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Abstract. In this paper we analyze online problems from the perspec-
tive of when to switch solutions when the cost is of doing so is high – we
call such a solution change a “recalculation.” We analyze this problem
under the assumption we have algorithms that achieve per-round regret
(which can be otherwise thought of as point-wise error, or other well-
studied quantities) of the form O(1/tε) after seeing t data-points. We
study schedules with a constant number and an increasing number of
recalculations in the total number of datapoints, and we examine when
achieving optimal cumulative regret is possible.

Keywords: Regret minimization · Recalculation schedules · Online
learning

1 Introduction

In many online settings, one faces the problem on when to recalculate a given
solution based on new data. This phenomenon occurs in various settings by
different names: in the bandit framework, “sticky” decisions prevent the learner
from switching arms without paying a cost [6,10,12], in the online clustering
setting every time one switchs solutions, one may need to pay for new centers [3,
4,8,14], in facility location, adding a new facility adds cost [7,13].

The specific details of different problems require the analysis of their respec-
tive structures and often have their own involved solutions. Here, we attempt
to take a broader view, and we adopt the learning language of additive regret
(instead of “competitive ratios,” etc. from the streaming literature, though the
results apply just as well there).

We assume we have a black-box algorithm A that produces an estimator with
expected per-round regret of Rt(x) ∈ [0, 1] on a new data-point x when given
samples St = {x1 . . . xt} and when point x is drawn from the same distribution
as x1, . . . xt, which we will generically refer to as D. Given the assumption above,
we will drop the argument from the function R. We also define R0 = 1, which
means that until samples are given to A, full regret is suffered by its (lack of)
solution.
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We call giving samples {x1, . . . xt} to A a recalculation at round t. We work
in the setting where calls to A are expensive and need to be traded off against
the benefits to improving regret. A call to A involves recalculating, and possibly
committing to, a new solution to a given problem. For example, in the case of
facility location, it involves the costly opening of new facilities (or the moving
of old ones).

Hence, we are interested in understanding the optimal recalculation strategy
as minimize cumulative regret for various budgets on calls to A. Given a strategy
that recalculates at rounds C = {t1, t2, . . .}, where each ti represents a sequential
point drawn from the distribution, the expected cumulative regretRT would
be

RT =
T∑

i=1

max
t∈C s.t. t<i

Rt (1)

In this paper, we will consider per-round regret guarantees of the form t−ε

Rt = O(1/tε), (2)

which is known to be the asymptotically optimal regret for many problems in
bandit and online learning in the stochastic setting [2]. Rephrasing this in our
terminology, we have that for the recalculation schedule C = {1, . . . , T}, the
expected cumulative regret for 0 ≤ ε < 1

RT =
T∑

t=1

Rt−1 = O

(
T∑

t=1

1
tε

)
= O(T 1−ε),

So even when recalculating at every round, a regret guarantee smaller than
O

(
T 1−ε

)
is not possible, and we therefore call this rate optimal. This is the

quantity we will compare to while attempting to do many fewer recalculations.
To simplify notation further, we will henceforth use R for expected regret.

Therefore, all of our results will be on bounding regret in expectation.
Before proceeding, we note that another interesting setting ε = 1 for Rt =

O(1/t), which is, for example, relevant for problems of estimation of parameters
to minimize mean squared error (MSE), where the squared error of the empirical
average of t samples versus the true estimate scales as σ2/t [5]. Here, we would
have

RT = O

(
T∑

t=1

1
t

)
= O(log T ).

2 Warm up

We begin by analyzing the special case of Rt = 1/
√
t The argument in the

previous section shows that the optimum regret in this situation is O(
√
T ).

However, this was the setting in which we recalculated every time we drew a
point, which in the online setting isn’t always practicable. Thus, inducing a
trade-off between the amount of times we recalculate and the regret formed in
our calculation.
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Proposition 1. Let D be a probability distribution from which T data points are
sampled online and let Rt = O(1/

√
t). Using one recalculation, one can achieve

an expected regret of O(T 2/3).

Proof. We first begin by calculating the optimal expected regret of calculating
the algorithm just once. Let c be a constant such that 0 ≤ c ≤ 1. We have that
the expected regret must be:

T c∑

t=1

R0 +
T∑

t=T c+1

RT c = O
(
T c + T 1−c/2

)
.

We note that this is just a simple optimization of the right hand side, so we
equate the exponents and get c = 2/3. This recovers the well-known bound of
ε-first, (ε-greedy, and epoch-greedy) sampling [11,15,16].

3 Uniform Recalculations

One naive idea is to create a sampling schedule that solves our problem is to
sample uniformly, so after observing a set # amount of points we sample again
and continue in this manner. However, we find this to at best require O(T ε)
recalculations to get asymptotically optimum regret.

Lemma 1. Let D be a probability distribution from which T data points are
sampled online and let Rt = O(1/tε) for 0 ≤ ε < 1. If we recalculate uniformly
after observing every # points (and therefore recalculate T/# times), then we
incur an expected regret of O

(
# + T 1−ε

)
.

Proof. We calculate the expected regret for recalculating after every # points, we
carry out the calculation by using the general formula for a uniform schedule.

T/"∑

i=0

"∑

t=1

R"i = # +O




T/"∑

i=1

"∑

t=1

1
(i#)ε





= # +O




T/"∑

i=1

#1−ε

iε





= O
(
# + T 1−ε

)
,

which completes the proof. $%

We note briefly, that this proof holds in the ε = 1 case, we just get the result
R = O(# + log(T )).

As the lemma above shows, a constant number of recalculations would imply
linearly many recalculations between rounds and therefore linear regret. There-
fore, we need a smarter recalculation strategy if we want to recalculate only a
constant number of times. This is presented in the following section.
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We see in the previous section that uniform recalculation scheduling fails to
guarantee small expected regret with a small number of recalculations. So we
pivot to non-uniform schedules. Taking, first, a look at what we can do with a
constant number of recalculations.

4 Constant Number of Recalculations

We now consider the case when we are allowed a constant number of recalcula-
tions, but they need not be uniformly spaced.

Proposition 2. Let D be a probability distribution from which T data points
are sampled online and let Rt = O(1/tε) for 0 ≤ ε ≤ 1. Using one recalculation,
one can achieve an expected cumulative regret of

RT = O
(
T 1/(1+ε)

)
.

Proof. Consider recalculating after T c rounds for c = 1
1+ε . We suffer

O
(
T 1/(1+ε)

)
cumulative regret on those rounds. For the remaining T − T c ≤ T

rounds, we suffer at most

O (T/T cε) =O
(
T 1−cε

)

=O
(
T 1−ε/(1+ε)

)

=O
(
T 1/(1+ε)

)

regret. $%

Proposition 3. Let D be a probability distribution from which T data points are
sampled online and let Rt = O(1/tε) for 0 ≤ ε ≤ 1. Using two recalculations,
one can achieve an expected cumulative regret of

RT = O
(
T 1/(1+ε+ε2)

)
.

Proof. Consider recalculating after T c1 and T c2 for 0 ≤ c1 ≤ c2 ≤ 1. Extending
the argument in Lemma 2, we incur a total regret ofRT ≤ T c1+T c2−c1ε+T 1−c2ε.
Equalizing the three terms we get the equations

c1 = c2 − c1ε and c1 = 1 − c2ε.

Solving the above yields c1 = 1
1+ε+ε2 and yields an expected cumulative regret

of O(T c1). $%

Theorem 1. Let D be a probability distribution from which T data points are
sampled online and let Rt = O(1/tε) for 0 ≤ ε < 1. Using n recalculations, one
can achieve an expected cumulative regret of

RT = O
(
nT

1−ε

1−εn+1
)
.
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Proof. Generalizing from the above, we divide into n recalculations and bound
RT ≤

∑n+1
i=1 T ci−ci−1ε setting c0 = 0 and cn+1 = 1.

We argue that solving for the system of equations leads to the following
recursive formula:

cj = cj+1

∑j−1
i=0 εi

∑j
i=0 εi

.

We proceed inductively, we first see that c1 = c2 − εc1, which gets us c1 =
c2(1 + ε)−1, as desired. Moving on, we assume this holds for cj−1 and solve for
cj .

cj − εcj−1 = cj+1 − εcj

cj(1 + ε) = cj+1 + εcj−1

cj(1 + ε) = cj+1 + cjε

∑j−2
i=0 εi

∑j−1
i=0 εi

cj

(
1 + ε −

∑j−1
i=1 εi

∑j−1
i=0 εi

)
= cj+1

cj

(
1 + ε − 1 +

1
∑j−1

i=0 εi

)
= cj+1

cj

∑j
i=0 εi

∑j−1
i=0 εi

= cj+1

cj = cj+1

∑j−1
i=0 εi

∑j
i=0 εi

.

So we have a recursive formula and now we can see that if we terminate after n
recalculations we have a telescoping product, and we have that

c1 =
1∑n

i=0 εi
=

1 − ε

1 − εn+1
.

Since the n+ 1 phases have equal regret, the total regret is O(nT c
1 ), producing

the bound of RT = O
(
nT

1−ε

1−εn+1
)
. This bound tends to T ε for arbitrarily high

constant n. $%
We observe that this proof does hold for ε = 1, we just leave c1 unsimplified

and have that the expected cumulative regret in this case is O(nT 1/n).

5 Schedules with Increasing Recalculations in T

After seeing some extreme examples and results on constants, we wish to discover
how to improve the amount of times needed to recalculate while still maintaining
the optimum expected regret. By employing a “doubling trick” argument, we see
that we can easily reduce to log(T ) recalculations. We note that other settings
have also been studied that achieve optimal regret using logarithmically many
policy “switches,” [1,9].
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Lemma 2. Let D be a probability distribution from which T points are sampled
online and let Rt = O(1/tε) for 0 ≤ ε < 1. There exists a sequence of log(T )
recalculations for which we can achieve optimal expected regret of O(T 1−ε).

Proof. Let T = 2m, with m sufficiently large, and let L = {20, 21, . . . 2m−1}.
If we recalculate the algorithm after seeing each point in L, then we have the
following expected cost:

m∑

i=0

2i∑

t=1

R ≤ O




m∑

i=0

2i∑

t=1

(
1

2(i−1)ε

)



= O

(
m∑

i=0

(
2i−(i−1)ε

))

= O

(
m∑

i=0

(
2i(1−ε)

))

= O
(
2(1−ε)m

)

= O
(
T (1−ε)

)
.

This establishes that we can recalculate log(T ) times and achieve optimal
expected regret of T 1−ε. $%

We observe that if the regret is of the form Rt = O(1/t) (the ε = 1 case),
then the regret will be bounded by O(log T ) in the above schedule.

We’ve established that we can achieve optimal expected regret with only
log(T ) recalculations, we go on to establish that we cannot improve this to
log log(T ), by showing that the expected regret when taking log log(T ) recalcu-
lations is O(log log(T )

√
T ).

Lemma 3. Let D be a probability distribution from which T are sampled online
and let Rt = O(1/tε) for 0 < ε < 1, where c = 1/ε. There exists a sequence
of log log(T ) recalculations such that we can achieve an expected regret of
O(log log(T )T 1−ε).

Proof. Let T = cc
m

, with m sufficiently large. Let L = {#0, #1, . . . #m}. We
recalculate after seeing each point in L.

We wish to find a schedule that will cover all T with log log(T ) recalculations.
We do this with the following schedule: at epoch i, once we have seen a total
of T 1−c−i

points we recalculate. We show that if we cover half of T at epoch
log log(T ), then in the next epoch we will have seen all of T . So we establish this
recalculation schedule achieves this. Let y be the amount of times needed to see
half of T under the above scheduling scheme, so:



A Model for Optimizing Recalculation Schedules to Minimize Regret 7

1/c = T−c−y

− logc(c) = (−c−y) logc(T )
1

logc(T )
= c−y

y = logc logc(T ).

We note that we found the exact point at which we would have half, and that this
makes log log(T ) the minimum amount of rounds needed to cover all of T with
this particular schedule. We can be sure of this since there were no assumptions
made on the size of T , so we couldn’t reduce to log log log(T ) rounds. So now,
we can sum our per-round cost over the amount of rounds we must run:

m∑

i=0

T 1−c−i

∑

t=1

R
T 1−c−(i−1) ≤

m∑

i=1

T 1−c−i

∑

t=1

T− ci−1−1
ci

=
m∑

i=1

T 1−c−i−c−1+c−i

= log log(T )T 1−c−1

= log log(T )T 1−ε.

Computing the inner sum, we see that at each round, we will have O(T 1−ε)
expected regret. $%

We note this proof does not extend to the ε = 1 case, since the argument
hinges on the expected regret being bounded by O(T 1−ε).

Now we establish a lower bound, in particular that we cannot achieve an
expected regret of O(T 1−ε) with log log(T ) recalculations.

Lemma 4. Any schedule that performs O(log log T ) recalculations using an
algorithm that suffers per-round regret of R = O(1/tε), 0 < ε < 1, must suffer
ω(T 1−ε) cumulative regret.

Proof. Given log log(T ) recalculations, we are lower-bounded by a regret of
O(T 1−ε). Specifically, we show that we cannot achieve a regret of O(T 1−ε) given
log log(T ) recalculations. So assume to the contrary, that there exists a schedule
that does this. Now, to achieve this clearly the regret incurred at each recalcula-
tion has to be O(T 1−ε). Based on this we craft an inductive argument on the size
of each recalculation round. At round i − 1, the size, T ci−1 must be O(T 1−εi

).
As a base case, we see that T c0 = O(T 1−ε). We move onto the inductive step:
We note that the regret for round i is

T ciT−εci−1 = O(T 1−ε)

T ci = O(T 1−ε+εci−1).
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This implies,

ci ≤ 1 − ε + ε(1 − εi−2)

ci ≤ 1 − εi−1.

This, then results in the total portion of T witnessed as
∑log log(T )

n=1 T 1−εn

. Now,
since

log log(T )∑

n=1

T 1−εn

≤ log log(T )T 1−εlog log(T )
= o(T ),

we have failed to witness all of T in log log(T ) rounds and have reached a con-
tradiction. $%

We note this proof does not extend to the ε = 1 case, since the argument
hinges on the expected regret being bounded by O(T 1−ε).
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