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Abstract—We introduce two distributed boosting algo-
rithms. Our first algorithm uses the entire dataset to
train a classifier and requires a significant amount of
communication among the distributed sites. Our second
algorithm requires very little communication but uses a
subsample of the dataset to train the final classifier. Both of
our algorithms improve upon existing practical distributed
boosting algorithms. Further, both are competitive with
AdaBoost when it is run with the entire dataset.

I. INTRODUCTION

Both theoretical results and empirical studies indicate

that machine learning algorithms can often greatly im-

prove their performance by training on larger and larger

datasets. In some situations, training on large datasets

is not possible – acquiring labeled training data can be

very expensive. Oftentimes, however, there is a plethora

of labeled past data – for instance, stocks and their prices

over time.

In the cases where data is overabundant, various issues

arise. One would ideally like to use all the available

data, but training an algorithm on all data can be too

time consuming. Moreover, the data may not fit in the

working memory of any one machine. Hence, a practical

solution would be to distribute the data across several

machines.

To reduce training time, one could also use simple

classifiers, e.g. linear predictors, and this has proven ef-

fective in many applications – the problem of paralleliz-

ing the computation still remains interesting [Agarwal

et al., 2011], but the theory is more straightforward.

However, ideally, one should be able to use state-of-

the-art classification methods such as boosting [Freund

and Schapire, 1997] or SVM [Cortes and Vapnik, 1995],

without sacrificing on running time or limiting the

amount of training data.

We focus on boosting, a state-of-the-art ensemble al-

gorithm for supervised learning [Caruana and Niculescu-

Mizil, 2006]. One effective approach to large-scale en-

semble algorithms is to develop distributed algorithms

for the weak classifier used in the ensemble; for example,

Panda et al. [2009] and Tyree et al. [2011] developed

distributed algorithms for the decision trees used in

ensemble algorithms.

Our goal instead is to develop distributed boosting al-

gorithms which can be used with arbitrary weak learners.

Thus our aim is to match the accuracy of standard boost-

ing algorithms when trained on the same datasets. We

build on the work of Lazarevic and Obradovic [2001],

who presented one of the earliest distributed boosting

algorithms. Their algorithm, which improved on work of

Fan, Stolfo, and Zhang [1999], was shown to perform as

well as standard boosting algorithms when constructing

small ensembles of classifiers. However, for larger en-

sembles, their algorithms does not match state-of-the-art

boosting algorithms. We will illustrate this is due to its

tendency to over-fit training data.

In this paper, we present two distributed boosting

algorithms. Our first method resembles the method of

Lazarevic and Obradovic [2001] but is less prone to

overfitting. Our second method is based on subsampling

the data and has the advantage that it requires very

little communication between machines. Both methods

outperform Lazarevic and Obradovic [2001] on all of

the datasets on which we compared them. Moreover,

our algorithms match the performance of the well-known

boosting algorithm AdaBoost when it is run with all

of the available training data.

We note that distributed learning, and boosting in par-

ticular, have also been theoretically studied in the PAC

and agnostic settings, especially considering the commu-

nication complexity of the resulting algorithms [Balcan

et al., 2012; Chen et al., 2016]. We leave comparison to

these methods for future work.

II. PREVIOUS WORK

A. AdaBoost

AdaBoost (Algorithm 1) is known to be one of the

best off-the-shelf machine learning algorithms [Freund

and Schapire, 1996a; Quinlan, 1996]. The algorithm

is an ensemble method that was originally developed

to improve the performance of a single weak learning

algorithm. At each iteration of the algorithm, a new
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weak learner is constructed so that it performs better

on training data where the previous weak learner failed.

AdaBoost accomplishes this by maintaining a weight

distribution over the training data, which the weak learn-

ing algorithm can use to emphasize different training

points. Unfortunately, this distribution is updated at each

step of the algorithm, making the algorithm inherently

sequential. It is thus not obvious how to deploy it in a

distributed environment.

Algorithm 1 AdaBoost [Freund and Schapire, 1997]

Given: (x1, y1), . . . , (xn, yn)
where xi ∈ X , yi ∈ Y = {−1,+1}.
Initialize D1(i) = 1/m.

for t = 1, . . . , T do
Train base learner using distribution Dt.

Get base classifier ht : X → {−1,+1}.
Let γt =

∑
i Dt(i)yiht(xi).

Choose αt =
1
2 ln

1+γt

1−γt
.

Update:

Dt+1(i) =
Dt(i) exp(−αtyiht(xi))

Zt
,

where Zt normalizes so that Dt+1 is a distribution.

end for
Output the final classifier:

H(x) = sign

(
T∑

t=1

αtht(x)

)
.

B. DistBoost

The Distributed Boosting Algorithm [Lazarevic and

Obradovic, 2001], which we refer to as DistBoost,

is meant to be run on several machines which can

communicate with each other. The data is partitioned

across these machines, and each machine stores a weight

distribution for its own data. The main idea of the

algorithm is to have the concatenation of these local

distributions mimic the distribution of AdaBoost as if

all of the data had been on one machine. A sketch of

the algorithm is shown in Algorithm 2. For simplicity,

we use the simple majority rule described by Lazarevic

and Obradovic [2001] for creating ensemble Et.

Despite its name, it is not hard to see that

DistBoost is not a true boosting algorithm given a bad

split of the data. Consider the set of labeled examples

on the real line

X = {(−1, 1), (0,−1), (1, 1)}.
It is not hard to see that X is weakly learnable by deci-

sion stumps. However, suppose there are three machines,

two of which contain both of the positive examples and

one containing the negative example. The two machines

with the positive examples will always output a decision

stump which classifies −1 and 1 correctly and will

therefore misclassify the negative example. Thus the

majority vote classifier will never correctly classify the

negative example, preventing the creation of a strong

learner.

Algorithm 2 DistBoost [Lazarevic and Obradovic,

2001]

Given: K machines, (x1, y1), . . . , (xKn, yKn)
where xi ∈ X , yi ∈ Y = {−1,+1}.
Initialize D1(i) =

1
Kn .

for t = 1, . . . , T do
for j = 1, . . . ,K (in parallel) do

Train base learner using data at site j and dist.

Dt.

Get base classifier ht,j : X → {−1,+1}.
end for
Let Et(x) = sign

(∑K
j=1 ht,j(x)

)
.

Let γt =
∑

i Dt(i)yiEt(xi).
Choose αt =

1
2 ln

1+γt

1−γt
.

Update:

Dt+1(i) =
Dt(i) exp(−αtyiEt(xi))

Zt
,

where Zt normalizes so that Dt+1 is a distribution.

end for
Output the final classifier:

H(x) = sign

(
T∑

t=1

αtht(x)

)
.

The point of this example is that the algorithm can

overfit the training data at one site. More generally,

consider a site j. The classifier ht,j is constructed based

only on the slice of Dt corresponding to the data at

site j. As t grows, this slice becomes increasingly

specialized to site j. As a result, ht,j generalizes poorly

to the distributions D
(l)
t , for l �= j. Its contribution to

the ensemble Et thus becomes noise, so Et fails to

effectively reduce the error at any of the machines..

The effect of this overfitting on accuracy can be

seen in experiments, where as the number of rounds of

boosting grows, DistBoost begins to overfit and fails

to keep up with AdaBoost (when run on the entire

dataset) in decreasing the generalization error. This is

illustrated in Figure 1, where DistBoost fails to match

AdaBoost’s accuracy after only 25 rounds of boosting.

Another drawback of DistBoost, which our sam-

pling algorithm addresses, is that the machines com-

municate with each other at each boosting round. To

compute Et, the weak learners at every site must be

broadcast to every other site. Then the sites must each
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Fig. 1. AdaBoost and DistBoost run on the UCI particle dataset.

broadcast the local error of Et so that γt can be com-

puted. This reliance on communication among machines

can be problematic when hundreds of machines are

running and delays or failures become likely.

C. Ivote and DIvote

Like AdaBoost, Ivote [Breiman, 1999a] is an

ensemble algorithm which tries to focus on harder

examples. Rather than maintain a weight distribution,

Ivote focuses on hard examples at each iteration by

sampling from the training data using a variation of

bagging [Breiman, 1996]. Recall that bagging draws a set

of samples with replacement and uses them for training.

In Ivote, training sets are repeatedly constructed using

sampling so that roughly half of the sampled data is

correctly classified by the current ensemble and half is

incorrectly classified. The sampled training data is then

used to build a new classifier, which is added to the

ensemble. The ensemble uses majority vote to combine

the classifiers.

DIvote is a distributed version of Ivote [Chawla et
al., 2004]. The data is first partitioned across machines.

At each machine, an ensemble is built using Ivote,

and the ensembles are then combined to create one large

majority-vote ensemble. As each individual classifier

is trained using roughly half correctly classified and

half incorrectly classified examples (by the machine’s

current ensemble), the learners avoid overfitting on hard

examples. However, the algorithm is not a boosting

algorithm and is unable to drive down the training error

as well as AdaBoost (the example from Section II-B

also works for DIvote). Our experiments show this

results in a loss of accuracy compared to AdaBoost.

III. OUR APPROACH

We propose two algorithms for distributed boosting,

PreWeak and AdaSampling. PreWeak addresses

Algorithm 3 PreWeak Algorithm

Given: K machines, (x1, y1), . . . , (xKn, yKn)
where xi ∈ X , yi ∈ Y = {−1,+1}.
for j = 1, . . . ,K (in parallel) do

Run AdaBoost for T rounds using data at site j
Save collection of weak learners hj,1 . . . , hj,T .

end for
Initialize D1(i) =

1
Kn .

for t = 1, . . . , T do
Choose ht from {hj,i : 1 ≤ j ≤ K, 1 ≤ i ≤ T}
that minimizes error with respect to Dt.

Let γt =
∑

i Dt(i)yiht(xi).
Choose αt =

1
2 ln

1+γt

1−γt
.

Update:

Dt+1(i) =
Dt(i) exp(−αtyiht(xi))

Zt
,

where Zt normalizes so that Dt+1 is a distribution.

end for
Output the final classifier:

H(x) = sign

(
T∑

t=1

αtht(x)

)
.

the overfitting problem of DistBoost but still re-

quires a large amount of communication among sites.

AdaSampling is a different approach, which tries to

select the most difficult examples from each machine and

use them to train one classifier. FilterBoost [Bradley

and Schapire, 2007] is a somewhat related approach,

which samples a small amount of data from the training

set at every round of boosting.

A. Avoiding overfitting

The main idea of PreWeak is to pre-build a large

set of weak learners that can be tested on the global

distribution. The algorithm has two stages. During the

first stage, AdaBoost is run at each of K sites, resulting

in a set of T weak learners at each site. These classifiers

are then broadcast to each other so that each site has

its own copy of the set H = {h1, . . . , hTK} of all

classifiers. Finally, each site j computes a TK×n error

matrix Ej , where

Ej(i,m) =

{
1, hi(xm, ym) �= ym

0, hi(xm, ym) = ym.

Stage two consists of a master server running a slight

variant of AdaBoost for T rounds. The algorithm

maintains a single distribution Dt over the set of all

examples. Since this distribution may not fit in the main

memory of one machine, PreWeak accomplishes this

by having each site maintain the slice of the distribution

808



corresponding to its training data (this is also how

DistBoost maintains the global distribution). For each

site j, we refer to this slice as D
(j)
t .

However, rather than using Dt to construct a classifier

at each iteration, PreWeak uses Dt to select a classifier

from the set H that was constructed in the previous

stage. More precisely, PreWeak selects the hi ∈ H that

minimizes

K∑
j=1

n∑
m=1

Ej(i,m)D
(j)
t (m),

which the master can compute after receiving the inner

sum from each site. The master then tells each site

j which classifier was selected so that the site may

compute D
(j)
t+1. Note that the normalization factor Zt can

be computed with an additional round of communication

with the master.

DistBoost and PreWeak differ primarily in how

the classifier is selected at each round. DistBoost
constructs a classifier at site j using the weak learning

algorithm and the distribution D
(j)
t , so it has available

to it a larger set of candidate classifiers than PreWeak.

However, the classifier is evaluated based only on the

local slice D
(j)
t of the global distribution. As Section

II-B discusses, after a few rounds of boosting, this

causes the constructed weak learner to overfit to its local

training data and so it has trouble classifying higher

weighted examples at other machines.

PreWeak is only able to choose one of TK weak

learners, but it gets to evaluate all of these weak learners

against the global distribution. Thus the chosen weak

learner is less likely to overfit to the training data at any

single site. Furthermore, since the candidate set of weak

learners was constructed using AdaBoost, we expect

that at each round at least one of the weak learners will

perform well on the global distribution. We thus expect

PreWeak to more successfully reduce the training error

than DistBoost.

Figure 2 demonstrates DistBoost’s tendency to

overfit. After each iteration of DistBoost, we mea-

sured the error of the weak learner constructed at site

i on the training data at all sites j �= i (using the

current round’s distribution). As Figure 2 shows, the

weak learners did not perform significantly better than

random guessing. On the other hand, PreWeak did

not suffer from this problem. Figure 2 also shows the

error of the weak learner selected by PreWeak when

tested on the sites where it was not built. This error still

approaches 50%, but it does so slowly enough that it is

able to continue to decrease the test error.

Unfortunately, PreWeak requires slightly more com-

munication among sites than DistBoost. Both algo-

rithms broadcast a total of TK weak learners: PreWeak
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Fig. 2. Global training error of weak learners selected by DistBoost
and PreWeak on the UCI particle dataset.

broadcasts these during stage one, while DistBoost
broadcasts K weak learners during each of the T rounds

of boosting. However, during each round of boosting,

PreWeak requires that each site broadcast the error of

the TK classifiers on its training data – computing the

errors takes time O(nTK) per round per site. Each site

thus broadcasts T 2K total messages that DistBoost
avoids. Depending on the size of the weak learner, these

additional messages may be negligible compared to the

broadcasting of the weak learners.

An advantage of PreWeak is that the weak learner

built at a particular site depends only on the data at that

site. If PreWeak is later run on a larger dataset with

additional machines, PreWeak can save time by reusing

the weak learners from the old machines, whereas

DistBoost would need to rebuild weak learners at

every site.

B. Passing informative examples

While PreWeak works well in our experiments,

it requires significant communication. We introduce a

second algorithm, AdaSampling, which requires no

communication between sites. In AdaSampling, a

small number of examples are selected at each site

and then sent to a master machine. This machine then

runs AdaBoost with these examples to obtain the final

classifier. Since the final classifier is not trained on all

examples, AdaSampling must be careful in how each

machine chooses its small set of examples.

AdaSampling is based on a connection between

AdaBoost and game theory. Consider a two-person

game, where the row player is given a set H of weak

learners, and the column player is given a set X of

training data. In each round of the game, the row player

picks a weak learner h ∈ H, while the column player

picks a training example (x, y) ∈ X . The row player

receives a payout of 1 if h(x) = y and 0 if h(x) �= y.
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The solution to this game is a pair of probability dis-

tributions (P ∗, Q∗), where P ∗ ∈ R
|H| and Q∗ ∈ R

|X|,
which tells each player how to randomly select its choice

at each round. Since the column player is motivated to

choose examples which are likely to be misclassified, we

would intuitively expect their corresponding weights in

Q∗ to be higher than the weights of examples which are

easier to classify.

Recall that AdaBoost maintains a distribution Dt

over its training set at each iteration of the algorithm.

When a constant value of γt is used in AdaBoost,

Freund and Schapire [1996b] showed that the average

of the distributions Dt converges (as t → ∞) to the

strategy Q∗. We may thus view the examples with

highest average weight as the hardest to classify.

AdaSampling uses this view to select examples

on which to train a final classifier. Consider one of

the K sites. Its goal is to select n/K examples to

send to the final classifier for training. The site runs

AdaBoost for T iterations. It then sorts the examples

in decreasing order of
∑T

t=1 Dt(i), giving us a list

(x1, y1), . . . , (xn, yn) of training examples at the site.

We know that the top examples in this list can be viewed

as the hardest examples, so we might then be tempted

to select examples (x1, y1), . . . , (xn/K , yn/K). However,

we only know that they are hard to classify, not that they

are particularly helpful in training a classifier.

We instead select the n/K consecutive exam-

ples which provide the most accurate AdaBoost
classifier at the local machine. To find them,

for each i, we train a classifier with examples

(xi+1, yi+1), . . . , (xi+n/K , yi+n/K) and compute the

test error on the remaining examples. We then send the

n/K examples with the lowest test error. These examples

may not form the most effective training set at the local

machine, but our sorting scheme allows us to select a

training set from only n − n/K candidate sets rather

than all possible training sets. In our experiments, we

further reduced the number of candidate training sets by

Algorithm 4 AdaSampling Algorithm

Given: K machines, (x1, y1), . . . , (xKn, yKn)
where xi ∈ X , yi ∈ Y = {−1,+1}.
for j = 1, . . . ,K (in parallel) do

Run AdaBoost for T rounds using data at site j
Sort examples by decreasing value of∑T

t=1 D
j
t (i)/t

Broadcast n/K consecutive examples with lowest

local test error

end for
Run AdaBoost with training set of the n broadcasted

examples.

Output classifier returned by AdaBoost

incrementing i by a step size of n/4K and stopping

when i reached n/2. Thus we only trained an additional

2K classifiers, each with a relatively small training set

of size n/K.

Note that our sampling scheme is reminiscent of Kar-

maker and Kwek’s [2006] method of using AdaBoost
to ignore noisy examples.

IV. EXPERIMENTS

We compare four distributed algorithms:

DistBoost, DIvote, PreWeak, and

AdaSampling. In all of the algorithms, we assume

that the training data is distributed across 10 sites. We

also compare our results to AdaBoost when trained

with the full training set and AdaBoost when trained

with 1/10 of the training set (1/10). This is meant

to simulate AdaBoost running on a single site where

it would not be able to take advantage of additional

training data.

A. Datasets

We first experiment on six two-class datasets: ocr17,

ocr49, forestcover12, particle, ringnorm, and twonorm.

None of these datasets approach terascale sizes [Agarwal

et al., 2011], but are comparable in size to those of

Lazarevic and Obradovic [2001]. In addition, we exper-

imented on a larger dataset provided by Yahoo!

TABLE I
DATASETS USED IN EXPERIMENTS

Dataset Training Testing Features
ocr17 5000 1000 196
ocr49 5000 1000 196

forestcover12 250,000 245,141 54
particle 80,000 50,064 50

ringnorm 50,000 50,000 21
twonorm 50,000 50,000 21
Yahoo! 1,500,000 790,224 10

The training size, test size, and number of attributes

for each dataset are shown in Table I. All of the datasets’

features are scaled to be integer-valued. Datasets ocr17

and ocr49 are a subset of the NIST database and consist

of handwritten images of 1s and 7s and of 4s and 9s,

respectively. Each image is represented by 196 integer

intensity values in the range [0, 3]. We experiment on

these small datasets to see how robust our algorithms

were to small datasets.

The forestcover12 dataset consists of classes 1 and 2
from the 7-class Covertype dataset in the UCI repository.

The particle dataset, from the UCI repository, consists

of two classes, signal and background. This data is

from the MiniBooNE experiment and is used to distin-

guish electron neutrinos (signal) from muon neutrions

(background). Ringnorm and twonorm are both synthetic
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datasets, which we generated using the twonormgen and

ringnormgen scripts made available by Breiman [1999b].

The Yahoo! dataset [Yahoo! Labs, 2014] contains

anonymized user click logs for news articles displayed

on Yahoo! The dataset contains 10 features per click,

and the label determines whether the user clicked the

displayed article. We trimmed the dataset to contain

1,042,974 positive examples (clicks) and 1,237,251 neg-

ative examples (non-clicks).

B. Results

Our results on the Yahoo! dataset are averaged over

three experiments. The results on the remaining datasets

are averaged over 15 experiments. In each experiment,

we randomly partition the data into training and test sets.

We compare both ensembles of stumps and of depth

3 decision trees with no pruning, with each algorithm

performing 300 rounds of boosting – this number is large

enough to elucidate the trends in the error rates. DIvote
built an ensemble of 300 trees at each site, resulting in

a total ensemble of 3, 000 trees.

Graphs comparing error rate to the number of trees in

each algorithm’s ensemble are shown in Figure 3 and

Figure 4. In every case, DistBoost stops boosting

after a small number of rounds, while PreWeak boosts

at the same rate as AdaBoost. These results support

our conclusion that DistBoost’s weak learners overfit

the training data at each site, while PreWeak is able to

continually drive down the training error. We noticed

that on the ocr17 and ocr49 datasets, PreWeak and

AdaBoost both had 0% training error when using depth

three trees.

The results with decision stumps are shown in Table

II. PreWeak outperformed AdaBoost on every dataset

except ringnorm. On ringnorm, PreWeak was still com-

petitive with AdaBoost and drastically outperformed

both DistBoost and DIvote. AdaSampling was

competitive with AdaBoost on every dataset except

ocr49 and ringnorm. Further, it outperformed DIvote
and DistBoost on every dataset.

Table III shows the results with depth three de-

cision trees. Except for twonorm, the classifiers are

all more accurate with depth 3 trees. On twonorm,

AdaBoost, PreWeak, and AdaSampling all per-

formed worse with depth 3 trees. Further, PreWeak and

AdaSampling (and DistBoost) lost to 1/10, the

version of AdaBoost trained using 1/10 of the data.

PreWeak and AdaSampling also lost to DIvote
on ringnorm, the other synthetic dataset. However,

PreWeak and AdaSampling were more accurate than

DIvote on the remaining four datasets. In addition,

AdaSampling with decision stumps was just as ac-

curate as DIvote with depth three trees.

V. DISCUSSION

We presented two new algorithms for distributed

boosting. Both of our algorithms are competitive with

AdaBoost when it is trained with the entire dataset,

and both algorithms outperform DistBoost on every

dataset on which we experimented. Further, PreWeak
was able to boost its accuracy at the same rate as

AdaBoost.

Like DIvote, AdaSampling requires no commu-

nication between sites yet outperformed it on several

datasets. AdaSampling, however, was substantially

worse than AdaBoost on two of the datasets. It remains

open to create a boosting algorithm that is competitive

with AdaBoost on all six datasets yet requires as little

communication as DIvote.

ACKNOWLEDGEMENTS

Lev Reyzin was supported in part by NSF grant IIS-

1526379.

25 50 100 150 200 300
22.0

22.5

23.0

23.5

24.0

24.5

25.0

25.5

26.0

E
rr
o
r

forestcover12

25 50 100 150 200 300
2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0
twonorm

25 50 100 150 200 300
0

10

20

30

40

50

E
rr
o
r

ringnorm

25 50 100 150 200 300
4

5

6

7

8

9

10

11

12
ocr49

25 50 100 150 200 300

Ensemble size

0.5

1.0

1.5

2.0

2.5

3.0

E
rr
o
r

ocr17

25 50 100 150 200 300

Ensemble size

7

8

9

10

11

12

13
particle

AdaSampling

AdaBoost

DIvote

DistBoost

PreWeak

Fig. 3. Test error (%) with ensembles of decision stumps

811



TABLE II
TEST ERROR AND STANDARD DEVIATIONS (%) WITH 300 DECISION STUMPS

AdaBoost DistBoost DIvote PreWeak AdaSampling 1/10
ocr17 .69 ± .23 2.14 ± .61 1.76 ± .38 .63 ± .23 .68 ± .25 1.41 ± .28
ocr49 5.17 ± .66 8.60 ± 1.31 6.21 ± .89 4.55 ± .62 5.93 ± .86 6.94 ± .58

forestcover12 22.66 ± .11 23.15 ± .40 25.61 ± .06 22.46 ± .09 22.20 ± .11 22.73 ± .15
particle 8.22 ± .10 9.46 ± .25 11.16 ± .17 7.98 ± .10 8.08 ± .07 8.57 ± .12

ringnorm 2.53 ± .07 46.9 ± .89 27.1 ± 10.8 2.69 ± .08 4.59 ± .25 2.80 ± .10
twonorm 2.89 ± .07 4.86 ± .61 2.74 ± .07 2.86 ± .06 2.58 ± .06 3.06 ± .07
Yahoo! 36.57 ± .05 37.56 ± .39 40.31 ± .05 36.50 ± .27 37.20 ± .06 36.89 ± .21

TABLE III
TEST ERROR AND STANDARD DEVIATIONS (%) USING 300 DEPTH THREE DECISION TREES

AdaBoost DistBoost DIvote PreWeak AdaSampling 1/10
ocr17 .39 ± .16 2.16 ± .49 .94 ± .29 .41 ± .16 .40 ± .18 .98 ± .52
ocr49 1.61 ± .36 3.97 ± .72 2.50 ± .52 1.76 ± .42 2.79 ± .47 3.10 ± .30

forestcover12 20.86 ± .44 20.96 ± .66 22.13 ± .06 18.72 ± .24 19.55 ± .17 20.99 ± .46
particle 6.75 ± .09 8.39 ± .18 7.35 ± .08 7.09 ± .09 6.25 ± .13 7.21 ± .09

ringnorm 1.81 ± .05 5.97 ± .99 2.06 ± .05 2.13 ± .07 2.15 ± .06 2.25 ± .07
twonorm 3.09 ± .09 4.10 ± .15 2.58 ± .05 3.28 ± .08 3.14 ± .06 3.08 ± .07
Yahoo! 34.99 ± .08 35.61 ± .10 37.40 ± .02 35.12 ± .01 35.31 ± .04 35.56 ± .03
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Fig. 4. Test error (%) with ensembles of depth three decision trees
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