
New Models and Algorithms for Data Analysis

BY

Benjamin Fish
B.A., Pomona College, 2013

M.S., University of Illinois at Chicago, 2015

THESIS

Submitted as partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Mathematics

in the Graduate College of the
University of Illinois at Chicago, 2018

Chicago, Illinois

Defense Committee:

Lev Reyzin, Chair and Advisor
Avrim Blum, Toyota Technological Institute at Chicago
Dhruv Mubayi
Robert Sloan, Department of Computer Science
György Turán

To my parents, without whom this thesis would not have been possible.

ii

Acknowledgments

I would like to thank my advisor Lev Reyzin for his tireless support, encour-

agement, advice, thoughtfulness, optimism, and opinions throughout my time at

the University of Illinois at Chicago. Many thanks also to György Turán, as

supporting, patient, and kind as a mentor could be.

Thanks to my entire committee, which in addition to Lev Reyzin and György

Turán, consisted of Avrim Blum, Dhruv Mubayi, and Robert Sloan. I would like

to acknowledge Avrim Blum for pointing out a mistake in an earlier draft.

Thanks also to Rajmonda Caceres, Benjamin Rubinstein, and Suresh Venkata-

subramanian for not only graciously hosting me during summers, but giving me

the opportunity to broaden my academic horizons.

A special thanks to Yi Huang, Jeremy Kun, and Ádám D. Lelkes for spending

countless hours working with me on our many projects. And to all the other

graduate students who supported me throughout graduate school.

Finally, a big thanks to my entire family.

In the course of writing this thesis, I was supported by the following grants and

fellowships: Army Research Office grant #66497-NS, NSF grant IIS-1526379, and

the NSF EAPSI fellowship.

iii

Contribution of Authors

Chapter 3 represents the preprint [27], co-authored with Lev Reyzin and Benjamin

I. P. Rubinstein. Chapter 4 represents the manuscript [26], co-authored with Lev

Reyzin. Chapter 5 represents the manuscript [25], co-authored with Yi Huang

and Lev Reyzin. This work also appears in the thesis of Yi Huang [38].

All content in these chapters, including introduction, formulation of definitions,

theorems, algorithms, experiments, and writing of the various manuscripts were

done jointly with the co-authors.

iv

Table of Contents

1 Introduction 1

1.1 Adaptivity in data analysis . 2

1.2 The connection between examples and labels 4

1.3 Inferring networks . 6

1.4 Organization of this thesis . 9

2 Background 10

2.1 Learning theory: generalization in learning 10

2.2 Differential privacy . 13

2.3 Complexity theory . 16

2.4 Graphs . 18

3 Sublinear-Time Adaptive Data Analysis 19

3.1 Introduction . 19

3.1.1 Motivation and results . 21

3.1.2 Previous work . 25

3.2 Model and preliminaries . 26

3.2.1 Low-sensitivity queries and optimization queries 27

v

3.2.2 Counting queries and sampling counting queries 28

3.2.3 The transfer theorem . 30

3.3 Fast mechanisms for low-sensitivity queries 31

3.4 Sampling counting queries . 38

3.5 Comparing counting and sampling counting queries 43

3.6 An application to convex optimization 45

3.7 Conclusion . 52

4 On the Complexity of Learning from Label Proportions 53

4.1 Introduction . 53

4.2 Model and Sample Complexity . 56

4.3 Comparing Our Model to Classical PAC 59

4.4 Hardness of Learning from Label Proportions 61

4.5 Classes PAC Learnable from Label Proportions 65

4.6 Conclusion . 69

5 Recovering Social Networks by Observing Votes 71

5.1 Introduction . 71

5.2 Models and results . 73

5.3 The independent conversation model 79

5.3.1 An algorithm for p = 1/2 79

5.3.2 Moving from exact learning to maximum likelihood learning 84

5.3.3 Hardness of computing the MLE 88

5.4 The common neighbor model . 91

vi

5.4.1 Recovering A2 from covariances 91

5.4.2 A heuristic approach . 96

5.5 Experimental Results . 98

5.6 Conclusion . 101

Cited Literature 102

Appendix 113

Vita 116

vii

List of Figures

5.1 Left: the outcome of pairwise “conversations” between connected

neighbors. Right: the resulting votes. For simplicity, the edge

probabilities are not depicted. 75

5.2 Left: the initial preferences of the nodes. Right: the resulting votes.

For simplicity, the preference probabilities are not depicted. . . . 75

5.3 Graphs of the US Senate for three congressional terms under the

independent conversation model. Democrats are colored blue, Re-

publicans are red, and Independents are green. 96

5.4 Graphs of the US Senate for three congressional terms under the

common neighbor model. Democrats are colored blue, Republicans

are in red, and Independents are in green. 96

5.5 Data for the 101st-113th Congress. Dashed and solid lines are

statistics for the independent conversation model and common neigh-

bor model, respectively. Error bars represent one standard devia-

tion, over 20 trials. 97

viii

List of Tables

3.1 Summary of our results. k is the number of queries and α is the accuracy

rate. Dependence on the probability of failure has been suppressed for

ease of reading. Above the double line are our more general results and

below are their applications to convex optimization. Note that this table

does not show the slightly different assumptions made in previous work

versus this work for convex optimization. For more precise definitions,

see Section 3.2. 22

ix

Summary

In this thesis, we introduce and analyze new models and new algorithms for

problems in data analysis. Data analysis has become increasingly important as the

quantity and quality of available data for machine learning has greatly increased.

This means that many new challenges and constraints for data analysis have

arisen. In this thesis, we discuss how to overcome a few of these challenges.

In the first part of this thesis, we tackle the problems that arise when data

analysis is adaptive, so that past inferences guide future inquiries into the same

dataset. A recent line of work in the theory community has established mecha-

nisms that provide low generalization error even on adaptive queries. Building on

this, we show how sampling techniques can be used to provably guarantee validity

while speeding up analysis over previous work.

We describe mechanisms that provide a polynomial speed-up per query over pre-

vious mechanisms, without needing to increase the total amount of data needed

for low generalization error. We prove that this speed-up holds for arbitrary low-

sensitivity queries, and then show how this can be applied to speed up adaptively-

made convex optimization queries. We also provide a method for achieving

statistically-meaningful responses even when the mechanism is only allowed to

see a constant number of samples from the data per query.

x

In the second part of this thesis, we analyze the problem of learning with label

proportions. Here, the training data is unlabeled, and only the proportions of

examples receiving each label are given. The goal is to learn a hypothesis that

predicts the proportions of labels on the distribution underlying the sample.

We resolve foundational questions regarding the computational complexity of

learning in this setting. We formalize a simple version of the setting, and we

compare the computational complexity of learning in this model to classical PAC

learning. We also demonstrate a non-trivial hypothesis class that is efficiently PAC

learnable but cannot be learned from labels efficiently under natural assumptions.

We also give an algorithm that demonstrates the feasibility of learning under

well-behaved distributions.

In the final part of this thesis, we investigate how to reconstruct social networks

from voting data. In particular, given a voting model that considers social network

structure, we aim to find the network that best explains the agents’ votes. We

study two plausible voting models, one edge-centric and the other vertex-centric.

For these models, we give algorithms and lower bounds, characterizing cases

where network recovery is possible and where it is computationally difficult. We

also test our algorithms on United States Senate data.

Despite the similarity of the two models, we show that their respective network

recovery problems differ in complexity and involve distinct algorithmic challenges.

Moreover, the networks produced when working under these models can also differ

significantly. These results indicate that great care should be exercised when

choosing a voting model for network recovery tasks.

xi

1
Introduction

The demands we place on data analysis are high: we must make predictions,

generalize to unseen data, and infer structure found within the data. We must

classify and cluster, analyze and interact. We must do this all while using as little

data and time as possible. We may have additional constraints, like dealing with

adversarial processes, handling missing data, or obeying to privacy constraints.

Yet while machine learning techniques have become increasingly effective, they

often lack the ability to handle such constraints. Much has been made of such

techniques to handle large data using increasing amounts of available training data

and processing power, but no matter how much processing power we may have at

1

our disposal or how much data we throw at the problem, current machine learning

often fails at dealing with additional constraints of the type we will discuss in this

thesis. In this thesis, we discuss three particular constraints on our data analysis,

introducing both appropriate models to discuss such constraints and algorithms

to overcome the challenges posed by those constraints.

1.1 Adaptivity in data analysis

The first constraint is a central one in data analysis: Tools for data analysis must

be able to handle adaptivity, simply because that is how much of data science is

performed in practice. Consider the following sequence of events: A data analyst

tests out their sophisticated classifier, say a neural net, on a validation set. It

receives high empirical loss, which if we assume the data comes i.i.d. from some

unknown distribution, is guaranteed to generalize to that distribution (with high

probability, assuming that there’s sufficient data). This means that the high em-

pirical loss implies high true loss. Because the analyst is looking for a neural net

with lower error, the analyst may modify the architecture or hyperparameters of

the neural net. But when the analyst goes to measure the error of the modified

classifier, the empirical error may no longer necessarily generalize to the distribu-

tion because the classifier and the validation set are no longer independent from

each other.

This is an unfortunate case where overfitting—the bane of data analysis—

naturally arises due to the adaptivity of the process, where the data analyst

adapted their actions to previous conclusions on the data. In this thesis, we

2

ask for new algorithmic techniques for guaranteeing generalization in the face of

adaptivity using a model of Dwork et al. [20]. In particular, we focus on faster

algorithms, enabling data analysts to spend less time and effort avoiding overfit-

ting.

In this framework, we must answer queries about an unknown distribution using

only an i.i.d. sample from that distribution, where the queries may be arbitrarily

adaptive (so that a query may depend not only on all previous queries but all an-

swers received in answer to those queries). Examples of queries include asking for

the loss of a classifier, asking for the classifier amongst a class with the minimum

loss, or asking how well-clustered example points are on average. Traditional ap-

proaches to guaranteeing adaptivity, especially in the statistics literature, focus

on a particular sequence of queries the data analyst may adapt. For example, the

analyst may perform a round of feature selection followed by a round of regression

on the selected variables [19]. This approach does not necessarily succeed even

when the order of queries changes, even if the types of queries themselves remain

the same. Meanwhile, traditional approaches in the theory of machine learning

focus on being able to answer any queries from a class of queries of bounded com-

plexity. In the case when the queries ask for the loss of a binary classifier, this

becomes classes with bounded VC dimension (see Chapter 2).

However, these techniques fail in this adaptive setting for classes of unbounded

VC dimension (or the like), which may be undesirable in many settings, e.g. ex-

ploratory data analysis, where the data analyst does not necessarily ask queries

from such a class. To remedy this, Dwork et al. [20] introduce a new elegant

3

method that relies on guaranteeing differential privacy. Formally defined in Chap-

ter 2, guaranteeing differential privacy usually means adding noise to the re-

sponses. This may be counterintuitive because noise might seem to make the

responses less accurate, but it instead does the opposite because differential pri-

vacy acts as a notion of stability. Stability is a widely used property of learning

algorithms to guarantee generalization [68]. In particular, Bassily et al. [4], build-

ing on the work of Dwork et al. [20], show that for responses to be accurate with

respect to the underlying distribution, it suffices for responses to be 1) close to

the empirical estimate of the query and 2) differentially private.

In this thesis, we focus on mechanisms that provide responses that also have this

guarantee using differential privacy, but are significantly faster. In previous work,

the mechanisms took at least linear time in the sample size per query. We improve

this running time, allowing the data analyst to ask significantly more queries for

fixed amount of time spent. This involves examining fewer samples to compute the

response to each query. We go on to show that meaningful mechanisms are still

possible even if the algorithm only has time to examine just a constant number of

samples per query. We also show how to speed up convex optimization queries,

which ask for the minimizer of the expected loss for a given convex loss function.

1.2 The connection between examples and labels

In the previous section, we assumed the data was complete—we could measure

the loss of a classifier on a validation set precisely because that validation set

contained both the examples and their labels. Unfortunately, this is not always

4

going to be the case. One possibility is that we have the examples, and the set of

labels, but we don’t know which label is attached to which example. For instance,

if each example is information on a voter and the labels are which candidate that

voter prefers, then a preference poll, of the sort conducted before an American

presidential election, is exactly a set of labels, e.g. “40% of Americans prefer

Candidate A over Candidate B.” Voter roles and associated data give information

on the voters themselves but often not which voter has which preference. How

can we infer which candidate will win, or infer how voters reach such a conclusion,

without knowing which input is attached to which label?

A related setting is Multiple Instance Learning (MIL), first introduced by Di-

etterich et al. [17], where the goal is to classify bags of examples with unobserved

labels, and a bag is labeled positively by a boolean ‘or’ function: if any example

in the bag is labeled positively, the bag is as well. The goal in MIL is to label new

bags with whether any example in the bag is labeled positively. While a notion of

learning that does not have as input individual labels but merely statistics about

groups of examples, it does not capture voting or other similar settings.

To address this, Kück and de Freitas [16] and, independently, Chen et al. [13]

introduce problems where the goal is to learn from other group statistics besides

the one used in MIL. Kück and de Freitas adopt a Bayesian approach borrowed

from the MIL setting to learn an instance-level classifier. Meanwhile, Chen et

al. generalize to the case where examples’ data are also aggregated in addition

to the labels. In both of these, the goal is to learn an instance-level classifier:

the classifier should get the labels of individual examples correct. On the other

5

hand, in this thesis we only desire a classifier that achieves a weaker goal, namely

one that predicts the correct proportion of labels amongst the instances. This is

because, as we will see, our goal is already difficult to provably achieve.

In order to give a theory for how difficult this goal is to achieve, we will use a

formal model of learning. Neither Kück and de Freitas nor Chen et al. give such a

model [13, 16]. However, there has also been some theoretical work. Quandrianto

et al. [62] give certain convergence bounds for their proposed algorithm, for ex-

ample. The only model of learning (which includes a formalized goal for which

guarantees exist) for this setting that has already been proposed is in the work

of Yu et al. [83]. This model is a multi-bag model (multiple groups of examples)

that assumes bags are independent from each other, but examples within a bag

are not independent of each other. To represent the case where examples from a

sample are independent of each other (as may be the case for polling data), we

introduce our own model of learning.

In this thesis, we formalize a PAC-style model of learning that captures this

voting problem, and problems of this ilk. (PAC will be defined formally in Chap-

ter 2). We then give a series of results that explore to what degree learning is

computationally feasible in this model.

1.3 Inferring networks

In the voting example in the previous section, we have ignored that decisions about

voting are typically not made in isolation. Indeed, classical machine learning

assumes that each example’s label depends only on that label, and the goal is

6

to learn a mapping between example and label. On the other hand voters, for

example, discuss how to vote with the people around them in their social or

voting network. So the labels of the examples (each a voter) depend on other

examples. Here, the goal changes from inferring a mapping between voter and

label to inferring an entire network that describes dependencies of the data: Which

voters talk to which other voters? In this thesis, we want to infer this information

solely from the kind of data we typically have, namely the votes of all of the

voters, but not side information like what the votes are about or any affiliation

the voters may have. We formalize this by assuming there is some graph, unknown

to the learner, where an edges between two voters represent the fact that they

communicate in order to decide their vote. The goal is to learn this graph from

the final votes of the voters.

Here, we infer the network from vertex attributes (in this case the voters’ votes).

In a broad sense, there has been a sizeable amount of work inferring network

structure from vertex attributes. This includes the related task of link prediction,

which assumes that some of the network is already known, and attempts to infer

the missing edges. One typical approach is to define a measure of similarity

between nodes, such as the number of common neighbors they share, but there

are many approaches [49, 73].

One common approach to network inference, where we typically assume no

knowledge of edges is given, also measures the pairwise similarity of nodes, in

particular correlation between their attributes. This type of network is known as

a ‘correlation network,’ naturally. The goal then becomes determining the right

7

threshold over which correlation is deemed significant and an edge is recorded.

This is usually done by simple statistical tests, or is determined by trial and

error [10] but these methods typically do not come with any guarantees on the

quality of the inferred network.

Another approach is to assume the existence of a parametric model that re-

lates observed attributes with the underlying network. The network may then

be inferred with a maximum likelihood approach. This includes everything from

inferring graphical models [31, 34] to inferring an epidemiological network from

observed infections [28, 56]. Again, these are typically hard problems to solve

exactly, and heuristics are frequently substituted.

In contrast, in this thesis, while we do assume the existence of such a parametric

model, we are able to prove guarantees on the quality of the observed network. To

do this, we use correlations between attributes, thereby proving the efficacy of a

correlation network for inference. We do this to both efficiently find the maximum

likelihood graph and the underlying graph, assuming that such a graph exists.

However, our focus is on showing that such models that relate the observed

attributes to the network, even very simple ones, are not robust, in the sense that

small changes to the model can have drastic changes to both the computational

feasibility of provably learning the voting network and the structure of the result-

ing inferred network. We therefore show not only positive results guaranteeing the

quality of an efficient algorithm, but several settings in which no such algorithm

is possible.

8

1.4 Organization of this thesis

The following is an outline for the remainder of this thesis:

• In Chapter 2, we provide introductions to the areas this thesis covers, in-

cluding differential privacy, learning theory, and computational complexity

theory.

• In Chapter 3, we analyze faster algorithms for adaptive data analysis.

• In Chapter 4, we provide and analyze a model of learning from label pro-

portions.

• In Chapter 5, we show how to learn social networks from voting data.

While Chapter 2 provides some of the basic definitions, many of which may

be found in standard textbooks, we also review background and previous work

specific to each chapter within that chapter.

9

2
Background

In this section, we go over some of the central tools needed for this thesis. This

includes tools from data analysis and machine learning. We start with learning

theory.

2.1 Learning theory: generalization in learning

In this thesis, we are acutely interested in generalizing our results to unseen data

in the context of learning theory, so we give a short introduction to statistical

learning theory here. For a longer introduction, see Mohri et al. [53]. Loosely,

generalization means when we have access to a sample S of size m drawn i.i.d. from

10

an unknown distribution D over a domain X, the conclusion we draw from S, say

the value f(S) for f : Xm → R, should be close to ES∼Dm [f(S)].

For example, we may care about the error of a hypothesis h : X → {0, 1} with

respect to a labeler c : X → {0, 1}. The empirical risk (alternatively, error or

loss) of such a hypothesis is LS(h) := 1
m

∑
x∈S 1h(x)6=c(x). Then the generalization

error of h is LD(h) := ES∼Dn [LS(h)].

One standard formalization, called Probably Approximately Correct (PAC)

learning, characterizes what it means to successfully learn such a hypothesis. A

learning task is parameterized by a concept class H (alternatively, hypothesis

class), a set of hypotheses h : X → {0, 1}. The learner is given a set of examples

S drawn from an unknown distribution D where each example is labeled by a

target function c : X → {0, 1}, taking the form (x, c(x)). The goal is to find a

hypothesis h with low generalization error LD(h) with high probability over the

randomness of the sample. So that the learning problem may be computationally

tractable, we assume that the representation of elements of X may be computed in

time O(n), and similarly for each c ∈ H it has finite representation size, denoted

size(c). We may now define PAC learning:

Definition 1 (PAC learning [75]). A concept class H is PAC learnable if there

exists an algorithm A and a polynomial poly(·, ·, ·, ·) such that for any ε, δ > 0, for

any distribution D on X, for any target c ∈ H, on an input labeled sample of size

m ≥ poly(1/ε, 1/δ, n, size(c)), A produces a hypothesis h such that

PS∼Dm [LD(h) ≤ ε] ≥ 1− δ.

11

Furthermore, if A runs in time poly(1/ε, 1/δ, n, size(c)), then H is said to be

efficiently PAC learnable.

In this thesis, we will only be considered with efficient PAC learnability (and

may drop the word ‘efficient’ for convenience). Furthermore, we will primarily be

concerned with proper PAC learning, where the returned hypothesis must come

from the original concept class.

For what kind of classes is PAC learning possible? Ignoring computational

efficiency, there is a nice combinatorial property of concept classes which ex-

actly characterizes learnability. First, we say a finite set S ⊂ X is shattered

by a hypothesis class H if the restriction of H to S = {x1, . . . , xm} (that is,

{(c(x1), c(x2), . . . , c(xm)) : c ∈ H}) is the set of all functions from S to {0, 1}.

Definition 2 (VC dimension [76]). The VC dimension of a hypothesis class H,

denoted VC(H), is the maximal size of a set S ⊂ X that can be shattered by H.

If not such maximal size exists, then we define VC(H) =∞.

The algorithm to PAC learn with finite VC dimension is commonly known as

empirical risk minimization, which simply returns the hypothesis in the hypothesis

class with the smallest empirical risk. This tactic works because of Occam’s razor:

Theorem 3 (Occam’s Razor [9]). For every h ∈ H, for any distribution D and

δ > 0, we have with probability at least 1− δ over a sample of size m:

|LD(h)− LS(h)| ≤ O

(
1

δ

√
VC(H) log(m/VC(H))

m

)
.

12

This thesis, however, will also be concerned with computational efficiency,

wherein finite VC dimension is not sufficient for efficient PAC learning.

2.2 Differential privacy

Differential privacy was invented by Dwork et al. [21] as a semantic notion of

algorithmic privacy. The idea is that an adversary should not gains significantly

more knowledge about your personal information from a database if you choose

to include your data in the data set versus if you choose not to include your data

in the data set.

Definition 4 (Differential privacy). Let M : Xn → Z a randomized algorithm.

We callM (ε, δ)-differentially private if for every two samples S, S ′ ∈ Xn differing

on one instance, and every measurable z ⊂ Z,

P[M(S) ∈ z] ≤ eε · P[M(S ′) ∈ z] + δ.

If M is (ε, 0)-private, we may simply call it ε-private.

Differential privacy comes with several guarantees useful for developing new

mechanisms.

Proposition 5 (Adaptive composition; [23]). Given parameters 0 < ε < 1 and

δ > 0, to ensure (ε, kδ′ + δ)-privacy over k adaptive mechanisms, it suffices that

each mechanism is (ε′, δ′)-private, where ε′ = ε

2
√

2k log(1/δ)
.

We also have a post-processing guarantee:

13

Lemma 6 (Post-processing; [22]). Let M : Xn → Z be an (ε, δ)-private mecha-

nism and f : Z → Z ′ a (possibly randomized) algorithm. Then f ◦ M is (ε, δ)-

private.

In this thesis, we use two well-established differentially-private mechanisms: the

Laplace and exponential mechanisms.

The Laplace mechanism provides a way to output any real-valued function,

with noise calibrated to sensitivity. The `1 sensitivity of a function f : Xn → Rk

is ∆f := maxd(S,S′)=1 ‖f(S) − f(S ′)‖1, where d(S, S ′) is the number of elements

on which S and S ′ differ. X is the arbitrary domain from which examples come,

and f takes as input a sample from X.

In the Laplace mechanism, we add noise drawn from a carefully picked distri-

bution to f(S). That distribution is the Laplace distribution, whose probability

density function with parameter b is Lapb(x) := 1
2b
e−|x|/b.

Definition 7 (Laplace mechanism [21]). Given privacy parameter ε and f : Xn →

Rk, the Laplace mechanism is then just

M(S) := f(S) + (Y1, . . . , Yk),

where each Yi is i.i.d. drawn from Lap∆f/ε.

The Laplace mechanism is indeed a private mechanism. Moreover, it is also an

accurate one, in the following sense:

Proposition 8 (21). The Laplace mechanism M is ε-private. In addition, for

14

any δ > 0,

P
[
‖f(S)−M(S)‖∞ ≥

∆f ln(k/δ)

ε

]
≤ δ.

The exponential mechanism is a generalization of the Laplace mechanism to

arbitrary domains. In the Laplace mechanism, it is straight-forward to define

accuracy: the output of the mechanism must be close to the true value of f . For

arbitrary domains R, we must instead be given a utility function u : Xn×R → R,

which says for any given sample and possible element to output, how desirable is

it to output this element. We define sensitivity of a utility function as

∆u := max
r∈R

max
d(S,S′)=1

|u(S, r)− u(S ′, r)|.

The exponential mechanism outputs r ∈ R with probability proportional to its

utility, so that we’re more likely to output more useful elements, but still maintain

privacy.

Definition 9 (Exponential mechanism [52]). The exponential mechanism outputs

an element r ∈ R with probability

exp
(
εu(S,r)

2∆u

)
∑

r′∈R exp
(
εu(S,r′)

2∆u

) .
The exponential mechanism is also ε-private [52].

For a more complete accounting of differential privacy, see Dwork and Roth [22].

15

2.3 Complexity theory

To discuss computational efficiency, we use standard notions from computational

complexity theory, so we provide a very brief summary here.

We use as our model computation the Turing machine, which we will not define

precisely here. For a precise definition, as well as a much more complete intro-

duction to complexity theory, we refer the reader to Arora and Barak [3]. Briefly,

a Turing machine consists of a tape on which symbols are written and a list of of

instructions, along with a read/write head that looks at the current symbol and

uses the appropriate instruction to change the symbol and move along the tape.

The idea is that we can measure how long an algorithm takes on a Turing machine

by the number of symbols it reads before stopping on a given input.

A decision problem, or language, is a subset of {0, 1}∗, the set of all finite binary

strings, and a language is decided by a Turing machine when that machine accepts

an input string if and only if it is in the language. A complexity class is a set of

languages, typically specified by a constraint on resources available to the Turing

machines. In this thesis we will primarily be concerned with classes constrained

by the amount of available time.

Definition 10 (P and NP). A language L is in TIME(T (n)) for T : N→ N if a

Turing machine decides L in O(T (n)) time. We define P as ∪∞c=1TIME(nc).

A language L is in NP if there exists a polynomial p : N→ N and a polynomial-

time TM M , in the sense above, such that for every x ∈ {0, 1}∗, x ∈ L if and only

if there is some u ∈ {0, 1}p(|x| such that M(x, u) = 1, i.e. M accepts (x, u).

16

We also consider the class of languages in NP that are at least as hard as any

problem in NP, called NP-hard. That is, there is a reduction which says that if an

NP-hard language can be decided by some Turing machine, then every problem

in NP can be decided using that algorithm, plus only polynomial additional time.

That no NP-hard language is in P is the famous conjecture P 6= NP. We will

also use a variant of this conjecture, that RP 6= NP, where RP is the class of

NP problems where if the correct answer is no, then the polynomial-time Turing

machine always rejects but if the answer is yes, then it accepts with probability

at least 1/2.

In addition to decision problems, we are also interested in the running time

for counting problems, where the goal is to output the number of solutions to a

problem rather than just if there is one or not.

Definition 11 (#P). A function f : {0, 1}∗ → N is in #P if there is a polynomial

p : N→ N and a polynomial-time TM M such that for every x ∈ {0, 1}∗,

f(x) = |{y ∈ {0, 1}p(|x|) : M(x, y) = 1}|.

Defined analogously to NP-hardness, we can define #P-hardness as the #P

problems at least as hard as any #P problem. The analogous conjecture to P

vs. NP for #P is that the class of counting problems that can be solve in polyno-

mial time FP is not equal to #P.

17

2.4 Graphs

One of the structures we will be interested in learning from data is a graph, so

we briefly review a few basic definitions here. A graph G = (V,E) consists of a

vertex set V of size n, and an edge set E of m edges. Each edge e = (u, v) is

a tuple consisting of two vertices u, v ∈ V , wherein u and v are called adjacent.

In an undirected graph, the kind of graph we focus on, (u, v) is treated as an

unordered pair. A standard representation of a graph is the adjacency matrix, an

n× n matrix indexed by the vertices, where an entry (u, v) is 1 if (u, v) ∈ E, and

0 otherwise.

The neighborhood Γ(v) of a vertex v is the set of vertices adjacent to v. The

degree of a vertex is the size of its neighborhood. A complete graph is a graph

where every vertex has maximum degree. An (induced) subgraph G′ of G on a

subset of vertices V ′ ⊆ V is the graph with vertex set V ′ and has edge (u, v) if

and only if (u, v) is an edge of G. So a clique in a graph is a subset of vertices

whose induced subgraph is complete.

18

3
Sublinear-Time Adaptive Data Analysis

3.1 Introduction

The field of data analysis seeks out statistically valid conclusions from data: in-

ferences that generalize to an underlying distribution rather than specialize to the

data sample at hand. As a result, classical proofs of statistical efficiency have

focused on independence assumptions on data with a pre-determined sequence

of analyses [48]. In practice, most data analysis is adaptive: previous inferences

This chapter is based on the preprint Fish et al. [27].

19

inform future analysis. This adaptivity is nigh impossible to avoid when multiple

scientists contribute work to an area of study using the same or similar data sets.

Unfortunately, adaptivity may lead to ‘false discovery,’ where the dependence on

past analysis may create pervasive overfitting—also known as ‘the garden of fork-

ing paths’ or ‘p hacking’ [30]. While basing each analysis on new data drawn

from the same distribution might appear an appealing solution, repeated data

collection and analysis time can be prohibitively costly.

There has been much recent progress in minimizing the amount of data needed

to draw generalizable conclusions, without having to make any assumptions about

the type of adaptations used by the data analysis. However, the results in this

burgeoning field of adaptive data analysis have ignored bootstrapping and related

sampling techniques, even though these have enjoyed widespread and successful

use in practice in a variety of settings [47, 81], including in adaptive settings [32].

This is a gap that not only points to an unexplored area of theoretical study,

but also opens up the possibility of creating substantially faster algorithms for

answering adaptively generated queries.

In this chapter, we aim to do just this: we develop strong theoretical results

that are significantly faster than previous approaches, and we open up a host

of interesting open problems at the intersection of sublinear-time algorithm de-

sign and this important new field. For example, sublinear-time algorithms are

a necessary component to establish non-trivial results in property testing. We

also enable the introduction of anytime algorithms in adaptive data analysis, by

defining mechanisms that provide guarantees on accuracy when the time allotted

20

is restricted.

As in previous literature, a mechanism M is given an i.i.d. sample S of size n

from an unknown distribution D over a finite space X, and is supplied queries

of the form q : D → R. After each query, the mechanism must respond with

an answer a that is close to q(D) up to a parameter α with high probability.

Furthermore, each query may be adaptive: The query may depend on the previous

queries and answers to those queries.

In previous work, the mechanisms execute in Ω (n) time per query. In this

work, we introduce mechanisms that deliver an exponential improvement on this

bound. Remarkably, we show that these results come at almost no tradeoff—we

can obtain these improvements in running time and yet use essentially the same

sample sizes.

3.1.1 Motivation and results

Our results are summarized in Table 3.1. Our first result, in Section 3.3, is

a method to answer low-sensitivity queries (defined in Section 3.2) that still

has n = Õ(
√
k/α2) sample complexity (as in previous work) but takes only

Õ(log2(k)/α2) time per query instead of Õ(n) time per query as in previous ap-

proaches (Theorem 18). Moreover, our mechanism to answer a query is simple:

given a database S, we first sample ` points i.i.d. from S, compute the empirical

mean of q on that subsample, and then add Laplacian noise, which guarantees a

differentially-private mechanism. The intuition behind this approach is that sam-

pling offers two benefits: it can decrease computation time while simultaneously

21

sample complexity samples per query

query type
previous work

[4]
this work

previous work
[4]

this work

low-sensitivity
queries (Sec-
tion 3.3)

Õ
(√

k
α2

)
Õ
(√

k
α2

)
Õ
(√

k
α2

)
Õ
(

log(k)
α2

)

sampling count-
ing queries
(Section 3.4)

— Õ
(
log
(
k
α

))
— Õ

(
log(k)
α2

)

convex optimiza-
tion (Section 3.6)

Õ
(√

dk
α2

)
Õ
(
d3/2
√
k

α5

)
Õ
(
dk
α4

)
Õ
(
d2 log(k)

α5

)
strongly convex
optimization
(Section 3.6)

Õ
(√

dk
α3/2

)
Õ
(
d3/2
√
k

α5/2

)
Õ
(
dk
α3

)
Õ
(
d2 log(k)

α3

)

iterations per query

query type
previous work

[4]
this work

convex optimiza-
tion (Section 3.6)

Õ
(
dk
α4

)
Õ
(

log(k)
α2

)
strongly convex
optimization
(Section 3.6)

Õ
(
dk
α3

)
Õ
(

log(k)
α

)

Table 3.1: Summary of our results. k is the number of queries and α is the accuracy
rate. Dependence on the probability of failure has been suppressed for ease of reading.
Above the double line are our more general results and below are their applications
to convex optimization. Note that this table does not show the slightly different as-
sumptions made in previous work versus this work for convex optimization. For more
precise definitions, see Section 3.2.

22

boosting privacy. Privacy yields a strong notion of stability, which in turn allows

us to reduce the computation time without sacrificing accuracy.

In particular, this mechanism takes only Õ(log2(k)/α2) time per query and

a sample size of ` = Õ(log(k)/α2), all while matching the established sam-

ple complexity bound Õ(
√
k/α2). Even in the non-adaptive case, it must take

Ω(log(k)/α2) samples to answer k such queries [4]. This means our results are

tight in ` and come close to matching the best known lower bound for the time

complexity of answering such queries adaptively, which is simply Ω(log(k)/α2).

We show that this holds both when using uniform sampling with and without

replacement.

While sampling in this manner requires examining ` = Õ(log(k)/α2) samples

per query, an analyst may wish to control the number of samples used. For

example, the analyst might seek the answer to a counting query using a very small

number of sample points from the database, even just a single sample point. The

above methods cannot handle this case gracefully because when ` is sufficiently

small, the guarantees on accuracy (using Definition 13 below) become trivial—we

get only that α = O(1), which any mechanism will satisfy. Instead, we want

the mechanism to have to return a statistically-meaningful reply even if ` = 1.

Indeed, the empirical answer to such a query is {0, 1}-valued, while a response

using Laplacian noise will not be.

To address these issues, we consider an ‘honest’ setting where the mechanism

must always yield a plausible reply to each query (Section 3.4). This is analogous

to the honest version [82] of the statistical query (SQ) setting for learning [6, 44],

23

or the 1-STAT oracle for optimization [24]. Thus we introduce sampling counting

queries, which imitate the process of an analyst requesting the value of a query on

a single random sample. This allows for greater control over how long each query

takes, in addition to greater control over the outputs. Namely, we require that for

a query of the form q : X → {0, 1}, the mechanism must output a {0, 1}-valued

answer that is accurate in expectation. We show how to answer queries of this

form by sampling a single point x from S and then applying a simple differentially-

private algorithm to q(x) that has not been used in adaptive data analysis prior

to this work (Theorem 24). In Section 3.5, we compare sampling counting queries

to counting queries.

Finally, to demonstrate the applicability of our general results, we use them as

a black-box technique to obtain improved bounds for convex optimization (Sec-

tion 3.6). In particular, we introduce a procedure for adaptive gradient descent

that uses our sampling mechanism for low sensitivity queries to compute gradients.

For answering k convex optimization queries, we improve the per-query sample

complexity of O(
√
k) from Bassily et al. [4] to O(log k) in this work. That is, while

the overall sample complexity does not improve over previous work, the number

of samples that need to be examined for each query does. We also similarly de-

crease the number of iterations of gradient descent per query. (Note, however, 4

make slightly different assumptions about the loss function than we do.) While a

nontrivial advance on its own, this contribution also points to the applicability of

our general methods.

24

3.1.2 Previous work

Previous work in this area has focused on finding accurate mechanisms with low

sample complexity (the size of S) for a variety of queries and settings [4, 18, 20, 63,

70]. Most applicable to our work is that of [4] who consider, among others, low-

sensitivity queries, which are merely any function of Xn whose output does not

change much when the input is perturbed (for a more precise definition, see below).

If the queries are nonadaptive, then only roughly log(k)/α2 samples are needed to

answer k such queries. And if the queries are adaptive but the mechanism simply

outputs the empirical estimate of q on S, then the sample complexity is much

worse—order k/α2 instead.

In this chapter, we will focus only on computationally efficient mechanisms. It is

not necessarily obvious that it is possible to achieve a smaller sample complexity

for an efficient mechanism in the adaptive case, but Bassily et al. [4], building

on the work of Dwork et al. [20], provide a mechanism with sample complexity

n = Õ(
√
k/α2) to answer k low-sensitivity queries. Furthermore, for efficient

mechanisms, this bound is tight in k [71]. Bassily et al. [4] also show how to

efficiently answer convex optimization queries, which ask for the minimizer of a

convex loss function, using a (private) gradient descent algorithm of Bassily et

al. [5].

This literature shows that the key to finding such mechanisms with this quadratic

improvement over the naive method is finding stable mechanisms: those whose

output does not change too much when the sample is changed by a single element.

Much of this literature leverages differential privacy [4, 18, 20, 70], which offers a

25

strong notion of stability. This work uses differentially-private mechanisms after

sampling, as we are acutely interested in the impact on privacy when sampling.

In both theory and practice, sampling in settings where privacy matters has long

been deemed useful [42, 43, 45].

In our setting, we need an efficient uniform sampling method that not only

maintains privacy, but actually boosts it. In particular, for an ε-private mechanism

on a database of size n, we want to show that if you sample ` points uniformly and

efficiently from those n points, and then apply the same mechanism, the result is

O
(
`
n
ε
)
-private.

Fortunately, folklore has it that sampling boosts privacy, implicitly in Ka-

siviswanathan et al. [43], and certainly explicitly in the work of Lin et al. [50], who

show that in their particular setting sampling without replacement boosts privacy

to the degree we require. We note that their proof method easily generalizes to

arbitrary domains and ε-private mechanisms. In addition, Bun et al. [11] show

that sampling with replacement also boosts privacy.

3.2 Model and preliminaries

In the adaptive data analysis setting we consider, a (possibly stateful) mechanism

M that is given an i.i.d. sample S of size n from an unknown distribution D over a

finite space X. The mechanismM must answer queries from a stateful adversary

A. These queries are adaptive: A outputs a query qi, to which the mechanism

returns a response ai, and the outputs of A and M may depend on all queries

q1, . . . , qi−1 and responses a1, . . . , ai−1.

26

3.2.1 Low-sensitivity queries and optimization queries

In this work, the first type of query we consider is a low-sensitivity query, which

is specified by a function q : Xn → R with the property that for all samples

S, S ′ ∈ Xn where S and S ′ differ by at most one element, we have |q(S)−q(S)′| ≤

1/n, where we define q(D) = ES∼Dn [q(S)]. (We can generalize to ∆-sensitive

queries where |q(S) − q(S)′| ≤ ∆, but for simplicity we state all of our results

with ∆ = 1/n.) We can now define the accuracy of M.

Definition 12. A mechanism M is said to be (α, β)-accurate over a sample S

on low-sensitivity queries q1, . . . , qk if for its responses a1, . . . , ak we have

PM,A

[
max
i
|qi(S)− ai| ≤ α

]
≥ 1− β.

The key requirement is stronger. Namely, we seek accuracy over the unknown

distribution.

Definition 13. A mechanism M is (α, β)-accurate over distribution D on low-

sensitivity queries q1, . . . , qk, if for its responses a1, . . . , ak we have

PM,A

[
max
i
|qi(D)− ai| ≤ α

]
≥ 1− β.

In this work, we not only desire (α, β)-accuracy but we also want to consider

the time per query taken by M. In this work, we assume we will have oracle

access to q, which will compute q(x) for a sample point x in unit time (and also

q(S) in at most O(|S|) time). This is not a strong assumption: If the queries can

27

be computed efficiently, then this can add only at most a poly-log factor overhead

in n and |X| (as long as we only compute q on a roughly log(n) size sample, which

will turn out to be exactly the case).

We also consider optimization queries. In convex optimization, we have a loss

function L : Xn × Θ → R defined over a convex set Θ ⊆ Rd and a sample from

Xn drawn from a distribution D, and the goal is to output θ ∈ Θ that minimizes

the expected loss, i.e. such a query is defined as

q(D) := arg min
x∈Θ

ES∼Dn [L(S, x)].

We measure accuracy of the response ai by the expected regret: A mechanism is

(α, β)-accurate on optimization queries each specified by a loss function Li with

respect to a distribution D if

PM,A

[
max
i

ES
[
Li(S, ai)−min

x∈Θ
Li(S, x)

]
≤ α

]
≥ 1− β.

We will assume that L is convex in x. We will also consider the special case

when L is strongly convex in x. A function L is H-strongly convex if for all x, y

in Θ,

L(y) ≥ L(x) + 〈∇L(x), y − x〉+
H

2
‖y − x‖2

2.

3.2.2 Counting queries and sampling counting queries

In this work we consider the special case of counting queries, which ask the ques-

tion “What proportion of the data satisfies property q?” Counting queries are

28

a simple and important restriction of low-sensitivity queries [8, 12, 70]. More

formally, a counting query is specified by a function q : X → {0, 1}, where

q(S) = 1
|S|
∑

x∈S q(x) and q(D) = Ex∼D[q(x)]. As in the low-sensitivity setting,

an answer to a counting query must be close to q(D) (Definition 13).

This means, however, that answers will not necessarily be counts themselves,

nor meaningful in settings where we require ` to be small, i.e. very few samples

from the database. To this end, we introduce sampling counting queries. A

sampling counting query (SCQ) is again specified by a function q : X → {0, 1},

but this time the mechanism M must return an answer a ∈ {0, 1}. Given these

restricted responses, we want such a mechanism to act like what would happen if

A were to take a single random sample point x from D and evaluate q(x). The

average value the mechanism returns (over the coins of the mechanism) should be

close to the expected value of q. More precisely, we want the following:

Definition 14. A mechanism M is (α, β)-accurate on distribution D for k sam-

pling counting queries qi if for all states of M and A, when M is given an

i.i.d. sample S from D,

PS,M,A

[
max
i
|EM[M(qi)]− qi(D)| ≤ α

]
≥ 1− β.

We also define (α, β)-accuracy on a sample S from D analogously. Again, our

requirement is thatM be (α, β)-accurate with respect to the unknown distribution

D, this time using only around log(n) time per query (and a constant number of

samples per query).

29

3.2.3 The transfer theorem

A key method of Bassily et al. [4] for answering queries adaptively is a ‘transfer

theorem,’ which states that if a mechanism is both accurate on a sample and

differentially private, then it will be accurate on the sample’s generating distribu-

tion.

Theorem 15 (4). Let M be a mechanism that on input sample S ∼ Dn answers

k adaptively chosen low-sensitivity queries, is (α
64
, αβ

32
)-private for some α, β > 0

and (α
8
, αβ

16
)-accurate on S. Then M is (α, β)-accurate on D.

Their ‘monitoring algorithm’ proof technique involves a thought experiment in

which an algorithm, called the monitor, assesses how accurately an input mech-

anism replies to an adversary, and remembers the query it does the worst on. It

repeats this process some T times, and outputs the query that the mechanism

does the worst on over all T rounds. Since the mechanism is private, so too is the

monitor; and since privacy implies stability, this will ensure that the accuracy of

the worst query is not too bad. For more details see Bassily et al. [4].

In order to prove our own transfer theorem for SCQ’s, we will use some of the

tools they developed. First, for a monitoring algorithm W , the expected value

of the outputted query on the sample will be close to its expected value over the

distribution—formalizing a connection between privacy and stability.

Lemma 16 (4). Let W : (Xn)T → Q× [T] be (ε, δ)-private where Q is the class

of low-sensitivity queries. Let Si ∼ Dn for each of i ∈ [T] and S = {S1, . . . , ST}.

30

Then

|ES,W [q(D)|(q, t) =W(S)]− ES,W [q(St)|(q, t) =W(S)]| ≤ eε − 1 + Tδ.

We will also use a convenient form of accuracy bound for the exponential mech-

anism.

Lemma 17 (4). Let R be a finite set, f : R → R a function, and η > 0. Define a

random variable X on R by P[X = r] = eηf(r)/C, where C =
∑

r∈R e
ηf(r). Then

E[f(X)] ≥ maxr∈R f(r)− 1
η

log |R|.

3.3 Fast mechanisms for low-sensitivity queries

In this section, we provide simple and fast mechanisms for answering low-sensitivity

queries. Our mechanismM for answering low-sensitivity queries comprises: Given

a data set S of size n and query q, sample some ` points uniformly at random

from S (with or without replacement), and call this new set S`. Then the mech-

anism returns q(S`) + Lap
(

1
`ε′′

)
, where Lap(b) refers to the zero-mean Laplacian

distribution with scale parameter b, and ε′′ is a carefully chosen privacy setting.

Algorithm 1 Fast mechanism for low-sensitivity queries

Parameters: Sub-sample size `, target privacy parameters (ε, δ), number of
queries k

Input: Sample S, query q
S` := {s1, . . . , s`}, where si ∼ S uniformly at random (with or without replace-
ment).
ε′′ := cnε

`
√
k log(1/δ)

(c a constant)

return q(S`) + Lap
(

1
`ε′′

)
.

31

We may now state our main theorem for mechanism M, using suitable values

for ε, δ, and `.

Theorem 18. When ` ≥ 2 log(4k/β)
α2 for k low-sensitivity queries,

1. M takes Õ
(

log(k) log(k/β)
α2

)
time per query.

2. M is (α, β)-accurate (on the distribution) so long as n = Ω

(√
k log k·log3/2(1

αβ
)

α2

)
.

Sampling with replacement takesO(log n) time per sample, for a total ofO(` log n)

time over ` samples. This suffices to prove part 1) for the values of ` and n given.

It is also the case that sampling without replacement may take O(log n) time per

sample, for a total of O(` log n) time over ` samples, in several settings. Again,

this is sufficient, but may come at the cost of space complexity, e.g. by keeping

track of which elements have not been chosen so far [80]. Alternatively, there are

methods that enjoy optimal space complexity at the cost of worst-case running

times, as in rejection sampling [77].

To prove part 2), we must establish that sampling boosts privacy. If sampling

before a ε-private mechanism were to only deliver O(ε) instead of O(`
n
ε) privacy

then we would need ` >
2
√

2k log(1/δ) log(2k/β)

αε
, which would be undesirable: ` then

becomes the size of the entire database and sampling yields no time savings over

computing q(S) exactly. Fortunately, sampling can boost privacy:

Proposition 19 (Adapted from 50). Given a mechanism P : X` → Y , M will

be the mechanism that does the following: Sample uniformly at random without

replacement ` points from an input sample S ∈ Xn of size n, and call this set S`.

32

Output P(S`). Then if P is ε-private, then M is log(1 + `
n

(eε − 1)) = O
(
`
n
· ε
)

private for ` ≥ 1.

For convenience, we provide a proof, based on [50], that sampling without

replacement boosts privacy.

Proposition 19. Let S and S ′ be samples of size that differ only on the kth index.

Consider the set of all subsamples of the indices [n] of size `:

R = {π : π = {i1, . . . , ik} ⊂ [n]}.

Under uniform sampling without replacement, we choose uniformly at random a

subsample π from R. For any index k, either k is in π or π differs in exactly one

element from some subsample that includes k. In particular, any π not including

k is distance one away from exactly ` subsamples with k: namely, the subsamples

that replace each element of π with k. Abusing notation, we will identify the

subsample of indices with the corresponding subsample of S (and likewise with

S ′), so that P[P(π) = z|S] refers to the probability that mechanism P outputs

z given the subsample π of S. Then for any output z in Y , where d(π, π′) = 1

33

denotes two subsamples differing in exactly one element,

P[M(S) = z|S] =
1

|R|
∑
π∈R

P[P(π) = z|S]

=
1

|R|

 ∑
π∈R:k∈π

P[P(π) = z|S] +
1

`

∑
π∈R:k∈π

∑
π′:k 6∈π,d(π,π′)=1

P[P(π′) = z|S]


=

1

|R|
∑

π∈R:k∈π

P[P(π) = z|S] +
1

`

∑
π′:k 6∈π,d(π,π′)=1

P[P(π′) = z|S]

 .

That is,

P[M(S) = z|S]

P[M(S ′) = z|S ′]
=

∑
π∈R:k∈π

(
P[P(π) = z|S] + 1

`

∑
π′:k 6∈π,d(π,π′)=1 P[P(π′) = z|S]

)
∑

π∈R:k∈π

(
P[P(π) = z|S ′] + 1

`

∑
π′:k 6∈π,d(π,π′)=1 P[P(π′) = z|S ′]

)
≤ max

π∈R:k∈π

P[P(π) = z|S] + 1
`

∑
π′:k 6∈π,d(π,π′)=1 P[P(π′) = z|S]

P[P(π) = z|S ′] + 1
`

∑
π′:k 6∈π′,d(π,π′)=1 P[P(π′) = z|S ′]

,

where we bound the ratio of sums by the maximum ratio. Name π∗ the maximizer

of this ratio. Now we bound the numerator and denominator via privacy:

Fix π ∈ R with k ∈ π. Firstly, we have P[P(π) = z|S] ≤ eεP[P(π) = z|S ′].

Secondly, for π′ such that k 6∈ π′ but d(π, π′) = 1 we have P[P(π) = z|S] ≤

eεP[P(π′) = z|S]. Finally, P[P(π′) = z|S] = P[P(π′) = z|S ′] since k 6∈ π′. Thus

34

P[M(S) = z|S]

P[M(S ′) = z|S ′]
≤

P[P(π∗) = z|S] + 1
`

∑
π′:k 6∈π′,d(π∗,π′)=1 P[P(π′) = z|S]

P[P(π∗) = z|S ′] + 1
`

∑
π′:k 6∈π′,d(π∗,π′)=1 P[P(π′) = z|S]

= 1 +
P[P(π∗) = z|S]− P[P(π∗) = z|S ′]

P[P(π∗) = z|S ′] + 1
`

∑
π′:k 6∈π′,d(π∗,π′)=1 P[P(π′) = z|S]

≤ 1 +
P[P(π∗) = z|S]− e−εP[P(π∗) = z|S]

e−εP[P(π∗) = z|S] + 1
`

∑
π′:k 6∈π′,d(π∗,π′)=1 e

−εP[P(π∗) = z|S]

= 1 +
1− e−ε

e−ε + 1
`

∑
π′:k 6∈π′,d(π∗,π′)=1 e

−ε

= 1 +
`

n
(eε − 1),

where the second inequality uses privacy and the last equality follows from the

fact that there are n− ` such π′ where k 6∈ π′ but d(π∗, π′) = 1.

Sampling with replacement also boosts privacy:

Proposition 20 (11). Given a mechanism P : X` → Y ,M will be the mechanism

that does the following: Sample uniformly at random with replacement ` points

from an input sample S ∈ Xn of size n, and call this set S`. Output P(S`). Then

if P is ε-private, then M is 6ε`
n

-private for ` ≥ 1.

We may now return to the main theorem:

Proof of Theorem 18. Since the Laplace mechanism receives a sample S` of size

`, output aq can be bounded with the standard accuracy result for the Laplace

mechanism ensuring ε′′-privacy for any ε′′ > 0:

P[|aq − q(S`)| ≥ α/2] ≤ e−
αε′′`

2 .

35

We can bound this above by β
2k

provided ε′′ ≥ log(2k/β)
`α

; and this follows from a

Chernoff bound

P[|q(S`)− q(S)| ≥ α/2] ≤ e−
α2`
2 .

Once again we can bound this above by β
2k

so long as ` ≥ 2 log(4k/β)
α2 .

Thus we have, for all q, P[|aq − q(S)| ≥ α] ≤ P[|aq − q(S`)| ≥ α/2] + P[|q(S`) +

q(S)| ≥ α/2] ≤ β/k. The union bound immediately yields (α, β)-accuracy over

all k queries. From Proposition 19, we also have
(
`
n
ε′′
)
-privacy, where `

n
ε′′ =

log(2k/β)
nα

. Equivalently, we have ε′-privacy when n ≥ log(2k/β)
ε′α

. With adaptive

composition (Proposition 5), we can answer k queries with (ε, δ)-privacy when

ε′ = ε

2
√

2k log(1/δ)
, resulting in (α, β)-accuracy and (ε, δ)-privacy on S so long as

n >
2
√

2k log(1/δ) log(2k/β)

αε
. The proof is concluded by applying Theorem 15.

We also have a version of this theorem in expectation, which will require a new

version of the transfer theorem, stated now:

Theorem 21. Consider any possibility for the simulation between A and M up

to the first t− 1 rounds. Denoting the expectation while conditioning on any such

possibility Et−1[·], we have for any round i ≥ t, if M is (α/8, α/4)-private for

α ≤ 1, and Et−1,S,M,A[|qi(S)− ai|] ≤ α/2, then

Et−1,S,M,A[|qi(D)− ai|] ≤ α.

Proof. Suppose by way of contradiction that Et−1,S,M,A[|qi(D)−ai|] > α. Note the

monitor W , given in Algorithm 2, simply outputs qi, conditioned on q1, . . . , qt−1

36

Algorithm 2 Monitor W
Parameters: Mechanisms M and A, index i, and initial sequence of queries
q1, . . . , qt−1 and responses a1, . . . , at−1

Input: Sample S
Set the internal states ofM(S) and A to be what they would be if the resulting
simulation had produced q1, . . . , qt−1 and a1, . . . , at−1.
Now simulate M(S) and A interacting starting in those states for i − t + 1
rounds. Let qt, . . . , qi be the resulting queries.
return qi.

and a1, . . . , at−1 being the initial sequence of queries and responses, so

|ES,W [q(D)− q(S)|q =W(S)]| = |Et−1,S,M,A[qi(S)− qi(D)]|

≥ |Et−1,S,M,A[qi(D)− ai]| − |Et−1,S,M,A[qi(S)− ai]|

> α− α/2 = α/2.

Since the monitorW only outputs qi, which is post-processing from a private mech-

anism M, W remains (α/8, α/4)-private. Therefore by Lemma 16, |ES,W [q(D)−

q(S)|q =W(S)]| ≤ eε−1+δ ≤ α/2 with the above values of ε and δ for α ≤ 1.

We can now state how our fast mechanism M performs with respect to this

notion of accuracy.

Corollary 22. With respect to any possible simulation between A and M up to

the first t− 1 rounds, for any i ≥ t,

Et−1,S,A,M[|ai − qi(D)|] ≤ Õ

(
k1/4

√
n

+
1√
`

)
.

37

This follows as in the proof of Theorem 18, this time using

Et−1,S,A,M[|ai − qi(S)|] ≤
√
k log(1/δ)

nε
+

1√
`
.

3.4 Sampling counting queries

We now turn to sampling counting queries. Unlike in the previous section, we

cannot leverage an existing transfer theorem, so instead we establish a new one.

Theorem 23. Let M be a mechanism that on input sample S ∼ Dn answers k

adaptively chosen sampling counting queries, is (α
64
, αβ

16
)-private for some α, β > 0

and (α/2, 0)-accurate on S. Suppose further that n ≥ 1024 log(k/β)
α2 . Then M is

(α, β)-accurate on D.

This allows us to answer sampling counting queries:

Theorem 24. There is a mechanism M that satisfies the following:

1. M takes Õ

(
log

(
k log(1

β
)

α

))
time per query.

2. M is (α, β)-accurate on k sampling counting queries, where

n ≥ Ω

max


√
k log(1

αβ
)

α2
,
log(k/β)

α2

 .

We prove our transfer theorem using the following monitoring algorithm, which

takes as input T sample sets, and outputs a query with probability proportional

to how far away the query is on the sample as opposed to the distribution.

38

Algorithm 3 Monitor with exponential mechanism WD

Parameters: Mechanisms M and A, distribution D
Input: Set of samples S = {S1, . . . , ST}

for t in [T] do
Simulate M(St) and A interacting.
Let qt,1, . . . , qt,k be the queries of A.

end for
Let R := {(qt,i, t)}t∈[T],i∈[k].
Abusing notation, for each t and i ∈ [k], consider the corresponding element rt,i
of R and define the utility of rt,i as u(S, rt,i) = |qt,i(St)− qt,i(D)|.
return r ∈ R with probability proportional to exp

(
ε·n·u(S,r)

2

)
.

Lemma 25. If M is (ε, δ)-private for k queries, then WD is (2ε, δ)-private.

The idea is that R represents post-processing from the differentially-privateM,

and outputting an element from R is achieved with the exponential mechanism,

making the monitor WD private.

Lemma 25. A single perturbation to S can only change one St, for some t. Then

since M on St is (ε, δ)-private, M remains (ε, δ)-private over the course of the T

simulations. Since A uses only the outputs of M, A is just post-processing M,

and therefore it is (ε, δ)-private as well: releasing all of R remains (ε, δ)-private.

Since the sensitivity of u is ∆ = 1/n, the monitor is just using the exponential

mechanism to release some r ∈ R, which is ε-private. The standard composition

theorem completes the proof.

Given that the monitor is private, we can now bound the probability that the

query that the monitor outputs on the sample are far away from the distribution

39

on both sides, if M is not accurate, by using both Lemmas 16 and 17, yielding

the transfer theorem given in Theorem 23.

Theorem 23. Consider the results for simulating T times the interaction between

M and A. Suppose for the sake of contradiction that M is not (α, β)-accurate

on D. Then for every i in [k] and t in T , since |EM[M(qt,i)] − q(St)| ≤ α/2, we

have

PSt,M,A

[
max
i
|qt,i(St)− qt,i(D)| > α/2

]
> β.

Call some q and t that achieves the maximum |q(St) − q(D)| over the T inde-

pendent rounds ofM and A interacting, asWD does (Algorithm 3), by qw and tw.

Since each round t is independent, the probability that |qw(Stw)−qw(D)| ≤ α/2 is

then no more than (1− β)T . Then using Markov’s inequality immediately grants

us that

ES,WD
[|qw(Stw)− qw(D)|] > α

2
(1− (1− β)T). (3.1)

Let Γ = ES,WD
[|q∗(St∗)− q∗(D)| : (q∗, t∗) =WD(S)].

Setting f(r) = u(S, r), Lemma 17 implies that under the exponential mecha-

nism, we have

E[|q∗(St∗)− q∗(D)| : (q∗, t∗) =WD(S)]

≥ |qw(Stw)− qw(D)| − 2

εn
log(kT).

Taking the expected value of both sides with respect to S and the randomness of

40

the rest of WD, we obtain

Γ ≥ ES,WD
[|qw(Stw)− qw(D)|]− 2

εn
log(kT)

>
α

2
(1− (1− β)T)− 2

εn
log(kT), (3.2)

which follows from employing Equation (3.1). On the other hand, suppose that

M is (ε, δ)-private for some ε, δ > 0. Then by Lemma 25, WD is (2ε, δ)-private,

and then in turn Lemma 16 implies that

Γ ≤ e2ε − 1 + Tδ. (3.3)

We will now ensure Γ ≥ α/8, via (3.2), and Γ ≤ α/8, via (3.3), yielding a

contradiction. Set T = b 1
β
c and δ = αβ

16
. Then

e2ε − 1 + Tδ ≤ e2ε − 1 + α/16 ≤ α/8

when e2ε − 1 ≤ α/16, which in turn is satisfied when ε ≤ α/64, since 0 ≤ α ≤ 1.

On the other side, 1 − (1 − β)b
1
β
c ≥ 1/2. Then it suffices to set ε such that

2
εn

log(kT) ≤ α/8. Thus we need ε such that

16 log(k/β)

αn
≤ ε ≤ α/64.

Such an ε exists, since we explicitly required n ≥ 1024 log(k/β)
α2 .

With a transfer theorem in hand, we now introduce a private mechanism that

41

is accurate on a sample for answering sampling counting queries.

Lemma 26 (SCQ mechanism). For ε ≤ 1, There is an (ε, δ)-private mechanism

to release k SSQs that is (α, 0)-accurate, for α ≤ 1/2, with respect to a fixed

sample S of size n so long as n >
2
√

2k log(1/δ)

αε
.

Proof. We design a mechanism M to release a (α, 0)-accurate SCQ for n > 1
αε

and then use Proposition 5. The mechanism is simple: sample x i.i.d. from S.

Then release q(x) with probability 1 − α and 1 − q(x) with probability α. Let

i =
∑

x∈S q(x). Then EM[M(q)] = (1−α)i+α(n−i)
n

= i
n

+ α
(
n−2i
n

)
, so i

n
− α ≤

EM[M(q)] ≤ i
n

+ α, implying that M is (α, 0)-accurate on S.

Now let S ′ differ from S on one element x, where q(x) = 0 but for x′ ∈ S ′,

q(x′) = 1. Consider

P[M(S) = 1]

P[M(S ′) = 1]
=

(1− α) i+1
n

+ α(n−i+1
n

)

(1− α) i
n

+ α(n−i
n

)
= 1 +

1− 2α

i− 2αi+ αn
,

for i = 0 to i = n − 1. The other cases are similar. Note this is at least 1 since

1 − 2α ≥ 0. Thus it suffices to show when this is upper-bounded by eε. By

computing the partial derivative with respect to i, it is easy to see that it suffices

to consider the cases when i = 0 or i = n− 1. When i = 0,

log

(
P[M(S) = 1]

P[M(S ′) = 1]

)
≤ 1− 2α

αn
≤ 1

αn
≤ ε

42

when n ≥ 1
εα

. When i = n− 1,

log

(
P[M(S) = 1]

P[M(S ′) = 1]

)
≤ 1− 2α

n(1− α)− (1− 2α)
≤ ε

when n ≥ (1−2α)(ε+1)
(1−α)ε

but because 1−2α
1−α ≤ 1, it suffices to set n ≥ 1 + 1

ε
. The proof

is completed by noting that 1
εα
≥ 1 + 1

ε
because ε ≤ 1.

We now use this mechanism to answer sampling counting queries.

Theorem 24. We use the mechanism of Lemma 26. This gives an (ε, δ)-private

mechanism that is (α/2, 0)-accurate so long as n ≥ 4
√

2k log(1/δ)

αε
. Setting ε and δ

as required by Theorem 23 implies that we need n ≥ Ω
(√

k log(1
αβ

)/α2
)

. Note to

use Theorem 23 we also need n ≥ Ω (log(k/β)/α2). The sample complexity bound

follows. This mechanism samples a single random point, which takes O(log(n))

time, completing the proof.

3.5 Comparing counting and sampling counting queries

How do our mechanisms for counting queries and sampling counting queries com-

pare to each other? Can we use a mechanism for SCQ’s to simulate a mechanism

for counting queries, or vice-versa? We now show that the natural approach to

simulate a counting query with SCQ’s results in an extra O(1/α) factor (although

it does enjoy a slightly better dependence on k). This represents a O(1/α) over-

head in order to ensure that the mechanism returns meaningful results for all

sample sizes `.

43

Proposition 27. Using ` SCQ’s to estimate each counting query is an (α, β)-

accurate mechanism for k counting queries if ` ≥ 2 log(4k/β)
α2 and

n = Ω

(√
k log k log3/2(1

αβ
)

α3

)
.

Proof. The mechanism, for each query q, will query the SCQ mechanism M de-

scribed in Section 3.4 ` times with the query q, and return the average, call

this aq. Note that E[aq] = E[M(q)]. Since each SCQ is independent of each

other, a Chernoff bound gives P[|aq − E[aq]| ≥ α/2] ≤ 2e−`α
2/2 ≤ β/2k when

` ≥ 2 log(4k/β)
α2 . Using Theorem 24, as long as n = Ω

(√
k` log(1

αβ
)

α2

)
, we have that

P[maxq |E[M(q)] − q(D)| ≥ α/2] ≤ β/2, over all k` queries. Then the union

bound implies that

P[max
q
|aq − q(D)| ≥ α] ≤ P[max

q
|aq − E[M(q)]|+ |E[M(q)]− q(D)| ≥ α]

≤ β/2 + β/2 ≤ β.

Plugging in ` into the above expression for n completes the proof.

Meanwhile, it is possible to use a mechanism for counting queries to attempt

to answer SCQ’s, but it has higher sample complexity than the mechanism for

SCQ’s proposed above. Indeed, there is the naive approach that ignores time

constraints by first computing q(S) exactly, adding noise to obtain a value ãq,

and then returning 1 with probability ãq and 0 otherwise. For this mechanism we

obtain an (ε, δ)-private mechanism to release k SCQ’s that is (α, β)-accurate with

44

respect to a fixed sample S of size n so long as

n >
2
√

2k log(1/δ) log(1/β)

αε
,

which is strictly worse than the mechanism for SCQ’s we actually use. This

motivates our approach to SCQ’s.

3.6 An application to convex optimization

Our mechanism for convex optimization will take advantage of our fast mecha-

nism for low-sensitivity queries. We will perform straightforward gradient descent

but we calculate each coordinate of each gradient via the mechanism described

in Section 3.3. We’ll use this mechanism to obtain an approximation of the gra-

dient via the query qt−1(S) := ∇L(S, xt−1)(i). The mechanism, recall, takes a

random subsample S` and adds independent noise which we’ll call b, so that

∇̃L(S, xt−1)(i) := ∇L(S`, xt−1)(i) + bi,t−1. When clear, we abbreviate ∇̃L(S, xt) as

∇̃L(xt), or just ∇̃t.

Algorithm 4 Gradient descent with an adaptive mechanism for gradients

Parameters: Mechanism M, learning rate η
Input: number of rounds T , initial point x0

for t in [T] do
qt−1,i(S) := ∇L(S, xt−1)(i)

∇̃L(S, xt−1) := (M(qt−1,i, S)){i}
xt := xt−1 − η∇̃L(S, xt−1)

end for
return 1

T

∑
xt.

We first show that the expected excess risk ES,M,A[L(S, x)−minx∈Θ L(S, x)] for

45

x the output of Algorithm 4 is small, for strongly convex functions. Here, we as-

sume the gradient ∇L(S, x) is a low sensitivity function in each of the coordinates

of S.

Theorem 28. Let L be differentiable, H-strongly convex, let ∇L be low sensi-

tivity, and for any S ′ ⊂ S and x ∈ Θ, E[‖∇L(S ′, x)‖2] ≤ G2. Then there is

a mechanism that answers k such optimization queries each with expected excess

risk α if n = Õ
(
d3/2
√
k

α5/2

)
in Õ

(
d2

α3

)
samples per query and Õ

(
1
α

)
iterations of

gradient descent per query.

Bounding regret here is similar to typical analyses, but is complicated by one

major difference: A typical assumption in stochastic gradient descent is that the

oracle returning the oracle for the gradient is unbiased, so that E[∇̃L] = ∇L (e.g.

in Shamir and Zhang [69]), whereas here E[∇̃L] is only guaranteed to be close to

the true gradient L. We take advantage of (strong) convexity to show that for

sufficiently large sample size, gradient descent still converges sufficiently quickly.

Proof. In order to answer k optimization queries, we use our low-sensitivity oracle

to get each component of ∇L, for a total of R = k · T · d rounds, where T is the

number of iterations per optimization (Algorithm 4). For each optimization query,

we now bound regret. As is standard, we pick x∗ = arg minx∈Θ L(x) to plug in to

strong convexity to get, rearranging,

E[L(xt)− L(x∗)] ≤ E[〈∇t, xt − x∗〉]−
H

2
E[‖xt − x∗‖2].

46

Again following the standard analysis,

‖xt+1 − x∗‖2 = ‖Π(xt − ηt∇̃t)− x∗‖ ≤ ‖xt − ηt∇̃t − x∗‖2

≤ ‖xt − x∗‖2 + η2
t ‖∇̃t‖2 − 2ηt〈∇̃t, xt − x∗〉.

In other words,

〈∇̃t, xt − x∗〉 ≤
‖xt − x∗‖2 − ‖xt+1 − x∗‖2

2ηt
+
ηt
2
‖∇̃t‖2.

Moreover, we can upper-bound E[‖∇̃t‖2] since ∇̃t = ∇L(S`, xt) + bt, where bt is

the noise vector.

E[‖∇̃t‖2] = E[‖∇L(S`, xt)‖2] + E[‖bt‖2] + 2E[〈∇L(S`, xt), bt〉]

≤ G2 + 2dσ2 = G2 +
2dk log(1/α′)

n2α′2
,

where σ2 is the variance of the noise. Note E[〈∇L(S`, xt), bt〉] = 0 because bt is

independent of both S` and xt.

Now, using the bounds on our oracle, we upper-bound 〈∇t, xt − x∗〉 using

〈∇̃t, xt − x∗〉.

Using Et−1[·] to denote the expectation conditioned on all of the previous t− 1

iterations, the promise of our mechanism (Corollary 22) is that we can guarantee

that for each coordinate i, Et−1[∇(i)
t] ≤ Et−1[∇̃(i)

t] + α′, where

α′ = Õ

(
R1/4

√
n

+
1√
`

)
.

47

Then

E[〈∇t, xt − x∗〉] =
∑
i

E[Et−1[∇(i)
t (xt − x∗)(i)]]

≤
∑
i

E[Et−1[(∇̃(i)
t + α′)(xt − x∗)(i)]] = E[〈∇̃t, xt − x∗〉] + α′E

[∑
i

(xt − x∗)(i)

]

≤ E[〈∇̃t, xt − x∗〉] + α′E[‖xt − x∗‖1] ≤ E[〈∇̃t, xt − x∗〉] + α′
√
d E[‖xt − x∗‖2].

The first equality conditions on the first t− 1 rounds and then expands the inner

product. The first inequality follows because once we condition on the first t− 1

rounds, ∇t and xt are independent, so we can use the mechanism’s guarantee. ∇̃t

and xt are also independent when conditioned on the first t−1 rounds, from which

the second equality follows. The last inequality follows from Cauchy-Schwartz.

Note further that E[‖xt − x∗‖2] ≤ 1 + E[‖xt − x∗‖2
2], simply because either

‖xt − x∗‖2 ≤ 1 or ‖xt − x∗‖2 < ‖xt − x∗‖2
2. Thus

E[〈∇t, xt − x∗〉] ≤ E[〈∇̃t, xt − x∗〉] + α′
√
d+ α′

√
dE[‖xt − x∗‖2].

Thus we have

48

T∑
t=1

E[L(xt)− L(x∗)]

≤
T∑
t=1

(
(1 + α′

√
d)E[‖xt − x∗‖2]− E[‖xt+1 − x∗‖2]

2ηt
− H

2
E[‖xt − x∗‖2]

+
ηt
2

(
G2 +

2dk log(1/α′)

n2α′2

)
+ α′
√
d

)
≤ 1

2

T∑
t=1

E[‖xt − x∗‖2]

(
1 + α′

√
d

ηt
− 1

ηt−1

−H

)

+

(
G2

2
+
dk log(1/α′)

n2α′2

)(T∑
t=1

ηt

)
+ α′
√
dT.

Now if we set ηt = 2
Ht

, then 1+α′
√
d

ηt
− 1

ηt−1
−H ≤ 0 when α′

√
d ≤ 1/t.

Then setting α′
√
d ≤ 1

T
, the average loss is

1

T

T∑
t=1

E[L(xt)− L(x∗)] ≤ 2

HT

(
G2

2
+
dk log(1/α′)

n2α′2

) T∑
t=1

1/t+ α′
√
d

=
G2

H
· 1 + log(T)

T
+

2dk log(1/α′)

Hn2α′2
· 1 + log(T)

T
+ α′
√
d.

Thus to show that the average loss is no more than α requires us to provide that

G2

H
· 1+log(T)

T
≤ α/3, or T = Õ

(
G2

αH

)
. We also require α′

√
d ≤ 1/T , α′

√
d ≤ α/2,

and 2dk log(1/α′)

Hn2α′2
· 1+log(T)

T
≤ α/3. Thus it suffices so that n = Õ

(
G5

H5/2 · d
3/2
√
k

α5/2

)
and

` = Õ
(
G4

H2 · dα2

)
. Finally, the number of samples used per optimization query is

T · d · ` = Õ
(
G6

H3 · d
2

α3

)
.

As is standard, we can boost this to a high-probability result by running the

49

gradient-descent algorithm log(k/β) times and choosing the best run among them.

Corollary 29. This mechanism is (α, β)-accurate for k optimization queries,

with the same assumptions as in Theorem 28, when n = Õ
(
d3/2
√
k log(k/β)

α5/2

)
in

Õ
(
d2 log(k/β)

α3

)
samples per query and Õ

(
log(k/β)

α

)
iterations of gradient descent

per query.

We now give the equivalent result when the loss function is only guaranteed to

be convex and not strongly convex.

Theorem 30. Let L be differentiable and convex, let ∇L be low sensitivity, for

any S ′ ⊂ S and x ∈ Θ, E[‖∇L(S ′, x)‖2] ≤ G2, and finally, for any x, y ∈ Θ,

‖x − y‖2 ≤ D2. Then there is a mechanism that answers k such optimization

queries each with expected excess loss α if n = Õ
(
d3/2
√
k

α5

)
in Õ

(
d2

α5

)
samples per

query and Õ
(

1
α2

)
iterations of gradient descent per query.

Proof. The proof is very similar to that of the proof of Theorem 28, using the

same algorithm, except now we only have

E[L(xt)− L(x∗)] ≤ E[〈∇t, xt − x∗〉].

But as before, we have

E[〈∇t, xt − x∗〉] ≤ E[〈∇̃t, xt − x∗〉] + α′
√
d+ α′

√
d E[‖xt − x∗‖2],

〈∇̃t, xt − x∗〉 ≤
‖xt − x∗‖2 − ‖xt+1 − x∗‖2

2ηt
+
ηt
2
‖∇̃t‖2,

50

and

E[‖∇̃t‖2] ≤ G2 +
2dk log(1/α′)

n2α′2
.

Then

T∑
t=1

E[L(xt)− L(x∗)]

≤
T∑
t=1

(
(1 + α′

√
d)E[‖xt − x∗‖2]− E[‖xt+1 − x∗‖2]

2ηt

+
ηt
2

(
G2 +

2dk log(1/α′)

n2α′2

)
+ α′
√
d

)
≤ 1

2

T∑
t=1

E[‖xt − x∗‖2]

(
1 + α′

√
d

ηt
− 1

ηt−1

)

+

(
G2

2
+
dk log(1/α′)

n2α′2

)(T∑
t=1

ηt

)
+ α′
√
d · T.

≤ D2

2ηT
+
D2α′

√
d

2

T∑
t=1

1

ηt
+

(
G2

2
+
dk log(1/α′)

n2α′2

)(T∑
t=1

ηt

)
+ α′
√
d · T,

where the last inequality comes from upper-bounding ‖xt−x∗‖2 by the diameter,

and collapsing the telescoping series. Set ηt = D
G
√
t
. This gives the average loss as

1

T

T∑
t=1

E[L(xt)− L(x∗)] ≤ DG

2
√
T

+
DGα′

√
dT

2
+

DG

2
√
T

+
Ddk log(1/α′)

√
T

Gn2α′2
+ α′
√
d

=
DG√
T

+
DGα′

√
dT

2
+
Ddk log(1/α′)

√
T

Gn2α′2
+ α′
√
d.

It suffices to show that each of these four terms are upper-bounded by α/4, in

which case we require T ≥ O(D
2G2

α2), n ≥ Õ
(
D5G5d3/2

√
k

α5

)
, and ` ≥ Õ

(
D3G3d
α3

)
.

51

Thus the number of samples used per query is T · d · ` = Õ
(
D5G5d2

α5

)
.

Again, we can give the high-probability version:

Corollary 31. This mechanism is (α, β)-accurate for k optimization queries,

with the same assumptions as in Theorem 30, when n = Õ
(
d3/2
√
k log(k/β)
α5

)
in

Õ
(
d2 log(k/β)

α5

)
samples per query and Õ

(
log(k/β)
α2

)
iterations of gradient descent

per query.

3.7 Conclusion

In this chapter, we have introduced new faster mechanisms that take advantage of

sampling’s simultaneous ability to boost privacy while decreasing running time.

Using this sampling approach as a black box, we show its applicability to create

fast algorithms for adaptive convex optimization. This approach has several up-

sides, including the fact that the only the black box needs access to the sample;

the rest of the algorithm performing gradient descent does not. As importantly,

both for convex optimization and low-sensitivity queries, we improve the running

time over previous work from order
√
k to log(k), all without increasing the sample

complexity above Õ
(√

k
)

.

There is still much future work to be done. In what other adaptive settings can

sampling help as much as it does in this work? Sub-linear time algorithms are

frequently required for a variety of problems, such as property testing or large-

data environments. How can fast algorithms for adaptive analysis be developed

in these types of settings?

52

4
On the Complexity of Learning from

Label Proportions

4.1 Introduction

In this chapter, we investigate the complexity of the learning problem of estimat-

ing the proportion of labels for a given set of instances. For example, this problem

This chapter is based on the manuscript Fish and Reyzin [26]. Copyright held by the IJCAI
Organization.

53

http://www.ijcai.org/
http://www.ijcai.org/

appears when predicting the proportion of votes for a given candidate [16]; cor-

rectly predicting how each individual votes is not required, only which candidate

will win. Variants of this problem also appear in many other domains, including

in consumer marketing [13], medicine and other health domains [37, 79], image

processing [16], physical processes [55], fraud detection [64], manufacturing [72],

and voting networks [25].

In classical PAC learning, we are given labeled data instances from a distribu-

tion, and in the idealized case, must find a function that labels all of the data

consistent with the observations. In less constrained settings, the goal is to find a

function of low error, or at least of error as low as possible on the data presented

to the algorithm. There is substantial literature on classical PAC learning outside

the scope of this dissertation; see e.g. [67] for a survey. Once the classifier is found,

it is easy to find the proportion of instances with a given label by invoking the

classifier on the instances. Algorithms for estimating the proportion of labels with

labeled data have been introduced before, for example by Iyer et al. [39].

However, getting instances with attached labels, as assumed in classical PAC

learning, is often difficult. Sometimes this is due to limits on the measurement

process [37, 16, 55, 72]. At other times, before datasets are released, labels are

purposely detached from their instances in order to maintain privacy [13, 64, 79].

Instead, only the proportion of labels are given for a group of sample instances.

For example, in estimating who will win an election, pre-election polls only release

the percentage of people planning to vote for a given candidate. Quadrianto et

al. [62] give several other examples where the only data available is of this form.

54

The goal is then to learn a classifier from a hypothesis class that is able to

correctly predict the proportions of labels from a hidden distribution using a

training set which consists of a set of instances and the proportions of labels of

that set of instances. This is the learning-theoretic problem we formalize and

tackle in this chapter. The proportion of labels may be inferred by first finding a

classifier that predicts the labels for each instance [58, 62, 64, 84]. Alternatively,

Iyer et al. [40] propose inferring the proportion of labels directly.

Yu et al. [83] introduce a version of a model for learning from label proportions.

In their model, each bag of examples comes with the proportions of each label

in that bag, and each bag is drawn i.i.d. from a distribution over bags. They

give some of the first sample complexity guarantees. Another approach is where

the examples are drawn i.i.d., but the bags may be an arbitrary partition of

the examples, as in [64, 72]. Compared to these ‘bag’ models, our model of

learning from label proportions corresponds to the ‘one-bag case’ with binary

labels, where each example is drawn i.i.d. from an arbitrary distribution. However,

as we demonstrate, this model is already interesting to study. We formalize this

as a PAC-like learning model, which allows us to compare the difficult of learning

a hypothesis class in classical PAC learning to learning a hypothesis class in this

model.

In particular, we give the following results, including the first computational

hardness results for learning label proportions. After formally defining the model

in Section 4.2, we show in Section 4.3 that the classes of hypotheses (with fi-

nite VC dimension) that are learnable from label proportions are a subset of the

55

classes that are PAC learnable. We then go on to show that learning from label

proportions is strictly harder than PAC learning in Section 4.4, by showing that

under natural assumptions, parity functions are not efficiently learnable from la-

bel proportions. Finally, in Section 4.5 we give some positive results indicating

cases where it is possible to PAC learn from label proportions. We also show

that n-dimensional half-spaces over the boolean cube are learnable from label

proportions under the uniform distribution.

4.2 Model and Sample Complexity

For a distribution D over the domain of a function c, call c(D) the resulting

distribution over the range of c. For c a function {0, 1}n → {0, 1}, we will call

pc the percentage of positive labels in this distribution, i.e. c(D)(1). For a given

sample, we call the percentage labeled positively as p̂c. Where clear, we will

abbreviate these as p and p̂ respectively.

In this setting, each example x drawn from D has a hidden label c(x), but

the learning algorithm does not get to see examples with labels. Instead, the

algorithm only gets to see the set of unlabeled examples S and p̂, the percentage

of S labeled positively by c. The goal is to find a function h in a hypothesis class

H such that pc should be close to ph with high probability.

Definition 32. A class of functions H is PAC learnable from label proportions if

there is an efficient algorithm A such that for every target function c in H, any dis-

tribution D over {0, 1}n, and for any ε, δ > 0, given m ≥ poly(1/ε, 1/δ, n, size(c))

56

examples drawn i.i.d. from D and p̂, returns a hypothesis h in H such that

P[|pc − ph| ≤ ε] ≥ 1− δ.

We call this form of learning “PAC learning from label proportions.”

In general, we may consider agnostic or improper versions of this PAC model.

However, improper learning from the class of all functions here is very easy: We

can efficiently learn with a sample complexity that only depends on ε and δ:

Observation 33. The sample complexity for improper PAC learning from label

proportions is O
(

ln(1/δ)
ε2

)
.

Proof outline. In improper learning, it is easy to find a function h∗ so that not

only does p̂h∗ = p̂, but also ph∗ = p̂: e.g. h∗ may be a randomized function that

on any input returns 1 with probability p̂ and 0 otherwise. Then ph∗ = p̂ and a

Chernoff bound implies that p̂ is close to p.

For example, if the task is to predict the proportion of votes for a given candidate

using only a single poll, improper learning in this model is easy simply by virtue of

the fact that p̂ is an unbiased estimator for p. However, the hypothesis h∗ described

above will not be a realistic model of voting. So proper learning corresponds to

finding a realistic model of voting, one which describes a relationship between

examples and labels, that also predicts the proportion of votes correctly. For

this reason, for the remainder of this chapter, we will only consider proper PAC

learning from label proportions.

57

Definition 32 is a distribution-free setting, but when the distribution is known,

sample complexity also may be independent of the VC-dimension.

Observation 34. Let D be a known distribution. Let

β = inf
h,h′∈H:
h6=h′

|ph − ph′ |.

Then the sample complexity for PAC learning from label proportions the hypothesis

class H is O
(

ln(1/δ)
β2

)
.

Proof outline. Here, we can use another Chernoff bound to get that with high

probability, p̂ is within β/2 of pc, for c the target hypothesis. But the definition of

β implies that there is exactly one value pc∗ in {pc : c ∈ H} such that p̂ is closer

to pc∗ than any other value in {pc : c ∈ H}. Then with high probability pc = pc∗ .

Thus an algorithm may output any h such that ph = pc∗ .

This analysis of the distribution-free setting only considers sample complexity

and not computational complexity. In Section 4.5, we will give an example where

we can efficiently PAC learn from label proportions under the uniform distribution.

We may still wish to bound the sample complexity of PAC learning from label

proportions in the setting where the distribution is arbitrary. Following the proof

of the equivalent bounds in PAC learning under an arbitrary loss function (see

Chapter 6 of Shalev-Shwartz and Ben-David [67]), we can show the same bounds

also hold here. Namely, we can use the VC dimension of a hypothesis class H to

bound generalization error. We denote this quantity by VC(H). In particular, we

have:

58

Theorem 35 (Occam’s razor). For target function c ∈ H, with probability at least

1− δ, for all h ∈ H,

|pc − ph| ≤ |p̂c − p̂h|+O

(
1

δ

√
VC(H) log(m/VC(H))

m

)
.

4.3 Comparing Our Model to Classical PAC

The definition of PAC learning from label proportions makes it harder to learn a

class on one hand (by unlinking input from label) but easier on the other hand

(by making the loss function easier to satisfy). So it may not be obvious what the

relationship with PAC is.

In this section, we show that the hypothesis classes that may be efficiently

learned in PAC from label proportions is a subset of the classes that may be

efficiently learned in PAC. Corollary 38 then implies it is a strict subset.

Theorem 36. Suppose NP 6= RP. Then if a hypothesis class H with finite VC di-

mension is efficiently learnable from label proportions, it is also efficiently (proper)

PAC learnable.

Proof. Let H be learnable from label proportions by some efficient oracle A, and

f the polynomial sample size required by this oracle. We now give an efficient

algorithm for PAC learning H. Given ε, δ > 0, draw m samples from the unknown

distribution D, with m to be determined later. Call the set S of unique inputs

x1, . . . , xm and their labels c(x1), . . . , c(xm) for hidden target function c. Let k

be the number of positive labels
∑

j c(x
′
j). Define a new distribution D′ as the

59

following:

D′(x) =



m
km+m−k if x ∈ S and c(x) = 1

1
km+m−k if x ∈ S and c(x) = 0

0 otherwise



.

Let ε′ = 1/(2m2) and δ′ = δ. Draw m′ = f(1/ε′, 1/δ′) samples x′j from D′ and

label each as c(x′j). We give to the oracle as input ε′, δ′, and the examples x′j,

along with the proportion of positive labels p̂ = k
m′

. Then with probability at

least 1− δ the oracle returns a hypothesis c∗ such that

|pc∗ − pc| <
1

2m2
.

The smallest non-zero probability mass in D′, however, is

1

km+m− k
≥ 1

m2
,

minimized when k = m. Thus pc∗ = pc.

We now show that c∗ = c when restricted to the points x1, . . . , xm. Suppose

there is a point xi such that c∗(xi) 6= c(xi) where c(xi) = 1. Then in order to

have pc∗ = pc while c∗(xi) = 0, at least m points labeled 0 by c must be labeled

positively by c∗, since D′ places (proportional to) m weight on positively labeled

points and only unit weight on negative points. This is a contradiction, as there

60

are only m total points. Similarly, if c(xi) = 0 and c∗(xi) = 1, there must be m

points labeled 0 by c∗ that are labeled 1 by c, but again there are only m distinct

points. Thus c and c∗ must agree on all m points, i.e. c∗ has zero empirical error.

All that remains is to check that we need only a polynomial sample size to use

Occam’s razor (Theorem 35). This only requires VC(H) = poly(1/ε, 1/δ, n, size(c)).

If H is finite, recall that VC(H) ≤ log |H|. But since size(c) ≥ log |H|, we cer-

tainly have VC(H) = poly(size(c)). If H is infinite, then the size of the input and

classifiers are unbounded, so VC(H) needs only to be polynomial in 1/ε and 1/δ.

Then the assumption that VC(H) is finite implies that VC(H) is in fact a constant,

and therefore the bound given by Occam’s razor is indeed a polynomial.

4.4 Hardness of Learning from Label Proportions

A natural question to ask is if there are classes with small VC dimension that are

hard to learn. We now show that this is the case for parity functions on the first

k bits of the input. This will imply under a natural assumption on the hardness

of PAC learning noisy parities that efficiently learning from label proportions is

strictly harder than efficiently PAC learning.

Recall in (white-label) noisy PAC learning, each label in the training data is

flipped with unknown rate η. We assume the algorithm is given as input some

η′, where η ≤ η′ < 1/2 and must only take time polynomial in 1
1−2η′

. Noisy PAC

learning parity functions under the uniform distribution is presumed to be hard.

Blum et al. [7] give an 2O(n/logn)) algorithm, which is the best-current bound.

We now find a specific distribution where PAC learning from label proportions

61

is hard in this sense for parities:

Theorem 37. For a hypothesis c, Let Dc be the the distribution over {0, 1}n that

places η
2n−1 weight on the examples labeled 0 and 1−η

2n−1 weight on examples labeled

1.

PAC learning parities from label proportions under Dc is as least as hard as PAC

learning unknown parity c with η white-label noise under the uniform distribution.

Proof. We use an oracle for PAC learning parities from label proportions under

Dc to noisy-PAC learn parities. We get as input η′, parameters ε and δ, and some

m examples xi, with m to be determined later, with noisy labels ˜̀
i. When ˜̀

i = 1,

with probability η, the true label `i = 0 and otherwise `i = 1. We may assume

that the unknown parity c is non-trivial. Then under the uniform distribution

over {0, 1}n, for any such parity function, there are 2n−1 points labeled 1 and 2n−1

points labeled 0. For any point labeled 0, the probability that it was drawn from

the uniform distribution is 1
2n−1 and the probability that its label was flipped to

1 was η. Then the probability that an example had ˜̀
i = 1 but `i = 0 is η

2n−1 and

similarly if `i = 1 the probability is 1−η
2n−1 . Note that this is exactly the distribution

Dc. So if the oracle for PAC learning parities from label proportions is given just

the examples where ˜̀
i = 1, the oracle will receive i.i.d. samples from Dc. We will

also give to the oracle ε′ = 1/2−η′
2

and δ′ = δ/3. The expected proportion of these

examples given to the oracle is 1−η, but we do not know the true labels nor do we

know η. So instead, we will invoke this oracle M + 1 times, with the proportion

given to the oracle as each of 0, 1/M, . . . , 1, where M =
∑

i
˜̀
i, i.e. the number of

62

training examples with noisy label ˜̀
i = 1 ∗.

If the oracle returns the correct parity c, then it should agree in expectation

with the noisy labels ˜̀
i on all but η of the examples. For an incorrect parity c′, by

the orthonormality of the parity functions, the expected disagreement is 1/2. For

h the output of the oracle, if smaller than an η′+1/2
2

fraction of the noisy labels

˜̀
i disagree with the corresponding label h(xi), then we return the hypothesis.

Otherwise, we repeat with the next invocation of the oracle.

Let f be the polynomial sample bound for the oracle for PAC learning from

label proportions . First, we need to make sure that the oracle receives at least

f(1/ε′, 1/δ′) examples except with probability at most δ/3. In expectation, m/2

of the examples xi will have ˜̀
i = 1. Using a Chernoff bound,

P

[∣∣∣∣∣∑
i

˜̀
i −m/2

∣∣∣∣∣ > m/4

]
≤ 2e−m/8.

So the oracle will receive at least 1
4
m examples (and no more than 3

4
m examples)

except with probability no more than δ/3 so long as m > 8 log(6/δ). This then

means that we require m > 4 · f(1/ε′, 1/δ′) so that M ≥ f(1/ε′, 1/δ′).

Now we need to verify that when the proportion given to the oracle is the

correct proportion p̂c, the oracle will return c except with probability at most δ/3.

The oracle is guaranteed to return a parity h such that except with probability

δ′ = δ/3,

|ph − pc| ≤ ε′ =
1/2− η′

2
.

∗The oracle is undefined when the proportion of positive labels is not the true value p̂. We
may assume that the oracle returns an arbitrary hypothesis in this case.

63

Using the definition of Dc, pc = 1 − η. If h 6= c, then ph = 1/2 again by

orthonormality. But then

|ph − pc| = |1/2− η| >
1/2− η′

2
,

so it must be the case that h = c. Thus at least one of the invocations of the

oracle will return the correct parity.

So it remains to show that we will succeed at returning this parity. If the oracle

returns an incorrect parity h, again using a Chernoff bound,

P

[∣∣∣∣∣
∑

i 1h(xi)6=˜̀
i

m
− 1/2

∣∣∣∣∣ ≥ 1/2− η′

2

]
≤ 2e−

m(1/2−η′)2
2

<
1

M + 1
· δ

3

when

m = Ω

(
log(M

δ
)

(1/2− η′)2

)
= Ω

 log
(

1
(1/2−η′)δ

)
(1/2− η′)2


because M ≤ 3

4
m, where 1A is the indicator function that is 1 if A is true and 0

otherwise. This implies that for an incorrect hypothesis, whose expected fraction

of disagreements with the noisy labels is 1/2, the empirical fraction is at least

η′+1/2
2

, the threshold we had set. Similarly, for the correct hypothesis, where the

expected fraction of disagreements is η < η′, the empirical fraction of disagree-

ments is no more than η′+1/2
2

except with probability at most 1
M+1
· δ

3
. This means

that all of the tests of the hypothesis succeeds except with probability at most

64

δ/3. Then setting

m = Ω

max

 log
(

1
(1/2−η′)δ

)
(1/2− η′)2

 , 4 · f(1/ε′, 1/δ′)


suffices so that, with the union bound, the total probability of failure is no more

than δ, as required.

Consider parity functions on the first k bits, which have VC dimension equal

to k. There is no known algorithm for noisy PAC learning parity functions on the

first k bits when k = ω(log n log log n). It is conjectured that there is no efficient

algorithm for PAC-learning noisy parity that runs in time o(2
√
n), which would

imply hardness of noisy PAC learning parities on the first k bits for k = ω(log2 n).

Calling this the ‘noisy parity assumption,’ Theorem 37 implies the following:

Corollary 38. Under the noisy parity assumption, there is no efficient algorithm

for PAC learning label proportions of parities on the first k bits for k = ω(log2 n).

This means there are hypothesis classes with VC dimension ω(log2 n) that aren’t

PAC learnable from label proportions.

4.5 Classes PAC Learnable from Label Proportions

Call d the VC dimension of a given hypothesis class H. In Section 4.4, we showed

that if d is a fractional power, H is hard to learn. We also gave examples with d as

small as log n that are hard to learn, under stronger complexity assumptions. On

the other hand, as long as labelings in a given hypothesis class are efficiently enu-

65

merable, then finite classes H are certainly PAC learnable from label proportions

in time |H|. Or instead, by enumerating only distinct hypotheses on the sample,

assuming that this is efficient, learning can be achieved in md time using Sauer’s

lemma. This immediately implies that all such classes with constant d are learn-

able from label proportions. We now show that not all classes with d = Ω(log n)

are hard to learn.

Consider the following hypothesis class which only allows hypotheses whose

positive labels are close to each other:

Hk = {h : {1, . . . , 2n} → {0, 1} : max
h(i)=h(j)=1

|i− j| ≤ k}.

There are still exponentially many functions and V C(Hk) = k. Hk was shown

to be hard in Section 4.4. However, for Hk, this is not the case:

Observation 39. PAC learning Hk from label proportions has an O(2km) time

algorithm.

Order the m examples in {1, . . . , 2n}, and for each length k subset, of which

there are m−k+1 of them, check all 2k possible labelings. Now when k = O(log n),

this is a polynomial-time algorithm for learning Hk from label proportions even

though the VC dimension is not constant.

In the classical PAC setting, when it is hard to learn under an arbitrary distri-

bution, it is often still valuable to show that learning can still be done in special

cases, such as the uniform distribution. We now give an example, namely half-

spaces, where it is easy to learn under the uniform distribution.

66

The idea to find a half-space that classifies the given proportion p̂ positively is

to take a random half-space through the origin, and then move it in the direction

of its normal vector, and stop when the half-space classifies the input p proportion

of the sample positively. With high probability, this will be possible because no

two points in the sample will be projected to the same point on the normal vector.

Proposition 40. The class of half-spaces in n dimensions is learnable from label

proportions under the uniform distribution over {0, 1}n.

Proof. Since the VC-dimension of half-spaces is linear in n by Radon’s theo-

rem [53], using Theorem 35 it certainly suffices to be able to efficiently find a

half-space h such that p̂h = p with high probability. Consider a hyper-plane P of

dimension n− 1 through the origin and v a normal vector defining P .

First, we show that for a randomly chosen vector v, no two points in {0, 1}n

project more than exponentially close to each other (in terms of n) on v. This

allows us to use only a polynomial number of bits to represent each projected

point. Consider an arbitrary pair of points x and y in {0, 1}n and consider the

line ` that passes through these two points. If v and ` are perpendicular, then

x and y will project onto the same point on v. More generally, we can find the

maximum obtuse angle between v and ` such that the two points so that the

points project exponentially close together on v. Any closer, and we will not have

enough bits to distinguish between the projection of x and y. Namely, for a pair of

points distance d apart, using the Taylor approximation for sin(x), the difference

between π/2 and this maximum angle is no more than O
(

1
d2ω(n

c)

)
for constant

c. Since the points come from {0, 1}n, d ≥ 1, and there are O(2n
2
) such pairs of

67

points, so the total angle from which a uniformly-random vector v may not be

chosen is at most O
(

2n
2

2ω(n
c)

)
, an exponentially small probability. Thus, with high

probability, no two points in {0, 1}n project to the same point on v, or project

more than exponentially close to each other on v.

Givenm examples, settingm to be polynomial in n insures with high probability

that all examples are distinct, and therefore no two examples project more than

exponentially lose to each other on v. Since p̂c = i/m for some i ∈ {0, 1, . . . ,m},

we need to find a plane parallel to P such that the corresponding linear threshold

function classifies i of the sample points positively. For each pair of consecutive

projected points cv and c′v on v for real number c and c′, consider the half-space

given by the plane defined by the points p ∈ Rn satisfying v
(
p−

(
c+c′

2

)
v
)

= 0,

so that these two points are classified differently by the half-space. Thus one of

these half-spaces (or the half-spaces classifying all points positively or negatively)

will have p̂h = i/m since no two points in the sample project onto the same point

on v.

While we have shown that it is strictly harder to PAC learn from label propor-

tions than to PAC learn, introducing noise to the models changes the relationship

between these two models. For example, PAC learning parities with unknown η

white-label noise is hard under the uniform distribution, as discussed above, but

PAC learning parities from label proportions with white-label noise is easy under

the uniform distribution. In our model, that means each label is flipped i.i.d. with

probability some unknown η, and the proportion of noisy positive labels p̂η is

given as input instead, but otherwise the learning requirement remains stays the

68

same.

Observation 41. The class of parities is learnable from label proportions under

the uniform distribution and unknown η white-label noise.

Proof. Let pηc be the proportion of positive labels under η noise and parity c. Note

pηc is always

(1− η)pc + η(1− pc) = pc(1− 2η) + η,

but for any non-trivial parity c, pc = 1/2, so pηc = 1/2. Then Observation 34

implies that we may distinguish efficiently the trivial parity from the non-trivial

parities and in the case that pηc = 1/2 we may return any non-trivial parity.

4.6 Conclusion

In this chapter we formalized a model for learning a hypothesis class by only

examples drawn from a distribution and the proportion of them receiving each

label, with the goal of finding a hypothesis that matches these statistics on the

underlying distribution, and we focused on the binary label setting.

We give some initial results into a learning theory for this task, including that if

a class with finite VC dimension is efficiently learnable from label proportions, it is

automatically also efficiently properly PAC learnable. Moreover, we exhibit a class

with non-trivial VC dimension that is hard to learn in our model, under natural

assumptions about the hardness of PAC learning noisy parities. We give examples

where it is possible to efficiently PAC learn from label proportions, which may be

surprising given that this is a low-information setting, including half-spaces under

69

the uniform distribution.

These results are for the binary setting and only for the ‘one bag’ version of the

problem. We leave for future work the analysis of the case where there is more

than one bag of examples and each bag’s proportion of labels is given. For that

case, and in other similar settings where the learner is given more information, we

expect there to be more positive algorithmic results.

70

5
Recovering Social Networks by Observing

Votes

5.1 Introduction

One approach to investigating voting data assumes that agents’ votes are inde-

pendent of one another, conditioned on some underlying (sometimes probabilistic)

model of ground truth. This is usually an unrealistic assumption, leading to a more

This chapter is based on the manuscript Fish et al. [25].

71

recent line of inquiry which asks how the social network structure of the voters

affects the relationship between votes. Each agent in a social network expresses

a position (votes for or against a bill, prefers one brand over another, etc.) that

is influenced by their social connections. In this view, it is possible to detect

the organization and evolution of voting communities by looking at the social

network structure. The literature on congressional and political voting networks

focuses on detecting community structure, partisanship, and evolutionary dynam-

ics [1, 41, 51, 60, 78, 85], while the literature on idea propagation investigates how

to best maximize the spread of ideas through a population [14, 46].

However, it is often not necessarily clear how to build this social network graph.

For example, Macon et al. give a few different variants on how to define the social

network of the voters of the United Nations [51]. In this approach, different graphs

may reveal different aspects of the social network structure.

This corresponds neatly with a typical view in social choice theory that votes

are manifestations of subjective preferences. At the other extreme, a voter votes

according to a noisy estimate of the ground-truth qualities of the possible choices

on which he or she is voting. While both are over-simplified extremes, it is useful

to consider the extremes in order to investigate their consequences [15].

In this chapter, as in previous work, we assume there is a fixed probabilistic

model which is used to determine the relationship between initial preferences for

the possible choices and how each individual ends up voting for those choices.

This probabilistic model takes into account the social network structure in which

the voters are embedded.

72

In this approach, it is typically assumed that the social network of the voters

is known. The goal is then to find the correct choice from votes, as tackled by

Conitzer and then others [15, 61, 74]. This can be made more difficult depending

on the structure of a social network, which may enforce the wrong choice by

aggregating individual opinions over dense subgraphs, leading voters with low

degree to possibly change their mind to the majority view of the subgraph.

In practice, the social network is usually not known and it is not necessarily

clear how to infer the graph. In this chapter, we tackle the problem of inferring the

social network from the votes alone. We discuss two similar but distinct voting

models in the vein of Conitzer [15], and show how to recover the graph given

the votes under these voting models and under several notions of what it means

to recover the graph. We show that your ability to learn the graph from the

votes is highly dependent on the underlying voting model - in some settings, it is

computationally hard to do so but not in others. Moreover, we demonstrate that

the resulting learned graphs can differ significantly depending on which underlying

voting model is assumed.

5.2 Models and results

We give results for two similar models: an edge-centric model, which Conitzer calls

the independent conversation model [15], and a vertex-centric model, introduced

in this chapter, which we will call the common neighbor model.

Similar to some existing models, the common neighbor model is, for instance,

equivalent to the ”deterministic binary majority process” run for one step (where

73

the initial assignment is random). This process was examined by Goles and

Olivos [33] and related work, e.g. by Frischknecht et al. [29], and it has been

used in the press to illustrate the disproportionate influence of certain voters [65].

The models we consider herein also resemble settings in multiple previous works,

e.g. by Grabisch and Rusinowska [35], Grandi et al. [36], and Schwind et al. [66].

In both of our models, there is an unknown simple undirected graph G on

n vertices. Each vertex is an agent, who can vote “−1” or “1”. Both models

describe how each agent votes in one round of voting. We consider m rounds of

voting and in each round every vertex votes, leading to a sequence of vote sets

V [m] = V1, . . . , Vm, where each Vi is the set of votes from all voters. The problem

is to recover G from V [m].

First, we define the independent conversation model, a two-step process where

edges represent conversations between voting agents, and each agent votes accord-

ing to the majority outcome of his conversations.

Definition 42 (independent conversation model). First, each edge flips a

coin i.i.d. that with probability p is 1 and with probability (1 − p) is −1. Then

each vertex votes according to the majority of its adjacent edges’ preferences. If

there is a tie, then it is broken in favor of voting 1 with probability q and −1 with

probability 1− q.

This process is depicted for a particular graph in Figure 5.1. Note that the set

of votes Vi only includes the final votes, not the initial preferences.

The common neighbor model is similar, except here the initial preferences are

on the vertices, not the edges:

74

Figure 5.1: Left: the outcome of pairwise “conversations” between connected neighbors.
Right: the resulting votes. For simplicity, the edge probabilities are not depicted.

Definition 43 (common neighbor model). Each vertex initially flips a coin

i.i.d. that with probability p is 1 and with probability 1−p is −1. Then each vertex

votes 1 if more adjacent vertices’ initial preferences were 1 then −1 and vice versa.

If there is a tie, then it is broken in favor of voting 1 with some probability q and

−1 with probability 1− q.

This process is illustrated in Figure 5.2.

Figure 5.2: Left: the initial preferences of the nodes. Right: the resulting votes. For simplic-
ity, the preference probabilities are not depicted.

It is straightforward to see how they are different. In the independent conver-

sation model, two vertices’ votes are independent of each other if and only if they

do not share an edge, while in the common neighbor model, they are independent

if and only if they have no common neighbors.

Our main contribution consists of algorithms to recover the hidden graph G

from the votes, lower bounds, and experiments for both models.

75

Our results span a few different notions of what it means to recover the un-

known graph. First, we ask whether there exists a polynomial-time algorithm

that succeeds with high probability (given only a polynomial number of votes in

the number of voters) in finding the unknown graph G when the votes were drawn

from G. The algorithm must take time polynomial in both the number of votes

given as input and the number of vertices. We refer to this as exact learning. We

show the following:

Result 44. In the independent conversation model, there is a polynomial-time

algorithm that exactly learns the unknown graph when p = 1/2 (with high prob-

ability). Moreover, for constant p 6= 1/2, an exponential number of votes are

required to exactly learn the graph. (See Observation 50 and Theorem 51.)

Our algorithm is a statistical test for edges between pairs of vertices by calcu-

lating sample covariances of their votes, which here measures how likely it is that

two voters vote the same way. This is very similar to how voting networks are

often constructed in the literature [2, 51, 78]. This result can then be seen as a

formal motivation for why this type of method should be used.

Result 45. In the common neighbor model, no algorithm can exactly recover the

unknown graph. (See Observation 57.)

The above two results motivate us to consider other notions of what it means to

recover the graph because the graph is generally not recoverable efficiently here.

Moreover, in a setting where there is not necessarily a ground-truth graph from

which the votes were drawn, we are still interested in finding a graph that explains

the votes.

76

We make this precise by asking for the maximum likelihood estimator (MLE)

graph, that graph that maximizes the probability of the observed votes over the

distribution of votes induced by a fixed voting model. As is standard for the max-

imum likelihood estimator, we assume that the prior over graphs is uniform. We

refer to this as maximum likelihood learning. Under this model of learning, votes

do not necessarily need to come from any particular hidden graph. Nevertheless,

the goal is to produce the MLE graph under a voting model for a set of input

votes regardless of where the votes came from.

Result 46. In the independent conversation model, there is a polynomial-time

bounded-probability random reduction from a #P-complete problem to finding the

likelihood of the MLE graph. However, if enough votes are drawn from a hidden

graph G when p = 1/2, there is a polynomial-time algorithm that finds the MLE

graph on the votes with high probability. (See Theorem 54 and Theorem 56.)

This lower bound is an indication that computing the likelihood of the MLE

graph is difficult, since if there were an efficient algorithm to compute this quantity

then there would be an efficient algorithm to solve a #P-complete problem that

succeeds with high probability.

On the other hand, merely trying to find the MLE graph is possible, at least

if there is enough votes given as input (specifically, for n voters, order n4 votes

suffices).

In the common neighbor model, we investigate a third approach to finding a

graph that explains the votes. Given that we recover graphs in the independent

conversation model using covariances between votes, it is natural to ask whether

77

it is possible to find a graph whose expected covariances are close to the observed

covariances in the common neighbor model. We show that even if you were to

know the expected covariances exactly, it would still be computationally difficult

to find such a graph.

Result 47. For the common neighbor model, finding a graph with given expected

covariances between votes is at least as hard as recovering an adjacency matrix

from its square. Moreover, a generalization of this problem, namely the general-

ized squared adjacency problem, is NP-hard. (See Observation 58 and Theo-

rem 60.)

The squared adjacency problem and its generalized version are defined as fol-

lows:

Definition 48. The input for the squared adjacency matrix problem is a matrix

B, and the decision problem asks if there is an adjacency matrix A of a simple

graph such that A2 = B.

Definition 49. The input for the generalized squared adjacency problem is a col-

lection of n2 sets Sij, and the decision problem asks if there is a simple graph

whose adjacency matrix is A such that A2
ij ∈ Sij for each entry A2

ij of A2.

To the best of our knowledge, the squared adjacency matrix problem is not

known to be NP-hard nor is it known to be in P. It is a difficult open problem

in its own right, and other versions of it have been proven NP-hard [54]. It is

equivalent to the special case of the generalized version where the set sizes are

exactly one.

78

5.3 The independent conversation model

In this section, we show when there is a algorithm to recover the hidden graph.

We will also show that it is hard to find the likelihood of the maximum likelihood

graph for an input sequence of votes. Before we present those two results, we start

with the following observation:

Observation 50. For constant p 6= 1/2, under the independent conversation

model, it takes exponentially many votes to distinguish with high probability be-

tween the complete graph and the complete graph minus an edge.

This follows directly from the fact that in both the complete graph and the

complete graph minus an edge, if p 6= 1/2, with exponentially high probability

every voter will vote 1. Our only hope is that it becomes possible to recover the

graph G when p = 1/2, which we show to be the case.

5.3.1 An algorithm for p = 1/2

In this section, we prove the following:

Theorem 51. Let p = q = 1/2. For any graph G on n vertices and δ > 0, if m =

Ω
(
n2
(
lnn+ ln 1

δ

))
votes are drawn from G under the independent conversation

model, there is a polynomial-time algorithm that will recover G with probability at

least 1− δ.∗

∗This result actually remains true for arbitrary values of q, but we restrict this theorem to
q = 1/2 to simplify the proof in this version.

79

Let Xu ∈ {1,−1} be the random variable representing the outputted vote of

vertex u, so Xu = 1 if u votes 1 and −1 otherwise. Now consider two vertices

u and v. The votes of u and v are independent if and only if (u, v) is not an

edge. This yields a natural approach to determining if (u, v) is an edge of G:

measure the sample covariance between the votes of u and v and if this covariance

is sufficiently far away from zero, there must be an edge.

To formalize this, we need to calculate the covariance between Xu and Xv if

there is an edge between them:

Lemma 52. For any edge (u, v) of G, let du and dv be the degrees of u and v.

For convenience, let ρ = (1− 2p)q + p. Then Cov (Xu, Xv) is



4ρ2
(
du−1
du−2

2

)(
dv−1
dv−2

2

)
(p(1− p))

du+dv−2
2 , even du, dv

4ρ
(
du−1
du−2

2

)(
dv−1
dv−1

2

)
(p(1− p))

du+dv−1
2 , even du, odd dv

4ρ
(
du−1
du−1

2

)(
dv−1
dv−2

2

)
(p(1− p))

du+dv−1
2 , odd du, even dv

4
(
du−1
du−1

2

)(
dv−1
dv−1

2

)
(p(1− p))

du+dv
2 , odd du, dv.

Proof. Consider an edge (u, v) ∈ E(G). Since u and v vote independently given

the vote of the edge (u, v), we will write the probability that each of these vertices

vote 1 given the edge vote.

Namely, call P 1
u = P (Xu = 1|edge (u, v) votes 1) and P−1

u = P (Xu = 1|edge (u, v) votes -1)

and similarly P 1
v , P

−1
v the analogous probabilities for v.

We can write the covariance in terms of these four probabilities: Cov (Xu, Xv) =

4p(1− p)(P 1
u − P−1

u)(P 1
v − P−1

v).

To show this, it suffices to write the covariance as a function of the joint proba-

80

bilities P (Xu = 1, Xv = 1), etc., and then write each joint probability as a function

of the probabilities that a vertex votes 1 given that how the adjacent edge votes.

For example, by conditioning on the vote of edge (u, v),

P (Xu = Xv = 1) = pP 1
uP

1
v + (1− p)P−1

u P−1
v .

The others are similar.

To complete the proof, all we need are formulae for P 1
u and P−1

u (P 1
v and P−1

v

are calculated analogously). This is done by choosing edges to form the majority

vote of u’s neighborhood.

Recall d(u) − 1 and d(v) − 1 are the degrees of u and v, respectively, minus 1

(in order to discount the edge (u, v)). We then have

P 1
u =


∑ d(u)−2

2
i=0

(
d(u)−1

i

)
(1− p)ipd(u)−1−i even d(u)

+ q
(d(u)−1

d(u)
2

)
(1− p)

d(u)
2 p

d(u)−2
2 ,∑ d(u)−1

2
i=0

(
d(u)−1

i

)
(1− p)ipd(u)−1−i, odd d(u).

and

P−1
u =


∑ d(u)−4

2
i=0

(
d(u)−1

i

)
(1− p)ipd(u)−1−i even d(u)

+ q
(d(u)−1
d(u)−2

2

)
(1− p)

d(u)−2
2 p

d(u)
2 ,∑ d(u)−3

2
i=0

(
d(u)−1

i

)
(1− p)ipd(u)−1−i, odd d(u),

The statement of the lemma then follows.

In the case where p = 1/2, the covariance will be sufficiently large; namely that

it will be Ω(1/n), where n is the number of vertices of G:

81

Corollary 53. When p = 1/2 and (u, v) is an edge of G,

Cov (Xu, Xv) ≥
1

2π

1√
dudv

≥ 1

2πn
.

Proof. We simplify the formula for the covariance derived in Lemma 52 by giving

lower bounds for the central binomial coefficients, from which the result immedi-

ately follows: For any positive integer k, the central binomial coefficient(s) satisfy

(
k⌈
k−1

2

⌉) ≥ 2k√
πk
.

These lower bounds follow from Sterling’s approximation k! =
√

2πk
(
k
e

)k (
1 +O

(
1
k

))
.

Note this lower bound was only polynomial in 1/n because p = 1/2; otherwise,

the exponential term (p(1− p))n, for p constant, ensures that the covariance goes

to 0 exponentially quickly in n.

We are now ready to prove Theorem 51, which uses the Hoeffding bound to

establish that the sample covariance converges quickly enough to its expectation,

which if there is an edge is given in Lemma 52 and if there is no edge is just 0.

of Theorem 51. Recall that in the independent conversation model, we are given

m votes Xu,i
i.i.d.∼ Xu for i = 1, . . . ,m and all u in G, where Xu is the {−1, 1}-

valued random variable found by taking the majority vote of the initial votes of

u’s neighborhood.

For p = q = 1/2, E (Xu) = 0 for each vertex u, which means that Cov (Xv, Xu) =

82

E (XuXv). This means that the sample covariance between u and v is

Cm
u,v =

1

m

m∑
i

Xu,iXv,i.

The algorithm to recover G from the m votes is straightforward: For each pair

of vertices u, v, calculate the sample covariance Cm
u,v. If Cm

u,v >
1

4πn
, then the

algorithm claims there is an edge between u and v, and otherwise, the algorithm

claims there is no such edge. We call this the covariance test. It suffices to show

that the probability that the covariance test is wrong is low. Using Corollary 53,

we get for edge (u, v),

P
(
Cm
u,v <

1

4πn

)
≤ P

(
Cm
u,v − E

(
Cm
u,v

)
< − 1

4πn

)
,

and for (u, v) /∈ E(G),

P
(
Cm
u,v >

1

4πn

)
= P

(
Cm
u,v − E

(
Cm
u,v

)
>

1

4πn

)
.

By the Hoeffding bound each of these two terms is bounded above by e−
cm
n2π2 for

some constant c.

Let G′ be the network inferred by the above algorithm. Then the probability

that G′ is not G is no more than

∑
u,v∈E

P
(
Cm
u,v <

1

4πn

)
+
∑
u,v /∈E

P
(
Cm
u,v >

1

4πn

)
,

83

which is bounded from above by
(
n
2

)
e−

cm
n2π2 .

Hence, for any δ > 0, settingm = Ω
(
n2
(
lnn+ ln 1

δ

))
suffices so that

(
n
2

)
e−

cm
n2π2 <

δ.

5.3.2 Moving from exact learning to maximum likelihood learning

In the previous section, we showed that exact learning is possible when p = q =

1/2. We now show that it is possible to not only exactly learn the graph, but also

find the maximum likelihood graph for the votes when p = q = 1/2, assuming we

are given enough data. Recall the maximum likelihood graph (which we will also

refer to as the MLE graph) is the graph that maximizes the probability of the

observed votes over the distribution of votes.

Theorem 54. Let p = q = 1/2. For any graph G on n vertices and δ > 0, if m =

Ω
(
n2
(
n2 + ln 1

δ

))
votes are drawn from G under the independent conversation

model, there is a polynomial-time algorithm that will find the maximum likelihood

graph on the drawn votes with probability at least 1− δ.

In other words, if the votes really do come from a hidden graph and we are given

order n4 votes, we can find the maximum likelihood graph. Specifically, what we

show is that if you are given this many votes from a hidden graph, then the MLE

graph is the hidden graph with high probability. The proof of Theorem 54 then

follows from applying Theorem 51, i.e. using the covariance test to find the hidden

graph, which is the MLE graph. This moves a statement about exact learning to

a statement about maximum likelihood learning.

84

We now prove (Lemma 55) that the MLE graph is the hidden graph for a suffi-

ciently large set of votes drawn from a hidden graph. Indeed, we show something

stronger: the hidden graph will be more likely (under this model) than any other

graph by an arbitrarily large factor α (where the number of votes given as input

needs to increase logarithmically in α). This stronger result will also be needed

for the proof of Theorem 56.

The statement of this will need some notation: For any graphG on n vertices, let

VG be the distribution over a set of n votes induced by G under the independent

conversation model for p = q = 1/2. For convenience we will denote the m-

product distribution VG × . . . × VG as V [m]
G . That is, for any vote V ∈ {−1, 1}n,

PVG(V) = P (V |G) is the probability mass of V under VG. Similarly, for a sequence

of votes V [m], PV [m]
G

(
V [m]

)
= P

(
V [m]|G

)
is the probability mass of V [m] under V [m]

G .

Lemma 55. For δ > 0, α > 1,

P
V [m]∼V [m]

G

(
P
(
V [m]|G

)
≤ αmax

G′ 6=G
P
(
V [m]|G′

))
< δ

for m = Ω
(
n2
(
n2 + ln 1

δ
+ lnα

))
.

Proof. Fix α > 1 and denote by E the event that

maxG′ 6=G P(V [m]|G′)
P(V [m]|G)

≥ 1

α
.

(If P(V [m]|G) = 0, then this event occurs, so we can safely assume the converse.)

The idea of this proof is that we will show the probability of E happening is small

by conditioning on what the vote sequence V [m] looks like when drawn from G.

85

Specifically, in the proof of Theorem 51, we show that the covariance test would

have successfully foundG with high probability, so we condition on this happening.

Fix a graph G′ 6= G. We will want to show that the probability that V [m] is

pulled from G′ (instead of G) is sufficiently small. The covariance test failed if

V [m] were pulled from G′: the covariance test returned G on V [m] instead of G′.

And again, the probability that the covariance test failed is low, as showed in the

proof of Theorem 51, so the probability that V [m] is pulled from G′ must be small.

We denote the set of vote sequences for which the covariance test returns G by

ΦG. Using this notation, we condition on V [m] being in ΦG or not and then get

an immediate upper bound:

PV [m]
G

(E) ≤ PV [m]
G

(
E|V [m] ∈ ΦG

)
+ PV [m]

G

(
V [m] 6∈ ΦG

)
.

We then bound each of these two terms. The probability that the covariance

test failed on V [m] is small: By inspecting the proof of Theorem 51, we have that

for some constant c,

PV [m]
G

(
V [m] 6∈ ΦG

)
≤
(
n

2

)
e−

cm
n2π2 . (5.1)

Otherwise, the covariance test succeeded and we condition on V [m] ∈ ΦG. We

now show that

PV [m]
G

(
E|V [m] ∈ ΦG

)
≤ α

(
2(n2) − 1

)(n
2

)
e−

cm
n2π2 . (5.2)

86

Markov’s inequality gives

PV [m]
G

(
maxG′ 6=G P(V [m]|G′)

P(V [m]|G)
≥ 1

α

∣∣∣∣V [m] ∈ ΦG

)
≤

α · EV [m]
G

(
maxG′ 6=G P(V [m]|G′)

P(V [m]|G)

∣∣∣∣V [m] ∈ ΦG

)
.

It is then enough to expand this expected value using the definition to get that

PV [m]
G

(
E|V [m] ∈ ΦG

)
≤ α

∑
V [m]∈ΦG

max
G′ 6=G

P
(
V [m]|G′

)
.

Now we group the terms of the sum by which graph G′ 6= G maximizes the

probability P
(
V [m]|G′

)
. There may be many terms in the sum that any one

graph G′ maximizes, but certainly each vote sequence associated with each term

is in ΦG. There are of course 2(n2) − 1 such graphs, so

∑
V [m]∈ΦG

max
G′ 6=G

P
(
V [m]|G′

)
≤

∑
G′:G′ 6=G

∑
V [m]∈ΦG

P
(
V [m]|G′

)
=
(

2(n2) − 1
)
P
(
V [m] ∈ ΦG|G′

)
.

If V [m] were in ΦG but V [m] was pulled from G′, then the covariance test has failed

at returning G′. So

P
(
V [m] ∈ ΦG|G′

)
≤
(
n

2

)
e−

cm
n2π2 ,

87

implying Equation 5.2. Combining Equations 5.1 and 5.2, we get

PV [m]
G

(E) ≤ α2(n2)
(
n

2

)
e−

cm
n2π2 .

For PV [m]
G

(E) to be upper-bounded by δ > 0, it suffices to set

m = Ω

(
n2

(
n2 + ln

1

δ
+ lnα

))
.

5.3.3 Hardness of computing the MLE

As we have seen, when p = q = 1/2, distinguishing between graphs can be done in

polynomial time. This might give hope that, in this case, computing the likelihood

of the MLE graph, given a set of votes, may be easy. That is, given a graph G

which is the maximum likelihood graph for a set of input votes V [m] over G, we

wish to compute P(V [m]|G). Alas, we give hardness results indicating this is not

easy to do.

We reduce from Conitzer’s problem of computing P (V ∗|G), where V ∗ is a vote

produced by a given graph G [15].† He shows that this is problem is #P-hard

by reducing from counting the number of perfect matchings in a bipartite graph.

Surprisingly, our proof of this hardness result uses the easiness of finding the

MLE graph in polynomial time in the case when p = q = 1/2. Namely, we use

†While the problem Conitzer considers is slightly different than computing P (V ∗|G), in the
case where p = 1/2, his problem reduces to computing P (V ∗|G).

88

Lemma 55 to be able to say when the input G is the maximum likelihood graph for

a set of votes V [m], which in turn says when the oracle will successfully compute

P(V [m]|G) . Formally, we prove the following theorem:

Theorem 56. There is a randomized polynomial-time oracle reduction from com-

puting the MLE of the maximum likelihood graph from a sequence of votes with

high probability to counting the number of perfect matchings in a balanced bipartite

graph.

sketch. It suffices to consider the case where p = q = 1/2. Instead of directly

reducing from the #P-hard problem of counting the number of perfect matchings

in a balanced bipartite graph, we reduce from the #P-hard problem of comput-

ing P (V ∗|G) given a graph G and vote V ∗ on n voters under the independent

conversation model.

The idea of the proof is going to be to build a sequence of votes V [m] whose

MLE we know to be the input G, and then compute

P(V ∗|G) =
P(V [m], V ∗|G)

P(V [m]|G)
.

Our oracle will give us the values of the right-hand side. This approach will work

if P(V ∗|G) 6= 0.

So we first test for the case if P(V ∗|G) = 0. Conitzer provides a way to do

this for a similar problem when the vertices of the graph have all odd degree:

his reduction is from the maximum weighted b-matching problem, which we can

adapt to the so-called “c-capacitated” version that we need [15, 59].

89

Else, P (V ∗|G) 6= 0. We draw a sequence of votes V [m] i.i.d.∼ VG × . . . × VG.

Lemma 55 immediately implies that G will be the MLE for V [m] with failure

probability less than δ/2 when m = Ω(n2(n2 + ln 2
δ
)). In other words, with just

Ω(n4) votes we will successfully query the oracle for P(V [m]|G) with high proba-

bility.

It suffices to ensure that with high probability we will also successfully query

the oracle for the m + 1-length sequence V [m], V ∗. Recall that since P(V ∗|G) is

the sum, over all satisfying edge votes, of the quantity
(

1
2

)|E(G)|
, where E(G) is

the edge set of G and p = 1/2. There must be at least one satisfying edge-vote

assignment since P(V ∗|G) 6= 0, so P(V ∗|G) ≥
(

1
2

)|E(G)|
. In addition, again by

Lemma 55, for any G′ 6= G, P(V [m]|G)

P(V [m]|G′) > α with failure probability no more than

δ/2 when m = Ω(n2(n2 + ln 2
δ

+ lnα)). Then for any G′ 6= G,

P(V [m], V ∗|G′) <
(

1

α
P(V [m]|G)

)(
2|E(G)|P(V ∗|G)

)
=

2|E(G)|

α
P(V [m], V ∗|G).

Setting α = Ω(en
2
) suffices to ensure that α > 2|E(G)|. Thus setting

m = Ω(n2(n2 + ln
2

δ
+ lnα))

as above for this setting of α, a query to the oracle for P(V [m], V ∗|G) will fail with

probability less than δ/2. Setting δ to be, say, Θ(1
2n

), yields that m = Ω(n4).

The oracle reduction, once it tests for the existence of at least one valid edge

90

vote, simply consists of drawing m votes from G and then querying the oracle for

P(V [m], V ∗|G) and P(V [m]|G). The reduction then succeeds with probability at

least 1− δ.

5.4 The common neighbor model

We now turn our attention to the common neighbor model. Again, we ask if it

is possible to recover G by seeing only polynomially many votes. In general, it is

not possible to recover G at all, let alone with only polynomially many votes:

Observation 57. Under the common neighbor model, no algorithm can distin-

guish between two different perfect matchings.

If G is a matching between the vertices, each vertex will vote how its neighbor

votes, meaning that each vertex votes i.i.d. with probability p regardless. Thus

there is no way to distinguish between different matchings.

5.4.1 Recovering A2 from covariances

Given the impossibility of recovering the graph, we relax the problem to the

following: Find a graph that is likely to produce the given votes in the sense that

the expected covariances of this graph should be as close as possible (under some

norm) to the covariances of the observed votes. This problem is motivated by

the algorithm for the independent conversation model which finds a graph whose

expected covariances match the measured covariances.

91

Yet even if we were to know the expected covariances of the input votes, finding

a graph whose expected covariances are close to those input covariances remains

challenging:

Observation 58. For the common neighbor model, finding a graph with given

expected vote covariances is at least as hard as recovering an adjacency matrix

from its square.

To prove this observation, it suffices to show that the expected covariances are a

function solely of the entries of A2. Then recovering A from A2 consists of using the

entries of A2 to compute the expected covariances, at which point the adjacency

matrix of a graph with those covariances will be exactly A. The i, jth entry of

A2 is the number of length-two paths between i and j, so it is enough to write

the covariances of a graph in terms of the following: For Γ(v) the neighborhood

of a vertex v, denote duv = |Γ(v) ∩ Γ(u)|, du = |Γ(u) \ (Γ(v) ∩ Γ(u))|, and dv

analogously. The covariances are a function of du, dv, and duv. For the sake of

simplicity we will assume that |Γ(u)| and |Γ(v)| are odd, but it is straightforward

to modify the formula given below in the cases when they are not.

Lemma 59. Assume |Γ(u)| and |Γ(v)| are odd. For p = 1/2,

Cov(Xu, Xv) =
1

2duv−2

(
duv∑
k=0

(
duv
k

)
Pu,v(k)Pv,u(k)

)
− 1,

92

where, for θu,v = (duv + du + 1)/2− k,

Pu,v(k) =


1

2du

∑du
i=θu,v

(
du
i

)
if 0 ≤ θu,v ≤ du

0 if θu,v > du

1 if θu,v ≤ 0.

Proof. Let Xu represent vertex u’s vote. When p = 1/2, E[Xu] = 0, and P (Xu =

Xv = 1) = P (Xu = Xv = 0), so the covariance Cov(Xu, Xv) is

E[XuXv] = 2P (Xu = Xv)− 1 = 4P (Xu = Xv = 1)− 1.

To determine P (Xu = Xv = 1), we condition on the number of common neighbors

that voted 1:

Assuming some k common neighbors vote 1, in order for u to vote 1, u needs an

additional duv+du+1
2

− k neighbors to vote 1. If k is already at least duv+du+1
2

, then

the probability of voting 1 is already 1; on the other hand if there aren’t enough

remaining vertices to vote 1, then the probability is 0. This yields Pu,v(k) as the

probability that u votes 1 given that k common neighbors of u and v voted 1.

Now we can write P (Xu = Xv = 1) as

duv∑
k=0

(
duv
k

)
pk(1− p)duv−kPu,v(k)Pv,u(k),

completing the proof.

When recovering a graph from a sequence of input votes, we are not even given

93

the expected covariances of the input votes. Instead we can calculate the measured

covariances, from which we can determine A2. At this point, we have a function

inversion problem on our hands: We can find A2 merely by recovering these duv’s

and du’s from the covariances, but given that the formula given in Lemma 59 is

not closed, this is not trivial. Since there are only polynomially many possible

values for duv and du, we can simply try all values to find the covariance closest

to the observed value. However, there may be covariances that are exponentially

close to each other, making it impossible to distinguish between these values for

given duv, du. In this case the values recovered for the entries of A2 may not

be unique, which in the worst case leads to the generalized squared adjacency

problem. Even in the case when we recover unique values, it still reduces to the

squared adjacency problem.

While the squared adjacency problem is open, we show the following:

Theorem 60. The generalized squared adjacency problem is NP-hard.

Proof. The reduction is from CLIQUE, which asks if there is a clique of size k

on the input graph. Given a graph G = (V,E) and an integer k, we construct a

set system {Sij} with (n + 1)2 sets, where n = |V |. We then show that G has a

clique of size k if and only if there is a graph G′ = (V ∪ {v}, E ′) such that the

i, jth entry of A(G′)2 is in Si,j, where A(G′) is the adjacency matrix of G′. The

94

(n+ 1)2-sized set system {Si,j} is defined as follows:

Sij =



{0, 1} if i 6= j and i, j 6= v and (i, j) ∈ E(G)

{0} if i 6= j and i, j 6= v and (i, j) 6∈ E(G)

{0} if i = v and j 6= v

{0} if j = v and i 6= v

{k} if i = j = v

{0, 1} if i = j and i, j 6= v

Assume there is a clique of size k in G. Then G′ is defined as follows: Denote

the vertex set of the clique in G by C. G′ will have an edge between v and

all members of C, and no other edges. It is straightforward to check that the

i, jth entry of A(G′)2 is in Sij by noting that the diagonal entries of A(G′)2 are

the vertices’ degrees and the off-diagonal entries counts the number of common

neighbors.

In the other direction, assume there is such a graph G′ whose squared adjacency

matrix satisfies the constraints imposed by the set system {Si,j}. In this case, the

clique of size k in G will be exactly the neighborhood of v in G′ (not including v

itself). Call N(v) the neighborhood of v in G′. Note the degree of v in G′ must be

k, by definition of Svv, i.e. |N(v)| = k. Consider a distinct pair of vertices i, j in

N(v). The vertices i and j have at least one common neighbor in G′, namely v,

because both are in N(v), meaning that A(G′)2
ij ≥ 1. But if (i, j) is not an edge

in G then Sij = {0} by the definition of Sij, a contradiction, forcing N(v) to be a

clique as required.

95

(a) 101st Congress (1989-
1990)

(b) 106th Congress (1999-
2000)

(c) 113th Congress (2013-
2014)

Figure 5.3: Graphs of the US Senate for three congressional terms under the independent
conversation model. Democrats are colored blue, Republicans are red, and Independents are
green.

(a) 101st Congress (1989-
1990)

(b) 106th Congress (1999-
2000)

(c) 113th Congress (2013-
2014)

Figure 5.4: Graphs of the US Senate for three congressional terms under the common neigh-
bor model. Democrats are colored blue, Republicans are in red, and Independents are in
green.

5.4.2 A heuristic approach

Unlike in the independent conversation model, we have no efficient algorithm

for producing the social network under the common neighbor model. Hence, we

employ a heuristic to find a graph that satisfies or comes close to satisfying the

constraints imposed on it by the measured covariances.

Because of the computational hardness of this problem, we propose a heuristic

approach to learn networks under the common neighbor model. This heuristic will

96

102 104 106 108 110 112
Congressional term

20

30

40

50

60

70

80

90

A
v
e
ra

g
e
 d

e
g
re

e

(a) Average degree. The blue and red lines
are the average degree of
the Democrats and the Republicans, respec-
tively.

102 104 106 108 110 112
Congressional term

0.3

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

M
o
d
u
la

ri
ty

(b) Modularity between Democrats and
Republicans. (Independents are included
with the party with which they caucus.)

Figure 5.5: Data for the 101st-113th Congress. Dashed and solid lines are statistics for the
independent conversation model and common neighbor model, respectively. Error bars repre-
sent one standard deviation, over 20 trials.

be used in our experimental results in Section 5.5. Our heuristic, Algorithm 5,

finds those pairs of vertices whose current expected covariance (assuming p = 1/2)

is farthest away from the measured covariance and modifies the graph to decrease

that gap.

The local changes we want to make clearly cannot just consist of adding/removing

single edges: Say the covariance between a given pair of vertices needs to go up

and those vertices’ neighborhoods are currently empty. The only way to increase

the covariance is to add at least two edges: (i, v) and (v, j) for some other vertex

v. The natural compromise is then to add or remove the minimal number of edges

(either one or two) to change the covariance, as seen in Algorithm 6.

97

Algorithm 5 Common neighbor heuristic

Input: {ĉij}, measured covariances between voters i and j, and T , the number
of iterations to run.
G ∼ G(n, 1/2), Gbest := ∅
{cij} := {σ(i, j)} # calculate expected covariances
for 0 to T do
i, j := argmaxi,j|cij − ĉi,j|
G := ModifyG(G, i, j, ĉij, cij)
{cij} := {σ(i, j)} # update the expected covariances
if
∑

i,j cij − ĉij is smallest so far then Gbest := G
end for
return Gbest

5.5 Experimental Results

In this section, we test our algorithms on United States Senate roll call votes. We

examine each two-year congressional session as one voting network. Each Senate

member is an agent who either votes for the bill in question, against, or does

not vote (either because the senator served only part of the term or because the

senator just didn’t vote on the bill), yielding votes from the set {−1, 0, 1}.

Obviously, our models are simplifications — they don’t take into account evo-

lution of opinion, nor do they take into account the possibility of anti-correlated

voters. Even assuming that either model is representative, when presented real

data, the parameter p is not given, as is assumed above. The algorithms we

present assume that p = 1/2, which is not necessarily the case. Finally, we are

given a fixed amount of data, independent of the number of voters.

Despite these limitations, for the independent conversation model, our covari-

ance test, which forms the basis for Theorem 51, results in intuitive behavior.

98

Algorithm 6 ModifyG

Input: Graph G; vertices i, j; ĉij, cij the measured and expected covariances
between i and j.
unconnected := V (G) \ (Γ(i) ∪ Γ(j) ∪ {i, j})
cn := Γ(i) ∩ Γ(j)
if cij − ĉij > 0 then

randomize among whichever of these are available:
1: x := random(i, j), y := random(unconnected)

add edge (x, y) to G
2: x := random(i, j), y := random(cn).

delete edge (x, y) from G
3: y := random(cn)

delete edges (i, y) and (j, y) from G
else if cij − ĉij < 0 then

randomize among whichever of these are available:
1: y := random(unconnected)

add edges (i, y) and (j, y) to G
2: y := random(Γ(i) \ cn)

add (i, y) or delete (j, y) from G randomly
3: y := random(Γ(j) \ cn)

add (j, y) or delete (i, y) from G randomly
end if
return G
where random(.) selects an element of its input u.a.r.

99

Note that while our model assumes binary votes, our covariance test is general

enough to handle such votes — covariance is calculated between the {−1, 0, 1}-

valued votes and the threshold remains the same as in the original covariance test.‡

Examples of the results from this covariance test on the US Senate are shown in

Figure 5.3. Given the highly structured nature of these graphs, it is possible to

recover senators’ places on the left/right political spectrum, but since this is not

the focus of this chapter, we do not go into any further detail here.

For the common neighbor model, we use Algorithm 5. Examples of results of

this heuristic run on US Senate data are shown in Figure 5.4. Graphs under this

model appear to be very different from those found using the covariance test under

the independent conversation model.

To demonstrate these marked differences, in Figure 5.5 we give modularity val-

ues and average degrees of Democrats and Republicans under both models for the

period 1989-2014 (corresponding to the 101st through 113th Congresses). Modu-

larity is a standard measure of the amount of division between communities [57].

Both average degree and modularity are much higher under the independent con-

versation model (dashed lines in Figure 5.5) than under the common neighbor

model (solid lines). Since the heuristic is randomized, we average these statistics

over twenty graphs, each of which is an independent run of the heuristic with

100,000 rounds.

‡We do, however, use the unbiased sample covariance instead of the biased sample covariance,
as the assumption that p = 1/2 no longer necessarily holds, despite the analysis of the algorithm
assuming it.

100

5.6 Conclusion

In this chapter we derive algorithms and lower bounds for recovering graphs from

their vertices’ votes under two distinct models. We also present experiments on

the U.S. Senate voting network. In the independent conversation model, we show

when the graph is recoverable using only a polynomial number of votes. However,

if we want to instead take a maximum likelihood approach to recovering graphs,

then the task becomes computationally hard.

The common neighbor model, on the other hand, leads to significantly different

results. Not only is it impossible to recover the graph using only polynomially

many votes, finding a graph whose votes’ covariances are close to the observed

covariances leads to having to solve a hard problem (the generalized squared

adjacency problem).

This implies that these models really are very different from each other, despite

their very similar definitions. This is strong evidence that much care needs to be

taken when choosing voting models for network inference. Experiments on U.S.

Senate roll call data support this conclusion.

101

Cited Literature

[1] Alessia Amelio and Clara Pizzuti. Analyzing voting behavior in Italian Par-

liament: Group cohesion and evolution. In IEEE/ACM International Con-

ference on Advances in Social Networks Analysis and Mining (ASONAM),

2012, pages 140–146. IEEE, 2012.

[2] Clio Andris, David Lee, Marcus J. Hamilton, Mauro Martino, Christian E.

Gunning, and John Armistead Selden. The rise of partisanship and super-

cooperators in the US House of Representatives. PLoS ONE, 10(4), 2015.

[3] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern

Approach. Cambridge University Press, 2009.

[4] Raef Bassily, Kobbi Nissim, Adam D. Smith, Thomas Steinke, Uri Stemmer,

and Jonathan Ullman. Algorithmic stability for adaptive data analysis. In

Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of

Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages

1046–1059, 2016.

[5] Raef Bassily, Adam D. Smith, and Abhradeep Thakurta. Private empir-

ical risk minimization: Efficient algorithms and tight error bounds. In

55th IEEE Annual Symposium on Foundations of Computer Science, FOCS

2014, Philadelphia, PA, USA, October 18-21, 2014, pages 464–473, 2014.

[6] Avrim Blum, Merrick L. Furst, Jeffrey C. Jackson, Michael J. Kearns,

Yishay Mansour, and Steven Rudich. Weakly learning DNF and charac-

terizing statistical query learning using Fourier analysis. In Proceedings of

the Twenty-Sixth Annual ACM Symposium on Theory of Computing, 23-25

May 1994, Montréal, Québec, Canada, pages 253–262, 1994.

102

[7] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the

parity problem, and the statistical query model. J. ACM, 50(4):506–519,

2003.

[8] Avrim Blum, Katrina Ligett, and Aaron Roth. A learning theory approach

to non-interactive database privacy. In Proceedings of the 40th Annual ACM

Symposium on Theory of Computing, Victoria, British Columbia, Canada,

May 17-20, 2008, pages 609–618, 2008.

[9] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K.

Warmuth. Learnability and the vapnik-chervonenkis dimension. J. ACM,

36(4):929–965, 1989.

[10] Ivan Brugere, Brian Gallagher, and Tanya Y. Berger-Wolf. Network struc-

ture inference, A survey: Motivations, methods, and applications. arXiv

preprint arXiv:1610.00782, 2016.

[11] Mark Bun, Kobbi Nissim, Uri Stemmer, and Salil P. Vadhan. Differentially

private release and learning of threshold functions. In IEEE 56th Annual

Symposium on Foundations of Computer Science, FOCS 2015, Berkeley,

CA, USA, 17-20 October, 2015, pages 634–649, 2015.

[12] Mark Bun, Jonathan Ullman, and Salil P. Vadhan. Fingerprinting codes

and the price of approximate differential privacy. In Proceedings of the 46th

Symposium on Theory of Computing, STOC 2014, New York, NY, USA,

May 31 - June 03, 2014, pages 1–10, 2014.

[13] Bee-Chung Chen, Lei Chen, Raghu Ramakrishnan, and David R. Musicant.

Learning from aggregate views. In Proceedings of the 22nd International

Conference on Data Engineering, ICDE 2006, 3-8 April 2006, Atlanta, GA,

USA, page 3, 2006.

[14] Wei Chen, Laks VS Lakshmanan, and Carlos Castillo. Information and

influence propagation in social networks. Synthesis Lectures on Data Man-

agement, 5(4):1–177, 2013.

103

[15] Vincent Conitzer. The maximum likelihood approach to voting on social

networks. In Communication, Control, and Computing (Allerton), 2013

51st Annual Allerton Conference on, pages 1482–1487. IEEE, 2013.

[16] Nando de Freitas and Hendrik Kück. Learning about individuals from group

statistics. In Proceedings of the 21st Conference in Uncertainty in Artificial

Intelligence, UAI ’05, Edinburgh, Scotland, July 26-29, 2005, pages 332–

339, 2005.

[17] Thomas G. Dietterich, Richard H. Lathrop, and Tomás Lozano-Pérez. Solv-

ing the multiple instance problem with axis-parallel rectangles. Artificial

Intelligence, 89(1-2):31–71, 1997.

[18] Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer

Reingold, and Aaron Roth. Generalization in adaptive data analysis and

holdout reuse. In Advances in Neural Information Processing Systems 28,

December 7-12, 2015, Montreal, Quebec, Canada, pages 2350–2358, 2015.

[19] Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer

Reingold, and Aaron Roth. The reusable holdout: Preserving validity in

adaptive data analysis. Science, 349(6248):636–638, 2015.

[20] Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer

Reingold, and Aaron Leon Roth. Preserving statistical validity in adaptive

data analysis. In Proceedings of the Forty-Seventh Annual ACM Symposium

on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17,

2015, pages 117–126, 2015.

[21] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Cal-

ibrating noise to sensitivity in private data analysis. In Proceedings of the

Third Theory of Cryptography Conference, TCC 2006, New York, NY, USA,

March 4-7, 2006, pages 265–284, 2006.

[22] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential

privacy. Foundations and Trends in Theoretical Computer Science, 9(3-

4):211–407, 2014.

104

[23] Cynthia Dwork, Guy N. Rothblum, and Salil P. Vadhan. Boosting and

differential privacy. In 51th Annual IEEE Symposium on Foundations of

Computer Science, FOCS 2010, October 23-26, 2010, Las Vegas, Nevada,

USA, pages 51–60, 2010.

[24] Vitaly Feldman, Elena Grigorescu, Lev Reyzin, Santosh Srinivas Vempala,

and Ying Xiao. Statistical algorithms and a lower bound for detecting

planted cliques. Journal of the ACM, 64(2):8:1–8:37, 2017.

[25] Benjamin Fish, Yi Huang, and Lev Reyzin. Recovering social networks

by observing votes. In Proceedings of the 2016 International Conference

on Autonomous Agents & Multiagent Systems, Singapore, May 9-13, 2016,

pages 376–384, 2016. http://dl.acm.org/citation.cfm?id=2936980.

[26] Benjamin Fish and Lev Reyzin. On the complexity of learning from label

proportions. In Proceedings of the Twenty-Sixth International Joint Con-

ference on Artificial Intelligence, IJCAI 2017, Melbourne, Australia, August

19-25, 2017, pages 1675–1681, 2017.

[27] Benjamin Fish, Lev Reyzin, and Benjamin I. P. Rubinstein. Sublinear-time

adaptive data analysis. arXiv preprint arXiv:1709.09778, 2017.

[28] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse

covariance estimation with the graphical lasso. Biostatistics, 9(3):432–441,

2008.

[29] Silvio Frischknecht, Barbara Keller, and Roger Wattenhofer. Convergence

in (social) influence networks. In Distributed Computing, pages 433–446.

Springer, 2013.

[30] Andrew Gelman and Eric Loken. The statistical crisis in science data-

dependent analysis—a “garden of forking paths”—explains why many

statistically significant comparisons don’t hold up. American Scientist,

102(6):460–465, 2014.

105

[31] Lise Getoor, Nir Friedman, Daphne Koller, and Benjamin Taskar. Learn-

ing probabilistic models of link structure. Journal of Machine Learning

Research, 3:679–707, 2002.

[32] Nadav Golbandi, Yehuda Koren, and Ronny Lempel. Adaptive bootstrap-

ping of recommender systems using decision trees. In Proceedings of the

Forth International Conference on Web Search and Web Data Mining,

WSDM 2011, Hong Kong, China, February 9-12, 2011, pages 595–604, 2011.

[33] Eric Goles and Jorge Olivos. Periodic behaviour of generalized threshold

functions. Discrete Mathematics, 30(2):187–189, 1980.

[34] Manuel Gomez-Rodriguez, Jure Leskovec, and Andreas Krause. Inferring

networks of diffusion and influence. TKDD, 5(4):21:1–21:37, 2012.

[35] Michel Grabisch and Agnieszka Rusinowska. A model of influence in a social

network. Theory and Decision, 69(1):69–96, 2008.

[36] Umberto Grandi, Emiliano Lorini, and Laurent Perrussel. Propositional

opinion diffusion. In Proceedings of the 2015 International Conference

on Autonomous Agents and Multiagent Systems, AAMAS 2015, Istanbul,

Turkey, May 4-8, 2015, pages 989–997, 2015.

[37] Jerónimo Hernández-González, Iñaki Inza, and José Antonio Lozano. Learn-

ing bayesian network classifiers from label proportions. Pattern Recognition,

46(12):3425–3440, 2013.

[38] Yi Huang. Problems in Learning under Limited Resources and Information.

PhD thesis, University of Illinois at Chicago, 2017.

[39] Arun Shankar Iyer, J. Saketha Nath, and Sunita Sarawagi. Maximum mean

discrepancy for class ratio estimation: Convergence bounds and kernel se-

lection. In Proceedings of the 31th International Conference on Machine

Learning, ICML 2014, Beijing, China, 21-26 June 2014, pages 530–538,

2014.

106

[40] Arun Shankar Iyer, J. Saketha Nath, and Sunita Sarawagi. Privacy-

preserving class ratio estimation. In Proceedings of the 22nd ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, San

Francisco, CA, USA, August 13-17, 2016, pages 925–934, 2016.

[41] Aleks Jakulin, Wray Buntine, Timothy M La Pira, and Holly Brasher. An-

alyzing the US Senate in 2003: Similarities, clusters, and blocs. Political

Analysis, 17(3):291–310, 2009.

[42] Zach Jorgensen, Ting Yu, and Graham Cormode. Conservative or liberal?

Personalized differential privacy. In 31st IEEE International Conference

on Data Engineering, ICDE 2015, Seoul, South Korea, April 13-17, 2015,

pages 1023–1034, 2015.

[43] Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya

Raskhodnikova, and Adam D. Smith. What can we learn privately? In

49th Annual IEEE Symposium on Foundations of Computer Science, FOCS

2008, October 25-28, 2008, Philadelphia, PA, USA, pages 531–540, 2008.

[44] Michael J. Kearns. Efficient noise-tolerant learning from statistical queries.

Journal of the ACM, 45(6):983–1006, 1998.

[45] Georgios Kellaris and Stavros Papadopoulos. Practical differential pri-

vacy via grouping and smoothing. Proceedings of the VLDB Endowment,

6(5):301–312, 2013.

[46] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of

influence through a social network. Theory of Computing, 11(4):105–147,

2015.

[47] Ariel Kleiner, Ameet Talwalkar, Purnamrita Sarkar, and Michael I. Jordan.

The big data bootstrap. In Proceedings of the 29th International Conference

on Machine Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 - July

1, 2012, 2012.

107

[48] Jason D. Lee, Dennis L. Sun, Yuekai Sun, and Jonathan E. Taylor. Exact

post-selection inference, with application to the lasso. Annals of Statististics,

44(3):907–927, 06 2016.

[49] David Liben-Nowell and Jon M. Kleinberg. The link-prediction problem for

social networks. JASIST, 58(7):1019–1031, 2007.

[50] Bing-Rong Lin, Ye Wang, and Shantanu Rane. On the benefits of sampling

in privacy preserving statistical analysis on distributed databases. arXiv

preprint arXiv:1304.4613, 2013.

[51] Kevin T Macon, Peter J Mucha, and Mason A Porter. Community structure

in the united nations general assembly. Physica A: Statistical Mechanics and

its Applications, 391(1):343–361, 2012.

[52] Frank McSherry and Kunal Talwar. Mechanism design via differential pri-

vacy. In 48th Annual IEEE Symposium on Foundations of Computer Sci-

ence (FOCS 2007), October 20-23, 2007, Providence, RI, USA, Proceedings,

pages 94–103, 2007.

[53] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations

of Machine Learning. Adaptive computation and machine learning. MIT

Press, 2012.

[54] Rajeev Motwani and Madhu Sudan. Computing roots of graphs is hard.

Discrete Applied Mathematics, 54(1):81–88, 1994.

[55] David R. Musicant, Janara M. Christensen, and Jamie F. Olson. Supervised

learning by training on aggregate outputs. In Proceedings of the 7th IEEE

International Conference on Data Mining (ICDM 2007), October 28-31,

2007, Omaha, Nebraska, USA, pages 252–261, 2007.

[56] Seth A. Myers and Jure Leskovec. On the convexity of latent social network

inference. In Advances in Neural Information Processing Systems 23: 24th

108

Annual Conference on Neural Information Processing Systems 2010. Pro-

ceedings of a meeting held 6-9 December 2010, Vancouver, British Columbia,

Canada., pages 1741–1749, 2010.

[57] Mark E.J. Newman and Michelle Girvan. Finding and evaluating community

structure in networks. Physical Review E, 69(2):026113, 2004.

[58] Giorgio Patrini, Richard Nock, Tiberio Caetano, and Paul Rivera. (almost)

no label no cry. In Advances in Neural Information Processing Systems

27: Annual Conference on Neural Information Processing Systems 2014,

December 8-13 2014, Montreal, Quebec, Canada, pages 190–198, 2014.

[59] Michal Penn and Moshe Tennenholtz. On multi-object auctions and match-

ing theory: Algorithmic aspects. In Graph Theory, Combinatorics and Al-

gorithms, pages 173–188. Springer, 2005.

[60] Mason A Porter, Peter J Mucha, Mark E.J. Newman, and Andrew J Friend.

Community structure in the United States House of Representatives. Phys-

ica A: Statistical Mechanics and its Applications, 386(1):414–438, 2007.

[61] Ariel D. Procaccia, Nisarg Shah, and Eric Sodomka. Ranked voting on

social networks. In Proceedings of the Twenty-Fourth International Joint

Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina,

July 25-31, 2015, pages 2040–2046, 2015.

[62] Novi Quadrianto, Alexander J. Smola, Tibério S. Caetano, and Quoc V.

Le. Estimating labels from label proportions. Journal of Machine Learning

Research, 10:2349–2374, 2009.

[63] Ryan M. Rogers, Aaron Roth, Adam D. Smith, and Om Thakkar. Max-

information, differential privacy, and post-selection hypothesis testing. In

57th Annual IEEE Symposium on Foundations of Computer Science, FOCS

2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA,

pages 487–494, 2016.

109

[64] Stefan Rüping. SVM classifier estimation from group probabilities. In Pro-

ceedings of the 27th International Conference on Machine Learning (ICML-

10), June 21-24, 2010, Haifa, Israel, pages 911–918, 2010.

[65] Kevin Schaul. A quick puzzle to tell whether you know what people are

thinking, October 2015. [The Washington Post; posted online 09-October-

2015].

[66] Nicolas Schwind, Katsumi Inoue, Gauvain Bourgne, Sébastien Konieczny,

and Pierre Marquis. Belief revision games. In Proceedings of the Twenty-

Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015,

Austin, Texas, USA., pages 1590–1596, 2015.

[67] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning:

From theory to algorithms. Cambridge University Press, 2014.

[68] Shai Shalev-Shwartz, Ohad Shamir, Nathan Srebro, and Karthik Sridha-

ran. Learnability, stability and uniform convergence. Journal of Machine

Learning Research, 11:2635–2670, 2010.

[69] Ohad Shamir and Tong Zhang. Stochastic gradient descent for non-smooth

optimization: Convergence results and optimal averaging schemes. In Pro-

ceedings of the 30th International Conference on Machine Learning, ICML

2013, Atlanta, GA, USA, 16-21 June 2013, pages 71–79, 2013.

[70] Thomas Steinke and Jon Ullman. Between pure and approximate differen-

tial privacy. In Theory and Practice of Differential Privacy (TPDP 2015),

London, UK, 2015.

[71] Thomas Steinke and Jonathan Ullman. Interactive fingerprinting codes and

the hardness of preventing false discovery. In Proceedings of the 28th Con-

ference on Learning Theory, COLT 2015, Paris, France, July 3-6, 2015,

pages 1588–1628, 2015.

[72] Marco Stolpe and Katharina Morik. Learning from label proportions by

optimizing cluster model selection. In Proceedings of the Joint European

110

Conference on Machine Learning and Knowledge Discovery in Databases,

ECML-PKDD 2011, Athens, Greece, September 5-9, 2011, pages 349–364,

2011.

[73] Benjamin Taskar, Ming Fai Wong, Pieter Abbeel, and Daphne Koller. Link

prediction in relational data. In Advances in Neural Information Processing

Systems 16 [Neural Information Processing Systems, NIPS 2003, December

8-13, 2003, Vancouver and Whistler, British Columbia, Canada], pages 659–

666, 2003.

[74] Alan Tsang, John A. Doucette, and Hadi Hosseini. Voting with social influ-

ence: Using arguments to uncover ground truth. In Proceedings of the 2015

International Conference on Autonomous Agents and Multiagent Systems,

AAMAS 2015, Istanbul, Turkey, May 4-8, 2015, pages 1841–1842, 2015.

[75] Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–

1142, 1984.

[76] V.N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of

relative frequencies of events to their probabilities. Theory of Probability &

Its Applications, 16(2):264–280, 1971.

[77] Jeffrey Scott Vitter. Faster methods for random sampling. Communications

of the ACM, 27(7):703–718, 1984.

[78] Andrew Scott Waugh, Liuyi Pei, James H. Fowler, Peter J. Mucha, and Ma-

son A. Porter. Party polarization in Congress: A network science approach.

arXiv preprint arXiv:0907.3509, 2009.

[79] Janusz Wojtusiak, Katherine Irvin, Aybike Birerdinc, and Ancha V. Bara-

nova. Using published medical results and non-homogenous data in rule

learning. In 10th International Conference on Machine Learning and Appli-

cations and Workshops, ICMLA 2011, Honolulu, Hawaii, USA, December

18-21, 2011. Volume 2: Special Sessions and Workshop, pages 84–89, 2011.

111

[80] C. K. Wong and Malcolm C. Easton. An efficient method for weighted

sampling without replacement. SIAM Journal of Computing, 9(1):111–113,

1980.

[81] Houping Xiao, Jing Gao, Qi Li, Fenglong Ma, Lu Su, Yunlong Feng, and

Aidong Zhang. Towards confidence in the truth: A bootstrapping based

truth discovery approach. In Proceedings of the 22nd ACM SIGKDD Inter-

national Conference on Knowledge Discovery and Data Mining, San Fran-

cisco, CA, USA, August 13-17, 2016, pages 1935–1944, 2016.

[82] Ke Yang. On learning correlated Boolean functions using statistical queries.

In Proceedings of the 12th International Conference on Algorithmic Learning

Theory ALT 2001, Washington, DC, USA, November 25-28, 2001, pages

59–76, 2001.

[83] Felix X. Yu, Krzysztof Choromanski, Sanjiv Kumar, Tony Jebara, and

Shih-Fu Chang. On learning from label proportions. arXiv preprint

arXiv:1402.5902, 2014.

[84] Felix X. Yu, Dong Liu, Sanjiv Kumar, Tony Jebara, and Shih-Fu Chang.

∝-SVM for learning with label proportions. In Proceedings of the 30th Inter-

national Conference on Machine Learning, ICML 2013, Atlanta, GA, USA,

16-21 June 2013, pages 504–512, 2013.

[85] Yan Zhang, A.J. Friend, Amanda L. Traud, Mason A. Porter, James H.

Fowler, and Peter J. Mucha. Community structure in Congressional cospon-

sorship networks. Physica A: Statistical Mechanics and its Applications,

387(7):1705–1712, 2008.

112

Appendix

This appendix contains reproductions of statements from the publishers’ websites

detailing the use policies that allow the original publications to be reproduced in

this thesis.

113

114

115

Vita

Education

Ph.D., University of Illinois at Chicago, Chicago, Illinois, 2018

M.S., University of Illinois at Chicago, Chicago, Illinois, 2015

B.A., Pomona College, Claremont, California, 2013

Research and Teaching Experience

Research Assistant, University of Illinois at Chicago, 2016, 2017.

Visiting Scholar, University of Utah, 2017.

Teaching Assistant, University of Illinois at Chicago, 2013 – 2017.

Visiting Researcher, University of Melbourne, Melbourne, Australia, 2016.

Research Intern, MIT Lincoln Laboratory, Lexington, MA, 2014 – 2016.

Papers

Benjamin Fish, Lev Reyzin, and Benjamin I.P. Rubinstein. Sub-Linear Time

Adaptive Data Analysis. Submitted.

Benjamin Fish and Lev Reyzin. On the Complexity of Learning from Label

Proportions. International Joint Conference on Artificial Intelligence.

Benjamin Fish and Rajmonda S. Caceres. A task-driven approach to time

scale detection in dynamic networks. Workshop on Mining and Learning

with Graphs, 2017.

116

Benjamin Fish and Lev Reyzin. Open Problem: Meeting Times for Learning

Random Automata. Conference on Learning Theory, 2017.

Benjamin Fish, Rahul Kushwaha, and György Turán. Betweenness cen-

trality profiles in trees. Journal of Complex Networks, Volume 5, Issue 5,

October 2017.

Benjamin Fish, Yi Huang, and Lev Reyzin. Recovering Social Networks by

Observing Votes. Autonomous Agents and Multiagent Systems International

Conference, 2016.

Benjamin Fish, Jeremy Kun, and Ádám D. Lelkes. A Confidence-Based

Approach for Balancing Fairness and Accuracy. SIAM Intl. Conference on

Data Mining.

Benjamin Fish and Rajmonda S. Caceres. Handling Oversampling in Dy-

namic Networks Using Link Prediction. European Conference on Machine

Learning and Principles and Practice of Knowledge Discovery in Databases.

Benjamin Fish, Jeremy Kun, Ádám D. Lelkes, Lev Reyzin, and György

Turán. On the Computational Complexity of MapReduce. In Proceedings

of the 29th International Symposium on Distributed Computing.

Benjamin Fish, Jeremy Kun, and Ádám D. Lelkes. Fair boosting: A case

study. ICML 2015 Workshop on Fairness, Accountability, and Transparency

in Machine Learning, 2015.

Ghassan Sarkis, Shahriar Shahriari, and the Pomona College Undergraduate

Research Circle. Zero-sum Flows of the Linear Lattice. Finite Fields and

their Application, 2015.

Benjamin Fish, Robert W. McGrail, James Belk, Solomon Garber, and

Japheth Wood. CSPs and Connectedness: P/NP Dichotomy for Idempo-

tent, Right Quasigroups. 16th Intl. Symposium on Symbolic and Numeric

Algorithms for Scientific Computing, 2014.

117

Ghassan Sarkis, Shahriar Shahriari, and the Pomona College Undergraduate

Research Circle. Diamond Free Subsets in the Linear Lattices. Order, 2013.

Advised by Rena Levitt. The Word Problem in Quandles. B.A. Thesis,

2013.

Advised by Ran Libeskind-Hadas. The Cophylogeny Reconstruction Prob-

lem. B.A. Thesis, 2013.

Benjamin Fish, Ammar Khan, Nabil Hajj Chehade, Chieh Chien, and Greg

Pottie. Feature selection based on mutual information for human activity

recognition. IEEE Intl. Conference on Acoustics, Speech and Signal Pro-

cessing, 2012.

118

	Introduction
	Adaptivity in data analysis
	The connection between examples and labels
	Inferring networks
	Organization of this thesis

	Background
	Learning theory: generalization in learning
	Differential privacy
	Complexity theory
	Graphs

	Sublinear-Time Adaptive Data Analysis
	Introduction
	Motivation and results
	Previous work

	Model and preliminaries
	Low-sensitivity queries and optimization queries
	Counting queries and sampling counting queries
	The transfer theorem

	Fast mechanisms for low-sensitivity queries
	Sampling counting queries
	Comparing counting and sampling counting queries
	An application to convex optimization
	Conclusion

	On the Complexity of Learning from Label Proportions
	Introduction
	Model and Sample Complexity
	Comparing Our Model to Classical PAC
	Hardness of Learning from Label Proportions
	Classes PAC Learnable from Label Proportions
	Conclusion

	Recovering Social Networks by Observing Votes
	Introduction
	Models and results
	The independent conversation model
	An algorithm for p = 1/2
	Moving from exact learning to maximum likelihood learning
	Hardness of computing the MLE

	The common neighbor model
	Recovering A2 from covariances
	A heuristic approach

	Experimental Results
	Conclusion

	Cited Literature
	Appendix
	Vita

