemma 13 (Kelner et al., 2023a) on the potential functions defined for vectors,

analyzing the potential function defined for matrices involves very different techniques.

Lemma 5.6.2 (Potential increase upper bound). Given w ∈ Rn s.t. Φdc(w) ≤ 3
Cr , by

choosing a sufficiently large value for K, for w′ = w + ηw∗
i ei, we have:

Ei∈[n]
[
Φdc(w

′)
]
≤ Φdc(w) +

η

2CLnr
.

The assumption Φdc(w) ≤ 3
Cr is justified in the proof of Lemma 5.5.4.

Proof. First we introduce some notation:

Denote Φop(w) = min∥S∥F≤L∥w∥1

(
µ2 log [F (Gw − S)]

)
, so that Φdc(w) = Φop(w) +

∥w∥1
4CLr .

LetG∗ =
∑n

i=1w
∗
i uiAi, and by dRIP condition 5.2.3, we know ∃(L, 1

K
√
r
)-norm-decomposition

of G∗ = S∗ + E∗, where ∥S∗∥F ≤ L and ∥E∗∥2 ≤
1

K
√
r
. Let G =

∑n
i=1wiuiAi, and

S = argminΦop(w) so that Φop(w) = µ2 log[F (G − S)], and let E = G − S. Let

G′ =
∑n

i=1w
′
iuiAi.

Using these notation and
∑n

i=1w
∗
i = 1:

E
i∈[n]

[
Φdc(w

′)
]
= E

i∈[n]

[
Φop(w

′) +
∥w′∥1
4CLr

]
= E

i∈[n]

[
Φop(w

′) +
∥w∥1 + ηw∗

i

4CLr

]
= E

i∈[n]

[
Φop(w

′)
]
+
∥w∥1
4CLr

+
η

4CLnr
.
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We need to show Ei∈[n][Φdc(w
′)] ≤ Φdc(w) +

η
2CLnr = Φop(w) +

∥w∥1
4CLr +

η
2CLnr , equivalently

Ei∈[n]
[
Φop(w

′)
]
≤ Φop(w) +

η

4CLnr
.

Consider S′ = S+ηw∗
i S

∗. We have ∥S′∥F ≤ ∥S∥F+ηw∗
i ∥S∗∥F ≤ L·∥w∥1+ηw∗

iL = L·∥w′∥1,

so S′ is a valid argument for Φop(w
′) = min∥S∥F≤L∥w′∥1

(
µ2 log [F (G′ − S)]

)
, therefore

Φop(w
′) ≤ µ2 log[F (G′ − S′)]. Let E′ = G′ − S′ = G + ηw∗

i uiAi − S − ηw∗
i S

∗ = E + Z(i)

where Z(i) = ηw∗
i uiAi−ηw∗

i S
∗. Using these and the concavity of the log function, we have

Ei∈[n]
[
Φop(w

′)
]
≤ 1

n

n∑
i=1

µ2 log[F (G′ − S′)] =
1

n

n∑
i=1

µ2 log[F (E + Z(i))]

≤ µ2 log

[
1

n

n∑
i=1

(
F (E + Z(i))

)]
.

It suffices to show

µ2 log

[
1

n

n∑
i=1

(
F (E + Z(i))

)]
≤ Φop(w) +

η

4CLnr
= µ2 log[F (E)] +

1

4CL

η

nr
.
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Expanding the left hand side:

µ2 log

[
1

n

n∑
i=1

F (E + Z(i))

]

= µ2 log

[
1

n

n∑
i=1

tr exp

(
E⊤E + Z(i)⊤Z(i) + E⊤Z(i) + Z(i)⊤E

µ2

)]

≤ µ2 log

[
1

n

n∑
i=1

tr

[
exp

(
E⊤E

µ2

)
· exp

(
Z(i)⊤Z(i) + E⊤Z(i) + Z(i)⊤E

µ2

)]]

= µ2 log

[
tr

[
exp

(
E⊤E

µ2

)
· 1
n

n∑
i=1

exp

(
Z(i)⊤Z(i) + E⊤Z(i) + Z(i)⊤E

µ2

)]]

≤ µ2 log

[
tr exp

(
E⊤E

µ2

)
·

∥∥∥∥∥ 1n
n∑

i=1

exp

(
Z(i)⊤Z(i) + E⊤Z(i) + Z(i)⊤E

µ2

)∥∥∥∥∥
2

]

= µ2 log [F (E)] + µ2 log

∥∥∥∥∥ 1n
n∑

i=1

exp

(
Z(i)⊤Z(i) + E⊤Z(i) + Z(i)⊤E

µ2

)∥∥∥∥∥
2

.

The first inequality uses Golden-Thompson Inequality (stated as Lemma 5.6.10), and the

second inequality follows from Lemma 5.6.3. Finally it suffices to show

µ2 log

∥∥∥∥∥ 1n
n∑

i=1

exp

(
Z(i)⊤Z(i) + E⊤Z(i) + Z(i)⊤E

µ2

)∥∥∥∥∥
2

≤ 1

4CL

η

nr
.
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We will use the approximation exp(X) ≼ I +X +X2 for symmetric X with ∥X∥2 ≤ 1.

The argument in the exponential satisfies this condition as justified in Claim 5.6.5. We

will also use log (1 + x) ≤ x ∀x ≥ 0.

µ2 log

∥∥∥∥∥ 1n
n∑

i=1

exp

(
Z(i)⊤Z(i) + E⊤Z(i) + Z(i)⊤E

µ2

)∥∥∥∥∥
2

≤ µ2 log

[
1

n

n∑
i=1

∥∥∥∥∥exp
(
Z(i)⊤Z(i) + E⊤Z(i) + Z(i)⊤E

µ2

)∥∥∥∥∥
2

]

≤ µ2 log

[
1

n

n∑
i=1

∥∥∥∥∥I + Z(i)⊤Z(i) + E⊤Z(i) + Z(i)⊤E

µ2
+

(Z(i)⊤Z(i) + E⊤Z(i) + Z(i)⊤E)2

µ4

∥∥∥∥∥
2

]

≤ µ2 log

[
∥I∥2 +

∥∥∥∥∥ 1n
n∑

i=1

Z(i)⊤Z(i)

µ2

∥∥∥∥∥
2

+

∥∥∥∥∥ 1n
n∑

i=1

E⊤Z(i) + Z(i)⊤E

µ2

∥∥∥∥∥
2

+

∥∥∥∥∥ 1n
n∑

i=1

(Z(i)⊤Z(i) + E⊤Z(i) + Z(i)⊤E)2

µ4

∥∥∥∥∥
2

]

≤ µ2 log

[
∥I∥2 +

∥∥∥∥∥ 1n
n∑

i=1

Z(i)⊤Z(i)

µ2

∥∥∥∥∥
2

+

∥∥∥∥∥ 1n
n∑

i=1

E⊤Z(i) + Z(i)⊤E

µ2

∥∥∥∥∥
2

+

∥∥∥∥∥ 1n
n∑

i=1

2(Z(i)⊤Z(i))2

µ4

∥∥∥∥∥
2

+

∥∥∥∥∥ 1n
n∑

i=1

2(E⊤Z(i) + Z(i)⊤E)2

µ4

∥∥∥∥∥
2

]

≤ µ2

∥∥∥∥∥ 1n
n∑

i=1

Z(i)⊤Z(i)

µ2

∥∥∥∥∥
2

+ µ2

∥∥∥∥∥ 1n
n∑

i=1

E⊤Z(i) + Z(i)⊤E

µ2

∥∥∥∥∥
2

+ 2µ2

∥∥∥∥∥ 1n
n∑

i=1

(Z(i)⊤Z(i))2

µ4

∥∥∥∥∥
2

+ 2µ2

∥∥∥∥∥ 1n
n∑

i=1

(E⊤Z(i) + Z(i)⊤E)2

µ4

∥∥∥∥∥
2

=

∥∥∥∥∥ 1n
n∑

i=1

Z(i)⊤Z(i)

∥∥∥∥∥
2

+

∥∥∥∥∥ 1n
n∑

i=1

E⊤Z(i) + Z(i)⊤E

∥∥∥∥∥
2

+
2

µ2

∥∥∥∥∥ 1n
n∑

i=1

(Z(i)⊤Z(i))2

∥∥∥∥∥
2

+
2

µ2

∥∥∥∥∥ 1n
n∑

i=1

(E⊤Z(i) + Z(i)⊤E)2

∥∥∥∥∥
2

.
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These four terms are bounded by Claims 5.6.6, 5.6.7, 5.6.8 and 5.6.9 respectively, notice

that the second term dominates the first and the third, and the forth term dominates the

second. So finally we have:

µ2 log

∥∥∥∥∥ 1n
n∑

i=1

exp

(
Z(i)⊤Z(i) + E⊤Z(i) + Z(i)⊤E

µ2

)∥∥∥∥∥
2

≤
(

3× 4√
CK

+
96L2

K

)
η

nr

≤ 97L2

K

η

nr

=
1

4CL

η

nr
,with choice of K = 388CL3 = O(L3). ■

Lemma 5.6.3. If 0 ≼ A, then tr(AB) ≤ tr(A) · ∥B∥2.

Proof. Since 0 ≼ A, A =
∑

j σjuju
⊤
j with σj ≥ 0.

tr(AB) = tr

∑
j

σjuju
⊤
j B


=
∑
j

σj tr(uju
⊤
j B)

=
∑
j

σju
⊤
j Buj

≤
∑
j

σj · ∥B∥2

= tr(A) · ∥B∥2 . ■
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Lemma 5.6.4. (A+B)⊤(A+B) ≼ 2A⊤A+2B⊤B, and
[
(A+B)⊤(A+B)

]2
≼ 8(A⊤A)2+

8(B⊤B)2.

Proof.

2A⊤A+ 2B⊤B − (A+B)⊤(A+B) = A⊤A+B⊤B −A⊤B −B⊤A

= (A−B)⊤(A−B)

≽ 0.

[
(A+B)⊤(A+B)

]2
≼ (2A⊤A+ 2B⊤B)2

≼ 2[2(A⊤A)]2 + 2[2(B⊤B)]2

≼ 8(A⊤A)2 + 8(B⊤B)2. ■

The following claims were used in Lemma 5.6.2. Recall that A satisfies dRIP condition

5.2.3, u = A[V ] ∈ Rn for some V ∈ Rd1×d2 satisfying ∥V ∥F ∈ [14 , 1], ∥V ∥∗ ≤ 2
√
2r, Z(i) =

ηw∗
i (uiAi − S∗), and Φdc(w) ≤ 3

Cr by assumption of Lemma 5.6.2. We have the following:

• ∥Ai∥2 ≤ ρ by the boundedness property of dRIP condition 5.2.3;

• |ui| = |⟨Ai, V ⟩| ≤ ∥Ai∥2 ∥V ∥∗ ≤ ρ2
√
2r ≤ L

√
rρ assuming 2

√
2 ≤ L;

• ∥S∗∥2 ≤ ∥S∗∥F ≤ L, ∥E∗∥2 ≤
1

K
√
r
by the decomposition property of dRIP condition;

• ∥E∥22 ≤ Φop(w) ≤ Φdc(w) ≤ 3
Cr by Claim 5.6.1.
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Claim 5.6.5.
∥∥∥Z(i)⊤Z(i)+E⊤Z(i)+Z(i)⊤E

µ2

∥∥∥
2
≤ 1.

Proof.

∥∥∥Z(i)⊤Z(i)
∥∥∥
2
= η2w∗2

i

∥∥∥(uiAi − S∗)⊤(uiAi − S∗)
∥∥∥
2

≤ 2η2w∗2
i

(
u2i

∥∥∥A⊤
i Ai

∥∥∥
2
+
∥∥∥S∗⊤S∗

∥∥∥
2

)
(Lemma 5.6.4)

≤ 2η2w∗2
i (L2rρ4 + L2)

≤ 4η2w∗2
i L2rρ4.

∥∥∥E⊤Z(i) + Z(i)⊤E
∥∥∥
2
≤ 2

∥∥∥E⊤Z(i)
∥∥∥
2
≤ 2 ∥E∥2 ·

∥∥∥Z(i)
∥∥∥
2

= 2ηw∗
i ∥E∥2 · ∥uiAi − S∗∥2

≤ 2ηw∗
i ∥E∥2 · (|ui| ∥Ai∥2 + ∥S

∗∥2)

≤ 2ηw∗
i

2√
Cr

(L
√
rρ2 + L)

≤ 8ηw∗
i

Lρ2√
C
.

Putting them together:

∥∥∥∥∥Z(i)⊤Z(i) + E⊤Z(i) + Z(i)⊤E

µ2

∥∥∥∥∥
2

≤ 1

µ2

(∥∥∥Z(i)⊤Z(i)
∥∥∥
2
+
∥∥∥E⊤Z(i) + Z(i)⊤E

∥∥∥
2

)
≤ Cr log d · (4η2w∗2

i L2rρ4 + 8ηw∗
i

Lρ2√
C
)

≤ 16
√
CL

K
≤ 1 with sufficiently large K. ■
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Claim 5.6.6.
∥∥ 1
n

∑n
i=1 Z

(i)⊤Z(i)
∥∥
2
≤ 4L2

K log d ·
η
nr .

Proof.

n∑
i=1

∥∥∥Z(i)⊤Z(i)
∥∥∥
2
=

n∑
i=1

η2w∗2
i

∥∥∥(uiAi − S∗)⊤(uiAi − S∗)
∥∥∥
2

≤ 2
n∑

i=1

η2w∗2
i

(
u2i

∥∥∥A⊤
i Ai

∥∥∥
2
+
∥∥∥S∗⊤S∗

∥∥∥
2

)
≤ 2η

n∑
i=1

ηw∗
i (w

∗
i u

2
i ρ

2 + w∗
iL

2)

≤ 2η
1

Krρ2 log d
(Lρ2 + L2)

≤ 4L2

K log d

η

r
.

=⇒

∥∥∥∥∥ 1n
n∑

i=1

Z(i)⊤Z(i)

∥∥∥∥∥
2

≤ 1

n

n∑
i=1

∥∥∥Z(i)⊤Z(i)
∥∥∥
2
≤ 4L2

K log d
· η

nr
. ■
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Claim 5.6.7.
∥∥ 1
n

∑n
i=1E

⊤Z(i) + Z(i)⊤E
∥∥
2
≤ 4√

CK
· η
nr .

Proof.

∥∥∥∥∥ 1n
n∑

i=1

E⊤Z(i) + Z(i)⊤E

∥∥∥∥∥
2

=
1

n

∥∥∥∥∥E⊤
n∑

i=1

Z(i) +

n∑
i=1

Z(i)⊤E

∥∥∥∥∥
2

≤ 2

n

∥∥∥∥∥E⊤
n∑

i=1

Z(i)

∥∥∥∥∥
2

≤ 2

n
∥E∥2 ·

∥∥∥∥∥
n∑

i=1

Z(i)

∥∥∥∥∥
2

=
2

n
∥E∥2 · ∥ηG

∗ − ηS∗∥2

≤ 2

n
∥E∥2 · η ∥E

∗∥2

≤ 2

n
· 2√

Cr
· η

K
√
r

=
4√
CK

η

nr
. ■
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Claim 5.6.8. 2
µ2

∥∥ 1
n

∑n
i=1(Z

(i)⊤Z(i))2
∥∥
2
≤ O

(
CL4

K3rρ2 log2 d

)
· η
nr .

Proof.

∥∥∥∥∥
n∑

i=1

(Z(i)⊤Z(i))2

∥∥∥∥∥
2

≤ 8
n∑

i=1

η4w∗4
i

(
u4i ·

∥∥∥(A⊤
i Ai)

2
∥∥∥
2
+
∥∥∥(S∗⊤S∗)2

∥∥∥
2

)
(Lemma 5.6.4)

≤ 8η
n∑

i=1

η3w∗2
i (w∗2

i u4i ρ
4 + w∗2

i L4)

≤ 8η · 1

K3r3ρ6 log3 d

[
n∑

i=1

w∗2
i ρ4u4i +

n∑
i=1

w∗2
i L4

]

≤ 8η · 1

K3r3ρ6 log3 d

( n∑
i=1

w∗
i ρ

2u2i

)2

+

(
n∑

i=1

w∗
iL

2

)2


≤ 8η · 1

K3r3ρ6 log3 d
(ρ4L2 + L4)

≤ 16L4

K3r2ρ2 log3 d
· η
r

≤ O

(
L4

K3r2ρ2 log3 d

)
· η
r
,

=⇒ 2

µ2

∥∥∥∥∥ 1n
n∑

i=1

(Z(i)⊤Z(i))2

∥∥∥∥∥
2

≤ O

(
CL4

K3rρ2 log2 d

)
· η

nr
.

■
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Claim 5.6.9. 2
µ2

∥∥ 1
n

∑n
i=1(E

⊤Z(i) + Z(i)⊤E)2
∥∥
2
≤ 96L2

K · η
nr .

Proof.

2

µ2

∥∥∥∥∥ 1n
n∑

i=1

(E⊤Z(i) + Z(i)⊤E)2

∥∥∥∥∥
2

≤ 2

µ2

1

n

n∑
i=1

∥∥∥(E⊤Z(i) + Z(i)⊤E)2
∥∥∥
2

≤ 2

µ2

1

n

n∑
i=1

4
∥∥∥E⊤Z(i)Z(i)⊤E

∥∥∥
2

≤ 2

µ2

1

n

n∑
i=1

4 ∥E∥22
∥∥∥Z(i)⊤Z(i)

∥∥∥
2

≤ 8

µ2
∥E∥22 ·

1

n

n∑
i=1

∥∥∥Z(i)⊤Z(i)
∥∥∥
2

≤ 8

µ2
· 3

Cr
· 4L2

K log d

η

nr
(Claim 5.6.6)

=
96L2

K
· η

nr
. ■

Lemma 5.6.10 (Golden–Thompson inequality (Thompson, 1965)). For two n×n Hermi-

tian matrices A and B:

tr
(
exp(A+B)

)
≤ tr

(
exp(A) exp(B)

)
.

Proof of Lemma 5.5.6. Algorithm 5.3 has a nested for loop that’s repeated forN ′×N =

O(n log d log 1
δ rρ

2) times. The major step in the loop is line 11: st ← argmaxs∈[0,η]Φ(wt +

sei), which is equivalent to argmins∈[0,η]CrΦop(w+ sei) +
s
4L − su2i . Recall that Φop(w) =

min
∥S∥F≤L∥w∥1

(
µ2 log [F (Gw − S)]

)
where F (E) = tr exp

(
E⊤E
µ2

)
. Note that µ2 log [F (E)] is

convex in E.
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First we show that Φop(w) is convex in w, i.e., given w1, w2, Φop

(
1
2(w1 + w2)

)
≤

1
2

(
Φop(w1) + Φop(w2)

)
.

Let w3 = 1
2(w1 + w2), and Gk =

∑n
i=1 (wk)iuiAi for k = 1, 2, 3. Suppose S1, S2 attain

the minimum for Φop(w1), Φop(w2) respectively, i.e., Φop(w1) = µ2 log [F (G1 − S1)] and

Φop(w2) = µ2 log [F (G2 − S2)].

Let S3 = 1
2(S1 + S2). Notice that G3 = 1

2(G1 +G2), so G3 − S3 = 1
2 (G1 − S1 +G2 − S2).

Since ∥S3∥F ≤
1
2(∥S1∥F + ∥S2∥F ) ≤

1
2L(∥w1∥1 + ∥w2∥1) = L ∥w3∥1, S3 is a valid argument

for Φop(w3), therefore

Φop(w3) ≤ µ2 log [F (G3 − S3)]

≤ 1

2

(
µ2 log [F (G1 − S1)] + µ2 log [F (G2 − S2)]

)
=

1

2

(
Φop(w1) + Φop(w2)

)
.

Line 11 is equivalent to minimizing CrΦop(w + sei) +
s
4L − su2i , which is convex in s for

a fixed w, over a bounded interval [0, η], so the minimization needs to evaluate Φop(w +

sei) for O(polylog(d)) different values of s. Evaluating Φop is also a minimization which

can be solved by computing SVD on Gw and evaluating F (Gw − S) in time O(dω) for

polylog(d) various constructions of S. Overall finding the optimal value of s takes time

O(dω·polylog(d)), and the algorithm’s total running time isO(ndω polylog (d) log 1
δ rρ

2). ■
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5.6.3 Omitted Proofs: From wRIP to dRIP Condition

Here we show that the dRIP condition 5.2.3 is implied by the wRIP condition 5.2.2,

given proper choices of parameters within a constant factor. Notice that in the wRIP

condition, we have a low-rank constraint on the input matrix, i.e., rank(X) ≤ r, and in

dRIP we have a norm constraint instead, i.e., ∥V ∥F ∈ [14 , 1], ∥V ∥∗ ≤ 2
√
2r. To make use

of the wRIP condition of A, we will decompose V into low-rank matrices, so that wRIP

condition applies to each of the low-rank matrices. Though the rank of V is arbitrary, we

can still upper bound its numerical rank based on the norm constraint.

First we will introduce a low-rank decomposition, and an upper bound on the sum of

their Frobenius norms. This is the matrix version of the shelling-decomposition in Lemma

15 for vectors in (Kelner et al., 2023a).

Lemma 5.6.11 (Low-rank decomposition). Given V ∈ Rd1×d2 with Rankn(V ) =
∥V ∥2∗
∥V ∥2F

=

ν, and let V =
∑

σiuiv
⊤
i be its SVD with σi in descending order. Decompose V into sum

of rank-r matrices, i.e., write V =
∑ℓ=k

ℓ=1 V
(ℓ) where V (ℓ) =

∑i=ℓr
i=(ℓ−1)r+1 σiuiv

⊤
i . Then we

have
∑k

ℓ=2

∥∥V (ℓ)
∥∥
F
≤
√

ν
r ∥V ∥F .

Proof. Note that V (1) is the rank-r approximation of V , and V (ℓ)’s are constructed using

disjoint singular values and vectors in groups of size r, and are orthogonal to each other.
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Denote σi
(
V (ℓ)

)
as the ith largest singular value of V (ℓ).

∥∥∥V (ℓ+1)
∥∥∥
F
≤
√
r · σ1

(
V (ℓ+1)

)
≤
√
r · σr

(
V (ℓ)

)
≤
√
r ·
∥∥V (ℓ)

∥∥
∗

r
,

k∑
ℓ=2

∥∥∥V (ℓ)
∥∥∥
F
≤
√
r

r
·
k−1∑
ℓ=1

∥∥∥V (ℓ)
∥∥∥
∗
≤
√
r

r
·

k∑
ℓ=1

∥∥∥V (ℓ)
∥∥∥
∗
=

√
r

r
· ∥V ∥∗,

∥V ∥2∗
∥V ∥2F

≤ ν =⇒
k∑

ℓ=2

∥∥∥V (ℓ)
∥∥∥
F
≤
√

ν

r
∥V ∥F . ■

Now we are ready to prove Lemma 5.5.1, which states that wRIP implies dRIP condi-

tion. The proof uses similar techniques as in the second part of Lemma 17 (Kelner et al.,

2023a) for vector recovery.

Proof of Lemma 5.5.1.

Boundedness property: satisfied by assumption ∥Ai∥2 ≤ ρ ∀i.

Isometry property: Consider V ∈ Rd1×d2 s.t. ∥V ∥F ∈ [14 , 1] and ∥V ∥∗ ≤ 2
√
2r. Need to

show 1
L ≤

∑n
i=1w

∗
i ⟨Ai, V ⟩2 ≤ L.

Let L = 25L′, K ≥ 1 and r = r′

12800L2K2 . ν = Rankn(V ) =
∥V ∥2∗
∥V ∥2F

≤ 128r. By Lemma

5.6.11, decompose V into rank-r′ matrices so that we can apply the (r′, L′)-wRIP property

of A.

k∑
ℓ=2

∥∥∥V (ℓ)
∥∥∥
F
≤
√

ν

r′
∥V ∥F ≤

1

10LK
∥V ∥F ≤

1

10
∥V ∥F ,

∥V ∥F ≥
∥∥V(r′)

∥∥
F
=
∥∥∥V (1)

∥∥∥
F
=

∥∥∥∥∥V −
k∑

ℓ=2

V (ℓ)

∥∥∥∥∥
F

≥ ∥V ∥F −
k∑

ℓ=2

∥∥∥V (ℓ)
∥∥∥
F
≥ 9

10
∥V ∥F .
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Let Bi =
√

w∗
iAi, so that

∑n
i=1w

∗
i ⟨Ai, V ⟩2 =

∑n
i=1 ⟨Bi, V ⟩2 = ∥

∑n
i=1 ⟨Bi, V ⟩ei∥22.

Lower bound:

∥∥∥∥∥
n∑

i=1

⟨Bi, V ⟩ei

∥∥∥∥∥
2

≥

∥∥∥∥∥
n∑

i=1

⟨Bi, V
(1)⟩ei

∥∥∥∥∥
2

−

∥∥∥∥∥
n∑

i=1

⟨Bi,

k∑
ℓ=2

V (ℓ)⟩ei

∥∥∥∥∥
2

≥

∥∥∥∥∥
n∑

i=1

⟨Bi, V
(1)⟩ei

∥∥∥∥∥
2

−
k∑

ℓ=2

∥∥∥∥∥
n∑

i=1

⟨Bi, V
(ℓ)⟩ei

∥∥∥∥∥
2

=

√√√√ n∑
i=1

⟨Bi, V (1)⟩2 −
k∑

ℓ=2

√√√√ n∑
i=1

⟨Bi, V (ℓ)⟩2

≥
√

1

L′ ·
∥∥V (1)

∥∥2
F
−

k∑
ℓ=2

√
L′ ·

∥∥V (ℓ)
∥∥2
F

≥ 0.9√
L′
· ∥V ∥F −

0.1

L

√
L′ · ∥V ∥F

=
4.5√
L
· ∥V ∥F −

0.02√
L
· ∥V ∥F .

Taking the square:
∑n

i=1w
∗
i ⟨Ai, V ⟩2 ≥ 4.482

L · ∥V ∥2F ≥
4.482

16L ≥
1
L .
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Upper bound:

∥∥∥∥∥
n∑

i=1

⟨Bi, V ⟩ei

∥∥∥∥∥
2

≤

∥∥∥∥∥
n∑

i=1

⟨Bi, V
(1)⟩ei

∥∥∥∥∥
2

+

k∑
ℓ=2

∥∥∥∥∥
n∑

i=1

⟨Bi, V
(ℓ)⟩ei

∥∥∥∥∥
2

=

√√√√ n∑
i=1

⟨Bi, V (1)⟩2 +
k∑

ℓ=2

√√√√ n∑
i=1

⟨Bi, V (ℓ)⟩2

≤
√
L′ ·

∥∥∥V (1)
∥∥∥
F
+

k∑
ℓ=2

√
L′ ·

∥∥∥V (ℓ)
∥∥∥
F

≤
√
L′ · ∥V ∥2F +

0.1
√
L′

L
· ∥V ∥F

=

√
L

5
· ∥V ∥F +

0.02√
L
· ∥V ∥F .

Taking the square:
∑n

i=1w
∗
i ⟨Ai, V ⟩2 ≤ L

25 ·∥V ∥
2
F+

0.022

L ·∥V ∥
2
F+0.008∥V ∥2F ≤ L·∥V ∥2F ≤ L.

Combining the lower bound and upper bound: 1
L ≤

∑n
i=1w

∗
i ⟨Ai, V ⟩2 ≤ L.
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Decomposition property: Let S = G(r′), the rank-r
′ approximation ofG =

∑n
i=1w

∗
i ⟨Ai, V ⟩Ai.

Let E = G− S. Suffices to show ∥S∥F ≤ L and ∥E∥2 ≤
1

K
√
r
. We have

∥S∥2F = ⟨S, S⟩ = ⟨G,S⟩ = ⟨
n∑

i=1

w∗
i ⟨Ai, V ⟩Ai, S⟩ = ⟨

n∑
i=1

⟨Bi, V ⟩Bi, S⟩ =
n∑

i=1

⟨Bi, V ⟩⟨Bi, S⟩

= ⟨
n∑

i=1

⟨Bi, V ⟩ei,
n∑

j=1

⟨Bj , S⟩ej⟩

≤

∥∥∥∥∥
n∑

i=1

⟨Bi, V ⟩ei

∥∥∥∥∥
2

·

∥∥∥∥∥
n∑

i=1

⟨Bi, S⟩ei

∥∥∥∥∥
2

=

√√√√ n∑
i=1

⟨Bi, V ⟩2 ·

√√√√ n∑
i=1

⟨Bi, S⟩2

=

√√√√ n∑
i=1

w∗
i ⟨Ai, V ⟩2 ·

√√√√ n∑
i=1

w∗
i ⟨Ai, S⟩2

≤
√
L ·
√
L′ · ∥S∥F

≤ L

5
∥S∥F ,

which implies ∥S∥F ≤
L
5 ≤ L, and consequently,

∥E∥2 = σr′+1(G) ≤ σr′(G) = σr′(S) ≤

√
∥S∥2F
r′
≤ L

5
√
r′

=
L

400
√
2LK

√
r
≤ 1

K
√
r
. ■

5.7 Conclusion and Future Work

In this paper, we pose and study the matrix sensing problem in a natural semi-random

model. We relax the standard RIP assumption on the input sensing matrices to a much



151

weaker condition where an unknown subset of the sensing matrices satisfies RIP while the

rest are arbitrary.

For this semi-random matrix sensing problem, existing non-convex objectives can have

bad local optima. In this work, we employ an iterative reweighting approach using a

weight oracle to overcome the influence of the semi-random input. Our solution is inspired

by previous work on semi-random sparse vector recovery, where we exploit the structural

similarities between linear regression on sparse vectors and matrix sensing on low-rank

matrices.

Looking forward, we believe our approach can serve as a starting point for designing

more efficient and robust algorithms for matrix sensing, as well as for other low-rank matrix

and sparse vector problems in the semi-random model.
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