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Abstract
Algorithms for noiseless collaborative PAC learning have
been analyzed and optimized in recent years with respect
to sample complexity. In this paper, we study collaborative
PAC learning with the goal of reducing communication cost
at essentially no penalty to the sample complexity. We de-
velop communication efficient collaborative PAC learning al-
gorithms using distributed boosting. We then consider the
communication cost of collaborative learning in the presence
of classification noise. As an intermediate step, we show how
collaborative PAC learning algorithms can be adapted to han-
dle classification noise. With this insight, we develop commu-
nication efficient algorithms for collaborative PAC learning
robust to classification noise.

Introduction
Collaborative learning was recently formalized by Blum et
al. (2017) as a PAC learning model. In this collaborative
PAC setting, there is a domain X , over which are k distribu-
tions, referred to as players. There is also a center node that
orchestrates the learning process. The goal of collaborative
PAC learning is to learn classifiers from data provided by the
players that generalize well on each of players’ distributions
simultaneously. Note that this is distinct from the related dis-
tributed learning setting, where the goal is to learn classifiers
that generalize well on the mixture of players’ distributions
(Balcan et al. 2012).

There are generally a few styles of collaborative PAC
learning. In the personalized learning setting, which is the
main focus of our paper, the goal is to learn a classifier for
each player with generalization error less than ε, with prob-
ability 1− δ. Another setting is the centralized learning set-
ting, where the goal is learn a single classifier with gener-
alization error less than ε on each players’ distribution with
probability 1 − δ. The efficiency of a collaborative learn-
ing algorithm is assessed by its overhead, defined as the ra-
tio of the sample complexity of learning in the collabora-
tive setting to the sample complexity of learning in the sin-
gle player setting. An overhead of at least k indicates that
the collaborative learning algorithm offers no sample com-
plexity benefit over individual PAC learning. An overhead
less than k indicates that the collaborative algorithm is more
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sample efficient than individual PAC learning. Collaborative
PAC learning algorithms have been optimized in subsequent
works with respect to overhead, and hence sample complex-
ity (Blum et al. 2017; Chen, Zhang, and Zhou 2018; Nguyen
and Zakynthinou 2018; Qiao 2018).

Certain difficulties may arise in real-world applications of
collaborative PAC learning. First, communicating data be-
tween players and the center can be costly. Second, the data
from players may be noisy. Consider the example described
in (Blum et al. 2017) where k players represent hospitals
serving different demographics of the population. In this net-
work of hospitals, each of which generates an abundance of
data, transmitting data to the center is costly and thus hospi-
tals want to minimize the amount of data transmitted. Addi-
tionally, mistakes may be present in the labels of the data at
the hospitals, due to clerical errors and misdiagnoses, among
other reasons. Given access to only the noisy data from the
hospitals, we wish to learn classifiers that generalize well
with respect to each hospital’s underlying noiseless distri-
bution. We tackle both difficulties in this paper. First, we
develop communication-aware collaborative learning algo-
rithms in the noiseless setting that enjoy reduced communi-
cation costs at no penalty to the sample complexity. Then,
we develop communication-aware collaborative learning al-
gorithms in the presence of classification noise, where each
player has label noise rate ηi < 1

2 .
The algorithms and analysis in this work focus on person-

alized learning. We discuss the applications of our insights
and analyses to the centralized learning setting in the Ap-
pendix. Omitted proofs are also included in the Appendix.

Previous Work
Algorithms for collaborative PAC learning have been an-
alyzed and optimized in (Blum et al. 2017; Chen, Zhang,
and Zhou 2018; Nguyen and Zakynthinou 2018; Qiao 2018)
with respect to sample complexity. The collaborative PAC
framework was formalized in (Blum et al. 2017), where they
also develop an optimal algorithm in the personalized setting
with O(ln(k)) overhead and a suboptimal algorithm in the
centralized setting with O(ln2(k)) overhead. We recall their
algorithm, which we refer to as Personalized Learning (Al-
gorithm 1), and the corresponding sample complexity result
below.
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Algorithm 1: Personalized Learning (Blum et al.
2017)
Input: H , k distributions Di ∼ X , δ′ = δ/2 log(k),

ε > 0
Output: f1, ..., fk ∈ H
Let N1 = {1, ..., k};
for j = 1, ..., dlog(k)e do

Draw sample S of size mε/4,δ′ from mixture
DNj =

1
|Nj |

∑
i∈Nj Di;

Select consistent hypothesis hj ∈ H on S;
Gj ← TEST(hj , Nj , ε, δ′);
Nj+1 = Nj \Gj ;
for i ∈ Gj do

fi ← hj ;
end

end
return f1, ..., fk
Procedure TEST(h,N, ε, δ)

for i ∈ N do

Draw Ti = O

(
ln(

|N|
εδ )

ε

)
samples from Di;

end
return {i | errTi(h) ≤ 3ε

4 }

Theorem 1 (Blum et al. 2017). For any ε, δ > 0, and hy-
pothesis class H of finite VC-dimension d, the sample com-
plexity of Personalized Learning is

m = O

(
ln(k)

ε

(
(d+ k) ln

(
1

ε

)
+ k ln

(
k

δ

)))
.

When k ln(k) = O(d), the sample complexity is
Õ(log(k)dε ).

Personalized Learning yields an exponential improve-
ment in the sample complexity with respect to the baseline;
it improves the baseline’s linear k dependence to logarith-
mic dependence, a drastic improvement for settings with a
large number of players.

Subsequent works (Chen, Zhang, and Zhou 2018; Nguyen
and Zakynthinou 2018) improve upon their suboptimal cen-
tralized learning algorithm using multiplicative weights ap-
proaches. In contrast to these works, we focus on the
communication complexity of personalized and centralized
learning. We build on the structure of these previously de-
veloped algorithms to obtain both sample and communica-
tion efficiency in our algorithms. Additionally, we consider
communication-aware collaborative learning in the presence
of classification noise. The previous work of (Qiao 2018)
considers the collaborative PAC learning where some frac-
tion of players behave truthfully while the remaining play-
ers behave adversarially. In addition to considering a differ-
ent noise model than our work, (Qiao 2018) show that cen-
tralized learning is impossible in their setting and they do
not consider communication complexity. To the best of our
knowledge, no previous work has addressed the communi-
cation complexity of collaborative PAC learning.

Background
We now define notation and key concepts used in this pa-
per. Let X denote the instance space and Y = {0, 1} de-
note the set of possible labels. Let H denote a hypothesis
class with finite VC-dimension d. We will assume the set-
ting of realizable PAC learning, hence the target hypothesis
h∗ is in the hypothesis class H . The sample complexity of
collaborative learning algorithms is defined in the standard
way. The focus of this paper is on the communication cost
of collaborative learning. We define the communication cost
as the total number of samples transmitted between play-
ers in the execution of collaborative learning algorithms. To
compute communication costs accurately and consistently,
we carefully outline the implementation assumptions of our
collaborative learning model. First, we define the comple-
tion of an algorithm as when each player is in possession of
a classifier that has generalization error less than ε. Second,
we assume that each player has computing power and a pri-
ori access to the hypothesis class H , ε, δ, and k. Third, we
assume the broadcast model of communication, also known
as the shared blackboard model, in which all players can ob-
serve all samples and bits transmitted to the center.

The second half of this paper considers collaborative
learning in the presence of classification noise. In this set-
ting, each player has their own distribution Di ∼ X and
their own classification noise rate ηi < 1

2 . Each player can
generate instance-label pairs (x, y), where x ∼ Di, and
with probability 1 − ηi, y = h∗(x), or with probability
ηi, y = ¬h∗(x). We let EXηi(·) denote the noisy distribu-
tion induced by a player’s instance-label generating process.
The center node orchestrating the learning process has full
knowledge of players’ noise rates but is not aware of the
players’ distributions.

The collaborative PAC learning criteria in the presence
of noise is the same as in noiseless collaborative PAC
learning except that the learned classifiers must generalize
well on each individual player’s clean distribution, that is,
their distribution Di without label noise. For h ∈ H , let
errT (EXηi(·), h) denote the empirical error of concept h on
T points generated from EXηi(·). The definition of empiri-
cal error is standard and defined as

errT (EXηi(·), h) =
1

T

T∑
j=1

1EXηi (xj)6=h(xj).

There are two types of generalization errors of h to consider.
The first is the error of h on the noisy distribution, that is,
the distribution Di in the presence of label noise. The sec-
ond is the error of h on the underlying clean distribution. In
the classification noise setting, the learner only has access to
samples from the noisy distribution, but the goal of learning
is to generalize well with respect to the clean distribution.
With access only to the noisy distribution, we use the gen-
eralization error with respect to the noisy distribution as a
stepping stone in our analysis. The generalization error on
the noisy data distribution, EXηi(·), is defined as

errDi(EXηi(·), h) = ET∼DTi [errT (EXηi(·), h)].

The generalization error on the clean data distribution, Di,
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is denoted errDi(h), and defined as follows,

errDi(h) = ET∼DTi [errT (h)] = Pr
x∼Di

[h(x) 6= h∗(x)].

In our algorithms and analysis, we use the classic empiri-
cal risk minimization (ERM) approach and sample complex-
ity result of PAC learning with classification noise, in the
single-player setting, recalled below.
Theorem 2 (Angluin and Laird 1987; Laird 1988). Let H
denote a hypothesis class with finite VC-dimension d. Let
D be a distribution on X and ηi < 1

2 . Let EXηi(·) denote
an oracle that returns (x, h∗(x)) with probability 1 − ηi or
(x,¬h∗(x)) with probability ηi. Given any sample S drawn
from EXη , an algorithm A that produces a hypothesis h ∈
H that minimizes disagreements with S satisfies the PAC
criterion, i.e. for any ε, δ > 0 and any distribution D on X ,
PrS∼Dm [errD(h) ≥ ε] ≤ δ, with sample complexity

mε,δ,ηi = O

(
d log (1/δ)

ε(1− 2ηi)2

)
.

We note that since the confidence parameter δ is handled
in a standard fashion, for the duration of this paper we sup-
press δ dependency for clarity.

Communication-Aware Personalized Learning
We define the communication cost of a collaborative PAC
learning algorithm as the total number of samples trans-
mitted to the center. In contrast, the sample complexity re-
flects the total number of samples, whether transmitted or
not, consumed by the algorithm. Our goal is to achieve com-
munication efficiency, while retaining sample efficiency, in
the personalized learning setting. In this section, we develop
a personalized learning algorithm whose sample complex-
ity matches that of Personalized Learning (Theorem 1) and
whose communication cost is less than that of Personalized
Learning, deeming our algorithm the best of both worlds.

Before describing our approach, we first compute the
communication costs of the baseline approach and Personal-
ized Learning. The personalized learning baseline approach
is where each player draws Õ(dε ) examples locally from
their own distributions and independently learns their own
classifier. This baseline requires no communication to the
center. Hence, simultaneous communication and sample ef-
ficiency is necessary for our algorithms to be meaningful
as we are competing with a baseline whose communication
complexity is zero. In other words, if both sample complex-
ity and communication cost are a concern, it will only make
sense to choose algorithms other than this baseline if the
communication cost is not too much and the sample com-
plexity is substantially lower.

The communication cost of Personalized Learning was
not considered in previous works. We compute the commu-
nication complexity of Personalized Learning, in light of our
implementation assumptions, in the following proposition.
Proposition 3. The communication cost of Personalized
Learning is

Õ

(
log(k)

d

ε

)

samples plus Õ
(
k log

(
d
ε

))
additional bits of communica-

tion.

Proof. We describe the implementation details for Person-
alized Learning, described in Algorithm 1. Consider round
j. In the first step, the center computes the number of sam-
ples to request from each player by drawing mε/4,δ′/|Nj |
samples from the uniform multinomial distribution. The
center communicates this quantity to each player, costing
O(k log(dε )) bits. The players then communicate their re-
quested quantity of samples. By assumption of the broadcast
model, each player can see the samples transmitted by other
players so all players can learn a consistent hypothesis lo-
cally, costing no communication in this step. After learning
the consistent hypothesis hj , each player implements TEST
locally, costing no communication. Afterwards, they com-
municate a single bit to the center indicating whether or not
TEST passed with hj , costing O(k) bits of communication.
Therefore, the total communication over log(k) rounds is
Õ(log(k)dε ) samples plus additional O(k log(k) log(dε )) =

Õ(k log(dε )) bits of communication.

Table 1 summarizes the sample and communication com-
plexities of the baseline approach, Personalized Learning,
and our algorithm, which we call Personalized Learning us-
ing Boosting. While our results state that there will be ad-
ditional bits communicated to orchestrate these algorithms,
they are not included in the tables as we are chiefly con-
cerned with the number of samples communicated, as their
representations can grow for large d. For completeness, we
provide the full table, including additional bits communi-
cated, in the Appendix.

The primary driver of communication inefficiency in Per-
sonalized Learning is the error parameter, ε. In applica-
tions such as the hospital scenario described in the intro-
duction, learning highly accurate classifiers is crucial, hence
ε is expected to be extremely small. Therefore, our goal is
to improve communication complexity exponentially with
respect to ε, while retaining the logarithmic k dependence
granted by Personalized Learning. In particular, we show
that our communication-efficient personalized learning al-
gorithm has O(log( 1

ε )) dependence in communication com-
plexity.

Our approach to improving communication cost is to re-
place the first step in Personalized Learning with Distributed
Boosting (Balcan et al. 2012), while keeping the remaining
Personalized Learning algorithm intact. Distributed Boost-
ing is a distributed implementation of AdaBoost ((Freund
and Schapire 1997)) that learns a consistent hypothesis in
Õ(log( 1

ε )) rounds. We note that the objective of Distributed
Boosting is to learn a classifier with error less than ε on the
mixture of distributions. We recall the communication com-
plexity of Distributed Boosting below.

Theorem 4 (Balcan et al. 2012). Any class H of finite VC-
dimension d can be learned to error ε in Õ(log( 1

ε )) rounds
and O(d) examples plus O(k log(d)) bits of communication
per round using the distributed boosting algorithm.
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Sample Complexity Samples Communicated

Baseline Õ(k dε ) Õ(1)

Personalized Learning Õ(log(k)dε ) Õ(log(k)dε )

Personalized Learning using Boosting Õ(log(k)dε ) Õ(log(k)d log( 1
ε ))

Table 1: Sample and Communication Costs of Personalized Learning Variants

By using Distributed Boosting as the first step in Person-
alized Learning, by Theorem 4 we will achieve logarithmic
dependence on ε in communication cost. However, we must
be careful that we don’t achieve this improved communica-
tion at the cost of higher sample complexity. To the best of
our knowledge, the sample complexity of Distributed Boost-
ing was not previously analyzed. We derive the sample com-
plexity of Distributed Boosting in the next section, showing
that Distributed Boosting can be implemented with the same
sample complexity as AdaBoost.

Sample Complexity of Distributed Boosting
We first recall the sample complexity of AdaBoost (Freund
and Schapire 1997). In AdaBoost, a large sample, denoted
by S, is drawn from an unknown distribution. Throughout
AdaBoost, S is perpetually resampled. The size of S, the
size of the reservoir of points used in the AdaBoost routine,
is the sample cost. To review the sample complexity of Ad-
aBoost, we first recall the VC-dimension of the hypothesis
class H after T rounds of boosting.

Lemma 5 (Freund and Schapire 1997). Suppose the weak
learner in AdaBoost learns a classifier with constant error in
each round. Then, Õ(ln( 1

ε )) rounds of AdaBoost are needed
to learn a classifier with zero training error.

Let dboost denote the VC-dimension of the hypothesis
class after T rounds of boosting.

Lemma 6 (Freund and Schapire 1997). Let H denote the
base class of hypotheses with VC-dimension d. After T
rounds of boosting, the resulting hypothesis class has VC-
dimension dboost = O(dT log(T )) = Õ(dT ).

We recall the folklore result of the sample complexity
of AdaBoost, which follows immediately from Lemma 5,
Lemma 6, and realizable PAC sample complexity bounds.

Lemma 7. The sample complexity of AdaBoost is

mboost = O

(
dboost

ε

)
= Õ

(
d

ε

)
.

We now show that the sample complexity of Distributed
Boosting is the same as that of AdaBoost. In Distributed
Boosting, there are k players implementing AdaBoost. Each
player has a reservoir of points, Si, from which the center
resamples. The sample cost is the sum over the players’ sam-
ple reservoirs,

∑k
i=1 Si. From standard learning theory we

know lower and upper bounds on
∑k
i=1 |Si|, but the size

with which to initialize each individual Si so that the algo-
rithm is correct was not previously analyzed. During each

round of Distributed Boosting, the number of samples the
center requests from a player can increase and in the original
analysis of Distributed Boosting, Si was defined to be am-
biguously large (Balcan et al. 2012). We give clarity to the
size of each Si needed for Distributed Boosting. To do so,
we first propose adding the following one-time preprocess-
ing step to Distributed Boosting: let the center draw mboost
points from a uniform multinomial distribution to determine
the sample size of each player’s reservoir Si. Communicat-
ing these sample sizes to the players cost Õ(k log(dε )) bits in
total. This preprocessing step adds only a negligible cost to
the bits communicated in Distributed Boosting. By initializ-
ing each reservoir in this way, we limit the total sample size
to
∑k
i=1 |Si| = mboost.

Proposition 8. The sample complexity of Distributed Boost-
ing is

O

(
dboost

ε

)
= Õ

(
d

ε

)
.

Proof. The derivation of the sample complexity of Dis-
tributed Boosting follows from the fact that Distributed
Boosting is equivalent to AdaBoost with a single player and
sample size S = ∪ki=1Si. In this case, we know the sam-
ple complexity is Õ(dε ) by Lemma 7. By adding the prepro-
cessing step described above, we restrict the sample com-
plexity of the algorithm to mboost. We now show that with
mboost samples, across players as prescribed by the prepro-
cessing step, Distributed Boosting remains correct. The pre-
sampling step where the center draws from a multinomial
distribution to determine the number of samples to request
from each player remains unaffected by the new preprocess-
ing step. However, in the sampling phase, it is possible that
the center requests more points from a player than the player
possesses. In this case, the player simply samples from their
reservoir Si i.i.d. proportional to the weights corresponding
to the points. The weak learning step of Distributed Boosting
is unaffected by the preprocessing step since it is still receiv-
ing a sample drawn i.i.d. from the boosting-weighted mix-
ture of players. And finally, we note that the sample weights
updating step remains unaffected. Therefore, Õ(dε ) samples
suffice for Distributed Boosting and adding the preprocess-
ing step to Distributed Boosting achieves the sample com-
plexity.

The result above reveals an important fact about the sam-
ple complexity of Distributed Boosting with k players –
the sample complexity is surprisingly not dependent on k.
Therefore, using Distributed Boosting, we can achieve sam-
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ple and communication efficiency for the personalized learn-
ing setting, which we formalize in the next section.

Communication-Efficient Personalized Learning
Our approach to achieving a communication and sample
efficient algorithm for the personalized learning setting is
to replace the first step of Personalized Learning with the
Distributed Boosting algorithm while leaving the remaining
steps of Personalized Learning intact. We refer to our ap-
proach as Personalized Learning using Boosting. Using the
sample complexity result on Distributed Boosting from the
previous section, we compute the sample complexity of Per-
sonalized Learning using Boosting, showing that it is indeed
equal (up to polylogarithmic terms) to the optimal sample
complexity achieved by Personalized Learning.
Theorem 9. The sample complexity of Personalized Learn-
ing using Boosting is

Õ

(
log(k)

d

ε

)
when k ln(k) = O(d).

We now formally compute the communication complex-
ity of Personalized Learning using Boosting, showing that
it is an exponential improvement over the communication
complexity of Personalized Learning with respect to ε.
Theorem 10. The communication complexity of Personal-
ized Learning using Boosting is

Õ

(
log(k)

(
d log

(
1

ε

)))
samples plus an additional Õ(k log(d) log( 1

ε )) bits of com-
munication.

Proof. We consider a single round of our algorithm. The
communication complexity of the first step is given in The-
orem 4 as Õ(d log( 1

ε )) examples plus Õ(k log(d) log( 1
ε ))

bits of communication. Recall that each step in distributed
boosting, all players learn the same weak learning classifiers
locally. Therefore, when the distributed boosting algorithm
completes, each player has all log(k) weak classifiers and
can therefore sum them to create the final boosting classi-
fier hj , costing no communication. Using the boosting clas-
sifier in the TEST step, there is no communication needed
as the players simply need to test the boosting classifier on
Tj samples drawn from their own distributions. The play-
ers each send one bit of communication to the center in-
dicating if they passed TEST or not, costing O(k) bits for
all k players. Therefore the total communication complex-
ity over log(k) rounds is Õ(log(k)(d log( 1

ε )) samples plus
Õ(k log(d) log( 1

ε ))+O(k) = Õ(k log(d) log( 1
ε )) additional

bits of communication.

Communication-Aware Personalized Learning
with Classification Noise

Thus far we have studied the communication cost of collab-
orative PAC learning without any assumptions of noise in

the data. However, the presence of noise in data is often un-
avoidable in real-world learning scenarios. For instance, in
the case where k hospitals work collaboratively to learn a di-
agnosis classifier, it is possible that a hospital’s data has label
noise from clerical errors or misdiagnoses. In this section,
we consider communication-aware collaborative learning in
the presence of classification noise, where each player has
their own label noise rate ηi < 1/2 so that for any data point
x drawn from their distribution Di, with probability ηi they
produce the wrong label and with probability 1−ηi they pro-
duce the correct label. We note that collaborative PAC learn-
ing in the presence of classification noise has not been previ-
ously analyzed. Thus, to build communication-efficient col-
laborative learning algorithms robust to classification noise,
we first must analyze how to adapt collaborative learning to
handle classification noise more generally. We note that the
analysis and approaches in this section can be applied simi-
larly to centralized learning in the presence of classification
noise. Due to space constraints, we defer the details of cen-
tralized learning to the Appendix.

Personalized Learning with Classification Noise
Consider the baseline approach to personalized learning
with classification noise, where the center requests mε,δ,ηi
samples from each player and learns an empirical risk
minimizer (ERM), following exactly as in standard single-
player PAC learning with classification noise (Theorem 2).
In this case, the sample complexity is

∑k
i=1mε,δ,ηi =

O(kmε,δ,ηMAX). The goal then is to develop a personalized
learning algorithm with improved sample complexity.

We present our algorithm, Personalized Learning with
Classification Noise (Algorithm 2), and show that it indeed
improves upon the sample complexity of the baseline. The
skeleton of our algorithm models that of (noiseless) Person-
alized Learning, but we make adjustments to handle clas-
sification noise. In the first and second steps of Personal-
ized Learning, the center draws mε/4,δ′ samples and learns
a consistent hypothesis. In contrast, in our algorithm, the
center draws mε/4,δ′,η̄Nj

points in total from the uniform
mixture of players and learns an ERM hypothesis. When
learning in the presence of classification noise, the exis-
tence of a hypothesis in the hypothesis class consistent with
a sample generated from a noisy distribution is not guar-
anteed. Hence, our algorithm finds an ERM hypothesis in-
stead of a consistent hypothesis. By Theorem 2 the ERM hy-
pothesis has error ε/4 when trained on mε/4,δ′,η̄Nj

samples
drawn from the noisy distribution. Finally, our CN-TEST
subroutine differs from the TEST subroutine in Personal-
ized Learning in that ours accounts for the individual noise
rates of the players. Essentially, players must draw a factor
of 1

(1−2ηi)
more samples in CN-TEST than in TEST and

the testing criterion is adjusted to reflect the relationship be-
tween drawing from noisy distribution and generalizing on
the clean distribution.

The correctness of our algorithm will largely follow from
the correctness results of Personalized Learning shown in
(Blum et al. 2017), but with modifications to handle classi-
fication noise. We start by showing that even in the presence
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Algorithm 2: Personalized Learning with Classifi-
cation Noise

Input: H , k distributions Di ∼ X with error rates
ηi <

1
2 , δ′ = δ/2 log(k), ε > 0

Output: f1, ..., fk ∈ H
Let N1 = {1, ..., k};
for j = 1, ..., dlog(k)e do

Draw sample S of size mε/4,δ′,η̄Nj
from mixture

DNj =
1
|Nj |

∑
i∈Nj Di;

Select ERM hypothesis hj ∈ H on S;
Gj ← CN-TEST(hj , Nj , ε, δ′);
Nj+1 = Nj \Gj ;
for i ∈ Gj do

fi ← hj ;
end

end
return f1, ..., fk
Procedure CN-TEST(h,N, ε, δ)

for i ∈ N do

Draw Ti = O

(
ln(

|N|
δ )

ε(1−2ηi)

)
samples from Di;

end
return {i | errTi(EXηi , hj) ≤ ηi + 3ε

4 (1− 2ηi)}

of classification noise, the first and second steps in our algo-
rithm yield a classifier that performs with error ε/4 on the
mixture.
Lemma 11. The ERM hj learned in Personalized Learning
with Classification Noise has error no more than ε

2 on at
least half of the distributions in Nj .

Next, we consider the CN-TEST subroutine, which tests
if the learned ERM is a good classifier for each of the re-
maining players with respect to their underlying clean distri-
bution. Recall that we only have access to their noisy data.
Our analysis uses the following lemma from (Angluin and
Laird 1987) that connects the generalization error of a con-
cept h on the noisy distribution to the generalization error of
h on the underlying clean distribution.
Lemma 12 (Angluin and Laird 1987). Let D be a distri-
bution on X . Let ηi denote the classification noise rate and
h∗ ∈ H denote the target function. Then,

errD(EXηi(·), h) = ηi + errD(h)(1− 2ηi).

The following lemmas regarding the correctness of
CN-TEST are due to multiplicative Chernoff bounds and
Lemma 12.
Lemma 13. With probability 1− δ′, if hj passes CN-TEST
then errDi(EXηi(·), hj) ≤ ηi + (1 − 2ηi)ε. Hence,
errDi(hj) ≤ ε.
Lemma 14. With probability 1−δ′, if errDi(EXηi(·), hj) ≤
ηi + (1 − 2ηi)

ε
2 , then hj passes CN-TEST. Hence, if

errDi(hj) ≤ ε
2 , then hj passes CN-TEST.

We combine the above lemmas to show correctness of our
algorithm, Personalized Learning with Classification Noise.

Proposition 15. Personalized Learning with Classification
Noise satisfies the personalized collaborative PAC learning
criteria.

Now, we compute the sample complexity of Personalized
Learning with Classification Noise.

Proposition 16. The sample complexity of Personalized
Learning with Classification Noise is

O

(
log(k)

(
k ln(k log(k))

ε(1− 2ηMAX)
+

d ln(log(k))

ε(1− 2ηMAX)2

))
.

When k ln(k) = O(d), the sample complexity simplifies to

Õ
(
log(k) d

ε(1−2ηMAX)2

)
.

Personalized Learning with Classification Noise improves
upon the sample complexity of the baseline since it has log-
arithmic dependence on k instead of linear dependence on k.
For settings with a large number of players, such as in a net-
work of databases or a network of IoT devices, our algorithm
can enjoy improved sample complexity. In fact, simplifying
the sample complexity in Proposition 16 with respect to con-
stant ε, δ, and ηMAX, and assuming k ln(k) = O(d), shows
that our algorithm has Õ(log(k)) overhead compared to the
overhead of Õ(k) from the baseline approach.

Communication-Efficient Personalized Learning
with Classification Noise
We now return to the main goal of this section, which is
to develop a communication-efficient personalized learning
algorithm robust to classification noise. We first review the
communication-efficient baseline approach, which is when
each player draws mε,δ,ηi samples from their own distribu-
tion and learns a classifier locally. The sample complexity
of this baseline is O

(
k d
ε(1−2ηMAX)2

)
and requires no sam-

ples nor bits of communication. To improve communication
costs of personalized learning in the presence of noise, we
build on Personalized Learning with Classification Noise de-
veloped in the previous section. We compute the commu-
nication cost of Personalized Learning with Classification
Noise below.

Proposition 17. The communication complexity of Person-
alized Learning with Classification Noise is

Õ

(
log(k)

d

ε(1− 2ηMAX)2

)
samples and Õ

(
k log

(
d

ε(1−2ηMAX)2

))
additional bits of

communication.

Proof. Recall that δ′ = O(δ/ log(k)). In the first step, the
center computes the number of samples to request from
each player by drawing mε/4,δ′/|Nj | samples from the uni-
form multinomial distribution. The center communicates
this quantity to each player, costing O(k log( d

ε(1−2η̄Nj )2 ))

bits. The players then communicate their requested quan-
tity of samples. Since we are in the broadcast model,
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Sample Complexity Samples Communicated

Baseline Õ
(
k d
ε(1−2ηMAX)2

)
Õ(1)

Personalized Learning with CN Õ
(
log(k) d

ε(1−2ηMAX)2

)
Õ
(
log(k) d

ε(1−2ηMAX)2

)
Personalized Learning with CN using Boosting Õ

(
log(k) d

ε(1−2ηMAX)2

)
Õ
(
log(k)d log

(
1

ε(1−2ηMAX)

))
Table 2: Sample and Communication Costs of Personalized Learning Variants with Classification Noise

each player observes all points communicated to the cen-
ter, thereby allowing each player to learn an ERM hypothe-
sis locally. Each player then implements CN-TEST locally,
costing no communication. After completing CN-TEST,
each player must send one bit to the center indicating their
pass/fail result of CN-TEST, costingO(k) bits in total. Over
all O(log(k)) rounds, the communication complexity is
O
(
log(k)d log(log(k))

ε(1−2η̄K)2

)
= Õ

(
log(k) d

ε(1−2ηMAX)2

)
with an

additional O
(
log(k)k log

(
d

ε(1−2η̄Nj )2

))
+O(k log(k)) =

Õ
(
k log

(
d

ε(1−2ηMAX)2

))
bits of communication.

Table 2 summarizes the sample and communication costs
of the baseline approach, Personalized Learning with Clas-
sification Noise, and our communication-efficient algo-
rithm, Personalized Learning with Classification Noise us-
ing Boosting.

As discussed previously, we focus on the learning sce-
nario where players want to learn highly accurate classifiers.
Thus our goal is to develop an algorithm that improves de-
pendence on 1

ε(1−2ηMAX) in samples communicated.
Our algorithm, Personalized Learning with Classification

Noise using Boosting, is described as follows. We sim-
ply replace the first step of our noise-robust personalized
learning algorithm, Personalized Learning with Classifica-
tion Noise, with Distributed Agnostic Boosting (Chen, Bal-
can, and Chau 2016), while leaving the rest of Personal-
ized Learning with Classification Noise intact. It is well
known that boosting in the presence of classification noise
is not straightforward. In fact, it has been shown that boost-
ing the generalization error rate past the noise rate, so that
ηMAX > ε, is hard (Kalai and Servedio 2003). To avoid these
issues, we restrict our attention to boosting the error ε up
to the noise rate ηMAX, so that ηMAX ≤ ε. In this restricted
regime, we use Distributed Agnostic Boosting from (Chen,
Balcan, and Chau 2016), since classification noise is a spe-
cial case of agnostic learning. Distributed Agnostic Boosting
assumes access to a β-weak agnostic learner, which returns
a hypothesis h so that errD(h) ≤ minh′∈H err(h

′) + β
(Chen, Balcan, and Chau 2016). We recall the sample and
communication complexities of Distributed Agnostic Boost-
ing below.

Theorem 18 (Chen, Balcan, and Chau 2016). Suppose Dis-
tributed Agnostic Boosting has access to a β-weak agnostic
learner. Then, the sample complexity is

Õ

(
d

ε2(1/2− β)2

)
.

It is well known that learning in the presence of classifi-
cation noise is a special case of agnostic learning. We there-
fore derive the following corollary to the sample complexity
of Distributed Agnostic Boosting in the restricted setting of
classification noise.
Corollary 19. Suppose Distributed Agnostic Boosting has
access to a β-weak agnostic learner. Let β be a fixed con-
stant. The sample complexity of Distributed Agnostic Boost-
ing in the restricted setting of classification noise, where
ηMAX ≤ ε, is

Õ

(
d

ε(1− 2ηMAX)2

)
.

We now recall the communication complexity of Dis-
tributed Agnostic Boosting.
Theorem 20 (Chen, Balcan, and Chau 2016). Suppose Dis-
tributed Agnostic Boosting has access to a β-weak agnos-
tic learner. Then, Distributed Agnostic Boosting achieves
error 2errD(H)

1/2−β + ε by using at most O
(

log( 1
ε )

(1/2−β)2

)
rounds, each communicating O

(
d
β log

(
1
β

))
samples and

Õ
(
kd log2

(
d

(1/2−β)ε

))
words of communication.

Similarly, we derive a corollary that holds specifically for
the classification noise setting.
Corollary 21. Suppose Distributed Agnostic Boosting
has access to a β-weak agnostic learner. Let β be a
fixed constant. The communication complexity of Dis-
tributed Agnostic Boosting in the restricted setting of
classification noise, where ηMAX ≤ ε, consists of
O
(
log
(

1
ε(1−2ηMAX)

))
rounds, each communicating O(d)

samples and Õ
(
kd log3

(
1

ε(1−2ηMAX)

))
bits of communica-

tion.
We derive the following sample and communication com-

plexities of our algorithm, Personalized Learning with Clas-
sification Noise using Boosting.
Theorem 22. The sample complexity of Personalized Learn-
ing with Classification Noise using Boosting is

Õ

(
log(k)

d

ε(1− 2ηMAX)2

)
.

Theorem 23. The communication complexity of Personal-
ized Learning with Classification Noise using Boosting is

Õ

(
log(k)d log

(
1

ε(1− 2ηMAX)

))
plus Õ

(
kd log4

(
1

ε(1−2ηMAX)

))
bits of communication.
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