
Theoretical Computer Science 411 (2010) 2729–2740

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Optimally learning social networks with activations and suppressions

Dana Angluin, James Aspnes, Lev Reyzin ∗

Department of Computer Science, Yale University, New Haven, CT, 06511, United States

a r t i c l e i n f o

Keywords:
Value injection queries
Social networks
Active learning

a b s t r a c t

In this paper we consider the problem of learning hidden independent cascade social net-
works using exact value injection queries. These queries involve activating and suppressing
agents in the target network. We develop an algorithm that optimally learns an arbitrary
social network of size n using O(n2) queries, matching the information theoretic lower
bound that we prove for this problem. We also consider the case when the target social
network forms a tree and show that the learning problem takes Θ(n log(n)) queries. We
also give an approximation algorithm for finding an influential set of nodes in the network,
without resorting to learning its structure. Finally, we discuss some limitations of our ap-
proach, and limitations of path-basedmethods, when non-exact value injection queries are
used.

© 2010 Published by Elsevier B.V.

1. Introduction

Social networks are used to model interactions within populations of individuals. These interactions can include
distributing information, spreading a disease, or passing trends among friends. Viral marketing is often used as an example
of a process well modeled by social networks. A company may want to virally market a product to its potential clients. The
idea is to carefully choose some influential people to target. This can be done, for instance, by giving these people a free
sample of the product. The targeted people have relationships in their population, and the hope is that they will virally
spread interest in this product to their friends, and so on.
There aremany differentmodels of social networks, and thesemodels (imperfectly) approximate complicated real world

phenomena. One of the most basic and well-studied models is the independent cascade model [7,10,11], and it is the one
that we consider in this paper. Informally, in the independent cascademodel, each individual, or agent, has some probability
of influencing each other agent. When an agent is targeted with a product, he or she becomes activated, and then attempts
to influence each of his or her neighbors, and so on. This model is called independent cascade because each agent’s success
probability in attempting to influence another agent is independent of the history of previous activation attempts in the
network.
Social networks belong to the wider class of probabilistic networks. Probabilistic networks are circuits whose gate

functions specify, for each combination of inputs, a probability distribution on the output. In the case of social networks,
these gates compute rather simple functions of their inputs.
A natural question to ask is: what can we learn about the structure of these networks by experimenting with their

behavior? Given access to a pool of agents in our network, one intuitive way in which we could experiment on this network
would be to artificially excite some set of agents, for example by sending them political brochures in support of some
measure, and then observe the consequences of the experiment. Furthermore,wewill allow for the possibility of suppressing

∗ Corresponding author.
E-mail addresses: angluin@cs.yale.edu (D. Angluin), aspnes@cs.yale.edu (J. Aspnes), lev.reyzin@yale.edu (L. Reyzin).

0304-3975/$ – see front matter© 2010 Published by Elsevier B.V.
doi:10.1016/j.tcs.2010.04.008

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:angluin@cs.yale.edu
mailto:aspnes@cs.yale.edu
mailto:lev.reyzin@yale.edu
http://dx.doi.org/10.1016/j.tcs.2010.04.008

2730 D. Angluin et al. / Theoretical Computer Science 411 (2010) 2729–2740

agents; when an agent is suppressed, he or she cannot be excited by another agent. To make things more realistic, and
theoretically more interesting, we will not assume that we can observe the entire network. We will instead have an output
agent, whose state at the end of this process we can see, e.g. the probability that the President supports the measure.
Thus, in this paper we consider the setting where we can inject values into the network; we fix the states (or values)

of any subset of agents in the target network and observe only the state of some specified agent, whom we think of as the
output of the network. This is the value injection query model.
The idea of value injection queries was inspired both from hardness results in learning circuits by manipulating only

the inputs [6,9,12] and by models of gene suppression and gene overexpression in the study of gene interaction networks
[1,8] and was proposed by Angluin et al. [4]. They show that acyclic deterministic boolean circuits with constant fan-in and
O(log n) depth are learnable in polynomial timewith value injection queries. Angluin et al. [3] extend these results to circuits
with polynomial-size alphabets. They show that transitively reduced acyclic deterministic circuits that have polynomial-size
alphabets, constant fan-in, and no depth bound are learnable in polynomial timewith value injection queries. Then, Angluin
et al. [2] extend this work to probabilistic circuits. They show that constant fan-in acyclic boolean probabilistic circuits of
O(log(n))depth can be approximately learned in polynomial time, but that this no longer necessarily holds once the alphabet
becomes larger than boolean.
However, unlike in previous work on the value injection model, we allow our target social networks to have cycles. In

many classes of networks, allowing for cycles wouldmake the problem ill-defined in the value injectionmodel, as the values
on the nodes of the networkmay not be stable. In the social networks case, the values of the nodes in the network converge.
Also, unlike in previous work, our learnability results do not require a degree bound on the target network. This gives us a
nice theoretical model whose properties are interesting to explore.
In Section 2 we formally define the model, value injection queries, and learning criteria. In Section 3 we develop an

algorithm that learns any social network in O(n2) queries and prove a matching lower bound for this problem. In Section 4
we show that in the special case when the network comes from the class of trees, learning the network takes Θ(n log(n))
queries. In Section 5 we show some limitations of using path-based methods for learning social networks when value
injection queries do not return exact probability distributions of the value of the output node, which is the case in real
world settings. In Section 6 we give an approximation algorithm for learning influential sets of nodes in a social network.
For a preliminary version of this paper, we direct the reader to [5].

2. The model

2.1. Social networks

We consider a class of circuits that represent social networks. We are specifically interested in a variant of the model of
deterministic circuits defined in [3,4]. Social networks have no distinguished inputs — instead, value injection experiments
may be used to override the values on any subset of the agents.
An independent cascade social network S consists of a finite nonempty set of independent excitation agents A, one of

which is designated as the output agent. Agents take values from a boolean alphabet Σ = {0, 1}, corresponding to the
states waiting and activated, respectively. The size of the social network is n = |A|.
An independent excitation agent function f on k inputs is defined by k parameters: the probabilities p1, . . . , pk. If the

inputs to the agent are (b1, . . . , bk) ∈ {0, 1}k, then the probability that f (b1, . . . , bk) is 0 is

k∏
i=1

(1− pi)bi .

We define 00 = 1.
If we are told, in an arbitrary order, which inputs to f are 1, then wemay sample from the correct output distribution for

f as follows. Initially the output is 0. Given that bi = 1, then with probability pi we set the output to 1 and with probability
(1−pi)we leave it unchanged. This corresponds to our intuitive notion of the behavior of social networks; when a neighbor
of an agent is activated, the agent has some probability of becoming activated as well, and an agent will remain inactive if it
was not activated by any of its neighbors.

2.2. Graphs of social networks

Theweighted network graph of the social network has vertices A and a directed edge (u, v) if agent u is one of the inputs
of agent v. If u is an input to v with activation probability p(u,v), then the edge has weight p(u,v). We say an edge exists if
it has positive weight. The weighted network graph of a social network captures all relevant information about the social
network. Therefore, we will often refer to a social network in terms of its graph. The depth of a node in the network is the
number of edges in the shortest path from the node to the output. The depth of the network is themaximumover the depths
of all the nodes in the network. The network is acyclic if the network graph contains no directed cycles. Unlike in previous
work on value injection queries, in this paper we consider networks that may have cycles.

D. Angluin et al. / Theoretical Computer Science 411 (2010) 2729–2740 2731

4

2

1

3

Fig. 1. An illustration of the circuit S1 .

2.3. Experiments

The behavior of a social network consists of its responses to all possible value injection experiments. In an experiment,
some agents are fixed to values from [0, 1] and others are left free. Fixing an agent to a 1 corresponds to activating or firing
the agent, fixing to a 0 corresponds to suppressing the agent, and leaving an agent free allows it to function as it normally
would. Fixing an agent to a value c between 0 and 1 corresponds to firing the agent with probability c and suppressing it
with probability 1− c .
Formally, a value injection experiment (or just experiment) e is a mapping from A to {[0, 1] ∪ {∗}}. If e(g) is ∗, then the

experiment e leaves agent g free; otherwise g is fixed to the value e(g) ∈ [0, 1]. If e is any experiment and a ∈ [0, 1] ∪ {∗},
the experiment e|w=a is defined to be the experiment e′ such that e′(w) = a and e′(u) = e(u) for all u ∈ A such that u 6= w.
We can define the behavior of a social network S as a function of a value injection experiment in two different ways. The

first is a percolation model. For each edge (u, v), we leave it ‘‘open’’ with probability p(u,v) and ‘‘closed’’ with probability
(1 − p(u,v)). For each node w in S, such that e(w) = c for some c ∈ [0, 1], we make node w fired with probability c and
suppressed with probability 1− c. We let the indicator variable I = 1 if there is a direct path using open edges from some
fired node to the output node via free nodes, and we let I = 0 otherwise. This determines a probability distribution on
assignments of 0 and 1 to I . We define the output S(e) to be E(I).
The following process, equivalent to the percolation model, defines the behavior of a social network as a function of a

value injection experiment e. It is also the process that will guide the intuition and proofs in this paper. Initially every node
is tentatively assigned the value 0. There is a queue of nodes to be assigned values, which initially contains the nodes fixed
to values >0 by e. The assignments are complete when the queue becomes empty. While the queue is nonempty, its first
node v is dequeued. If e(v) = ∗, v is assigned the value 1. If e(v) 6= ∗, v is assigned a 1 with probability e(v), and 0 with
probability (1− e(v)). If v is assigned a 1, for every node u such that v is an input to u, do the following.

1. If u is fixed to any value, or already assigned 1 or present in the queue, do nothing.
2. Otherwise, with probability p(v,u) add u to the queue, and with probability (1− p(v,u)) do nothing.

This process determines a joint probability distribution on assignments of 0 and 1 to the nodes of the social network S. In
this case, the output S(e) is the expected value of the output node given by e.

2.4. Example: S1

We give a simple example of a social network. We define a network S1 of four agents. We give the adjacency matrix of
the network graph, labeling the agents associated with the nodes. Fig. 1 shows the social network defined by the adjacency
matrix:

a1 a2 a3 a4
a1
a2
a3
a4

− .5 0 0
0 − .5 1
1 0 − .5
0 0 .3 −


The output agent is a4.
We first make an observation. Edge (a4, a3) has weight .3, meaning that a4, when activated, has a probability of .3 of

activating a3 if a3 has not already been activated. However, because a4 is the output, the weight of (a4, a3) does not affect
any value injection experiment. It follows that no sequence of injection queries can learn the weight of (a4, a3).
We now consider the experiment e that leaves a4 and a2 free, suppresses a3 (sets a3 = 0) and activates a1 (a1 = 1). We

wish to compute the output distribution S1(e). Because a1 has only one outgoing edge of weight .5 to a2, it activates agent

2732 D. Angluin et al. / Theoretical Computer Science 411 (2010) 2729–2740

a2 with probability .5. a2 has an edge to a3, but a3 is suppressed, so that edge has no effect. a2 also has an edge of weight
1 to a4, the output. So, whenever a2 is active, it will activate a4, and we have observed that a2 is active with probability 12 .
So the output distribution S1(e) is an unbiased coin flip.

2.5. Behavior and equivalence

The behavior of a network is the function that maps experiments e to output excitation probabilities S(e). Two social
networks S and S ′ are behaviorally equivalent if they have the same set of agents, the same output agent, and the same
behavior, that is, if for every value injection experiment e, S(e) = S ′(e).We also define a concept of approximate equivalence.
For ε ≥ 0, S is ε-behaviorally equivalent to S ′ if they contain the same agents, the same output agent and for every value
injection experiment e, |S(e)− S ′(e)| ≤ ε.

2.6. Queries

The learning algorithmgets information about the target network by repeatedly specifying an experiment e andobserving
the value assigned to the output node. Such an action is termed a value injection query. A value injection query does
not return S(e), but instead returns a {0, 1} value selected according to the probability S(e). This means that the learner
must repeatedly sample to approximate S(e). To separate the effects of this approximation from the inherent information
requirements of this problem, we define an exact value injection query to return S(e). The focus of this paper is on exact
value injection queries.

2.7. The learning problem

The learning problem that we consider is: by making exact value injection queries to a target network S drawn from a
known class of social networks, find a network S ′ that is behaviorally equivalent to S. The inputs to the learning algorithm
are the names of the agents in S and the name of the output agent.
To help with terminology, let S be a social network. Let S ′ be any social network that differs only in edge (u, v). We say

edge (u, v) is discoverable for S if there exists an experiment e such that S(e) 6= S ′(e). Otherwise we say that the edge is not
discoverable. We could also view the learning problem in terms of finding the discoverable edges and their probabilities.

2.8. A note on the generality of this model

The model introduced in this section allows for the observation of the network by looking at the output of one selected
node. However, this model is surprisingly general. Onemaywish to consider, for example, the ability to observe the number
of nodes to fire as a result of an experiment. Such a scenario could be simulated in our model — given any social network,
one could make a new output node that is activated by each node with some fixed, chosen probability. Now the probability
that the output is activated corresponds to the number of network nodes that are activated in an experiment.
One could also imagine networks where some nodes spontaneously fire with some probability. We can again simulate

this in the model that we introduced. We add a node that is fired with probability 1 whenever any node in the network
fires (all other nodes have 1-edges to the new node), and the new node can have edges to each node in the network, with
probabilities corresponding to the desired spontaneous firing probabilities of the network nodes.

3. General social networks

In this section we prove the following theorem.

Theorem 1. Any social network with n agents can be learned up to behavioral equivalence with O(n2) exact value injection
queries and time polynomial in the number of queries.

Before considering the case of arbitrary social networks, we begin by developing an algorithm that learns social networks
that do not have edges of weight 1, to behavioral equivalence.

3.1. No probability 1 edges

First, we develop excitation paths, which are a variant of test paths, a concept central in previous work on learning
deterministic circuits [3,4]. An excitation path for an agent a is a value injection experiment in which a subset of the free
agents form a simple directed path1 in the circuit graph from (but not including) a to the output agent. All agents not on

1 A path with no repeated vertices is called simple.

D. Angluin et al. / Theoretical Computer Science 411 (2010) 2729–2740 2733

Fig. 2. An illustration for Lemma 3. The shaded nodes are suppressed. The solid edges are known and the dashed edge is the edge to be computed.

the path with inputs into agents (excluding a) on the path are fixed to 0. A shortest excitation path is an excitation path of
length equal to the depth of a.
Let G be the network graph of A. In G, the up edges are edges from nodes of larger depth to nodes of smaller depth, level

edges are edges among nodes of the same depth, and down edges are edges from nodes of smaller depth to nodes of larger
depth. An edge (u, v) is a shortcut edge if there exists a directed path in G of length at least 2 from u to v.
Lemma 2. Let e be a shortest excitation path for node a and π be the nodes on the path. Let p1 · · · pk be the weights of the up
edges in π ∪ a. Then for 0 ≤ c ≤ 1

S(e|a=c) = c
k∏
i=1

pi.

Proof. In a shortest excitation path, if some node on the path does not activate, no node at smaller depth will activate,
because a shortest excitation path cannot have shortcuts to nodes further along the path. Hence, all up edges must fire to
fire the output. This happens exactly with probability

∏k
i=1 pi. �

We note that Lemma 2 still holds when a takes probability c , not only when it is set to c by e.
Lemma 3. Let e be an excitation path experiment for node v and let π = vk, . . . , v0 be the nodes along π in order from v to the
output (with v0 being the output node), such that there are no shortcut edges (vi, vj) for j < i along π . Let u /∈ π be a node such
that all edges from u to nodes on π are known and have weights<1. Let e′ = e|v=∗,u=1. Then, given S(e′) we can compute p(u,v).
Proof. We can see this situation illustrated in Fig. 2. We observe that because there are no shortcuts along π , no node vi
will activate in e′ unless either u activated it, or vi+1. Hence, any edge (vj, vk) where j < k does not affect S(e′). Therefore,
we can compute S(e′) by summing over all the ways v0 can activate. Either u activates it directly with probability p(u,v0), or
if not (with probability 1− p(u,v0)) we look at the probability that u activates v1 and the probability of v1 firing the output,
and so on. These quantities can be computed using the logic of Lemma 2. For the calculation below, we rename node v as
vk+1.

S(e′) =
k+1∑
i=0

(
p(u,vi)

∏
j<i

(1− p(u,vj))(p(vj+1,vj))

)
.

This equation is linear in p(u,vk+1), which we can solve for because the other quantities are known. �

We present an algorithm for learning social networks that do not contain edges of weight 1, Algorithm 1. We then show
the conditions for an edge in the network to be learnable and analyze the running time of the algorithm.
The subroutine Find-Up-Edges builds a leveled graph of S. Let level i be the set of all nodes at depth i. Find-Up-Edges

assigns each node to a level and finds all up edges in the graph. Starting at the top level and proceeding downward, for
each pair of nodes u and v, such that u is one level deeper than v, Find-Up-Edges finds a shortest excitation path for u that
goes through v to learn p(u,v). This experiment leaves the path free and suppresses all other nodes in the graph. We show
correctness by induction on the level. For the base case, the edges from nodes at depth 1 form the paths. Considering nodes
at depth i we assume that we know all up edges on the induced subgraph at depths 0 to i − 1. Therefore, for each node
at depth i − 1 we have a shortest excitation path to the root. Thus, for each node u not yet assigned a level, we can try
experiments with excitation paths via each node v at depth i− 1. Let e be such an experiment with π as the excitation path.
And let p1 · · · pi−1 be the weights of the up edges in π . By Lemma 2 we can compute

p(u,v) =
S(e|u=1)
i−1∏
j=1

pj

.

If p(u,v) > 0 we assign node u to level i.

2734 D. Angluin et al. / Theoretical Computer Science 411 (2010) 2729–2740

Algorithm 1 Learning Social Networks without Edges of Weight 1
Let S be the target social network.
Initialize G to have the agents as vertices and no edges.
Run Find-Up-Edges to learn the leveled graph of S.
Add learned weighted edges to G.
for Each level in the graph do
Run Find-Level-Edges to learn all level edges.
Add the learned weighted edges to G

end for
Let the complete set C = ∅
for Each level i, from the deepest to the output do
Run Find-Down-Edges(G,C ,i) to learn the down edges from that level.
Add all nodes at the current level to C .
Add the learned weighted edges to G.

end for
Output G and halt.

The subroutine Find-Level-Edges finds edges among nodes at the same depth. It again uses the notion of shortest
excitation paths. Let nodes u and v be at depth i. To find p(u,v), the algorithm first finds any shortest excitation path from
v to the output; suppose it passes through node w at depth i − 1. Let e1 be that experiment. Let e2 = e1|u=1,v=∗. From
Find-Up-Edges, we know p(u,w) and p(v,w), and because all nodes on the shortest excitation path fromw are at depth≤i− 2,
we know e2 is a shortest excitation path for w. Let p1, . . . , pk be the weights of the up edges on this path. By performing
S(e2), by Lemma 2, we can compute pw , the probability thatw = 1:

pw =
S(e2)
k∏
i=1

pi

.

Because u (fired) and v (free) are the remaining unsuppressed nodes in S, given p(u,w) and p(v,w) we can compute p(u,v)2:

pw = p(u,w) + (1− p(u,w))p(u,v)p(v,w)

p(u,v) =
pw − p(u,w)

p(v,w)(1− p(u,w))
.

Finally, the subroutine Find-Down-Edges finds down edges in the graph. By this point, the graph has the entire set of up
and level edges. The idea of Find-Down-Edges is to find all down edges, with their sources starting from the deepest nodes,
working up towards the root. The algorithm keeps a complete set C of nodes, amongwhich all discoverable edges are known.
Let the deepest node in the network be at depth d; we say that the C has height i if it contains all nodes at depth greater
than d− i. Find-Down-Edges grows the complete set, one level at a time, towards the root.

Algorithm 2 The Subroutine Find-Down-Edges from Algorithm 1 (Current Graph G, Complete Set C , Level i)
for Each node u at the current level i {find all down edges to C} do
Sort each node in C by distance to the root in G− {u}.
Let v1, . . . , vk ∈ C sorted by increasing distance.
Let π1, . . . , πk be shortest paths for v1, . . . , vk respectively in G− { u}.
for Node vj from v1 to vk do
Perform experiment ej of firing u, leaving πj free, and suppressing the rest of the nodes.
Query S(ej). Compute by Lemma 3 the weight of p(u,v).
Add (u, v) to G if pu,v) > 0.

end for
end for

We restate the algorithm and give an inductive proof of its correctness. We do induction on the height of the complete
set. The base case contains all nodes at depth d. They, by definition, cannot have down edges, and since we know all of their
level edges from Find-Level-Edges, they form a complete set. For the inductive step, we assume that all nodes at depth >i
form a complete set, and the goal is to find all down edges to them from nodes at depth i. Let L be the set of nodes on level i.

2 We note that this computation is a special case of Lemma 3.

D. Angluin et al. / Theoretical Computer Science 411 (2010) 2729–2740 2735

Let u be a node in L. For each node vj in the complete set, the algorithm first finds the distance from vj to the root in G− {u}
and πj the corresponding shortest path. Let v1 · · · vk be the vertices in the complete set, sorted smallest to largest by this
distance. Now, the edges (u, v1), (u, v2), . . . , (u, vk) can be found in that order. We show this by induction.
We first show the inductive step. To test for the existence of (u, vj), we perform the experiment ej of firing u, leaving πj

free, and suppressing the rest of the nodes.We note that all nodes on πj have a smaller depth than vj, so all down edges from
u to πj are known by the time the algorithm gets to vj, and all up edges along π are known. Because πj is a shortest path in
G − {u}, it clearly has no shortcuts. Hence, by Lemma 3 the weight of (u, vj) can be computed given S(ej). The base case is
dealt with similarly. This completes the inductive proof of finding down edges, which completes the proof of growing the
complete set.
We can now summarize the conditions for finding an edge. Find-Up-Edges and Find-Level-Edges discover all up and level

edges as long as they are connected to the output. Find-Down-Edges finds all down edges that have a path to the output
that doesn’t use the source node. If every path from u to the output agent that starts with edge (u, v) goes through u, then
edge (u, v) is not discoverable. We can see this because if the edge (u, v) activates v, it must mean that u has already fired,
and because all paths from v go through u, the edge firing will not affect the output. Therefore, the edges that this algorithm
does not learn are not discoverable.

3.2. Arbitrary social networks

We now extend the ideas in Algorithm 1 to allow for edges of weight 1, giving us Algorithm 3. This algorithm is similar
to Algorithm 1, except that Find-Level-Edges and Find-Down-Edges are combined into Find-Remaining-Edges. Algorithm 3
first builds a leveled graph of the social network as before, and the justification for Find-Up-Edges can be found in Section 3.1.

Algorithm 3 Learning Arbitrary Social Networks
Let S be the target social network.
Initialize G to have the agents as vertices and no edges.
Run Find-Up-Edges to learn the leveled graph of S.
Add learned weighted edges to G.
Let C = ∅ be the complete set.
for Each level i in the graph, from the deepest level to the output node do
Run Find-Remaining-Edges(G,C ,i) to learn all level and down edges.
Add all nodes at the current level to C .

end for
Output G and halt.

After Find-Up-Edges is run, the remaining edges that need to be found are down and level edges. The subroutine Find-
Remaining-Edges, shown in Algorithm 4, accomplishes this task. Find-Remaining-Edges is similar to Find-Down-Edges.
The algorithm once again keeps a complete set C in which all discoverable edges are known. C starts at the largest level and
grows toward smaller levels. Find-Remaining-Edges finds all discoverable edges from the level it is on to the complete set.
It also finds all discoverable edges between nodes at the level it is on. Then, that level is added to C .
Let L be the set of nodes on level i. To find down and level edges from nodes in L, Find-Remaining-Edges keeps a table T ,

with an entry for each possible edge originating from a node in L. Each entry is initially set to 1. After determining whether
an edge is present, its corresponding entry becomesmarked 0. The potential edges whose corresponding entries aremarked
1 we call ‘‘unprocessed.’’
For each unprocessed edge (u, v), we find the set of all nodes that we know are guaranteed to be activated when u is

fired. This is the set of nodes reachable by edges of weight 1 from u in G. We call this set Au. Now, we find the shortest path
πu,v (if one exists) in G − {Au} from v to the output. If no unprocessed edge has such a path, then Find-Remaining-Edges
terminates and the algorithm proceeds to the next level.
Otherwise, we take an edge (u, v) that minimizes the distance from v to the output in G− {Au}. Let e be the experiment

where u is fired, all nodes along πu,v are left free, and the rest of the nodes are suppressed. We will show that S(e) is enough
to determine p(u,v). Then, the entry for this edge is marked to 0 in the table, and if it is present, is added to G. Then the
algorithm continues, recomputing the sets Au for the remaining unprocessed edges.
We now show that the value of S(e), as defined above, is sufficient for learning edge (u, v). All edges from u toπ are either

up edges or have already been processed by the time edge (u, v) is considered; otherwise there would be an unprocessed
edge from u to a node on π with a shorter distance to the root in G− Au. All edges on π in G− C are known from Find-Up-
Edges, and the rest of the edges are known because they are in C . Hence, by Lemma 3, we can compute the weight of edge
(u, v), and add it to G if its weight is positive.
Find-Remaining-Edges returns when all remaining unprocessed down and level pairs of nodes u, v do not have a path

from v to the root in G − Au. The algorithm does not attempt to learn these edges. We will argue that when an execution
of Find-Remaining-Edges terminates, all of the unprocessed edges are not discoverable. Let u, v be such a pair. Let S be the

2736 D. Angluin et al. / Theoretical Computer Science 411 (2010) 2729–2740

Algorithm 4 Find-Remaining-Edges(Current Graph G, Complete Set C , Level i)
Let L be the set of nodes at the current level i.
LetM = L ∪ C .
LetΠ be a collection of paths.
Keep an |L| by |M| table T . ∀wi ∈ L, xj ∈ M s.t.wi 6= xj, T (wi, xj) = 1.
loop
SetΠ = ∅.
for Each nodewi ∈ L do
Find Awi , the set of all nodes reachable fromwi by 1-edges (incl.wi) in G.
for Each node xj ∈ M where T (wi, xj) = 1 do
Find the shortest path πwi,xj in G− Awi from xj to the root.
Π = Π ∪ πwi,xj .

end for
end for
ifΠ = ∅ then return.
Letwi, xj minimize the length of πwi,xj ∈ Π .
Let experiment e firewi, leave πwi,xj free, and suppress the rest of the nodes.
Query S(e) and compute p(wi,xj) by Lemma 3.
Set T (wi, xj) = 0.
If p(wi,xj) > 0 then add (wi, xj) to G.

end loop

graph of the complete social network and Bu be the set of nodes reachable by edges of weight 1 in S. If there is no path from
v to the root in S − Bu, edge (u, v) is clearly not discoverable. We note that Au ⊆ Bu.
By way of contradiction, we will assume there exist vertices u (on level i) and v (on level≥i) such that there is a path of

discoverable edges from v to the root in S−Bu but not inG−Au at the time Find-Remaining-Edge exits. Once this path reaches
level i−1 in G, then the path can be continued by following up edges to the root. By assumption, G has all discoverable edges
among the complete set C , which contains all nodes at levels>i. Hence, there must be some smallest set of edges U going
from nodes at level i, that are in S but not in G, such that if they were added to G, then there would be a path from v to the
root node in G−Au. All of the edges in U must lie on a path π . Let edge (x, y) ∈ U be the unprocessed edge closest to the root
along the path. Because edge (x, y)was unprocessed, there was a path of 1 edges from x to a node in π above y; otherwise,
there would be a path from y to the root in G−Ax and (x, y)would have been processed. But taking the path of 1 edges from
x to a node in π gives a path from v to the root in G− Au using one fewer unprocessed edge. This contradicts that U was the
smallest set of edges that, if added to G, would make a path from v to the root in G − Au. This contradicts our assumption
that a discoverable edge exists that Find-Remaining-Edges does not find.
To analyze number of queries used, we observe that every query either confirms the absence of an edge or discovers one.

Hence, Algorithm 3 performs at most O(n2) queries.

3.3. A matchingΩ(n2) lower bound

We show an information theoretic lower bound for learning social networks that matches the bound of the algorithm.

Theorem 4. Ω(n2) queries are required to learn a social network.

Proof. Wegive an information theoretic lower bound.We consider the following class of graphs on vertices {v1, . . . , v2n+1}.
We let v2n+1 be the output. The edges (vn+1, v2n+1), (vn+2, v2n+1), . . . , (v2n, v2n+1) all have weight 1. The edges (v1, vn+1),
(v2, vn+2), . . . , (vn, v2n) also all have weight 1. For 1 ≤ i ≤ n, n + 1 ≤ j ≤ 2n, and j 6= i + n, each edge (vi, vj) is either
present with weight 1 or absent. The rest of the edges are absent. There are 2Ω(n

2) such graphs and the answer to every
exact value injection query is 1 bit because all present edges have weight 1. Algorithm 3 differentiates all graphs in this class
because all edges in this class of graphs are up edges and are therefore discoverable. Hence, by an information theoretic
lower bound, at least log 2Ω(n

2)
= Ω(n2) queries are needed. �

4. Trees

In this section, we will consider the special case in which the target social networks come from the class of trees. A tree
social network is a social network whose edges are up edges that form a tree.

Theorem 5. Learning a social network tree takesΘ(n log n) exact value injection queries.

Proof. We first show the lower bound. Consider a directed path of nodes, with the output node at an endpoint. All edges
along the path have probability 1. The only unknown is the ordering of the nodes along the path. Let u and v be two nodes.
We can test which of the two nodes has a smaller distance to the root by the experiment that fires u and suppresses v.

D. Angluin et al. / Theoretical Computer Science 411 (2010) 2729–2740 2737

Fig. 3. The social network S showing the limitations of excitation paths.

If this fires the output, then u is closer to the root; otherwise, v is closer. Hence, all orderings can be distinguished. Because
all edges have probability 1, the result of any experiment is deterministically a 1 or 0, a one-bit answer. There are n! orderings
of nodes. This gives anΩ(log (n!)) = Ω(n log (n)) information theoretic lower bound.
Wenowdevelop an algorithm thatmeets this bound for trees. Let T be the target tree social network. In a tree, an ancestor

of node u is any node on the path from u to the output. We can test whether node v is an ancestor of node u by firing u and
suppressing v. If the result is>0, then v is not an ancestor of u. In general, to test whether there exists some node in V that
is an ancestor of u, we can fire u and suppress all nodes in V . This allows us to find all k ancestors of a given node u by binary
search in O(k log(n)) queries. Because the ancestors of u form a path, we can sort them by their depth using O(k log(k))
queries (an ancestor test involving two nodes provides a comparator) to get a directed path from u to the output.
Now, we will use the observation above to make an algorithm for reconstructing trees. We keep a graph T ′ that is a

connected subgraph of T that we build up by adding new nodes until T ′ contains all the vertices in T . In attaching a new
node u to T ′, we first determine v, u’s deepest ancestor in T ′. We can do this by recursively by splitting the nodes in T ′ into
roughly equal halves H1 and H2 such that no node in H2 is an ancestor of a node in H1. In one query we can test whether v
is in H1 by suppressing all nodes in H2 and firing u; thus, we can find v in log(n) queries. We then find, by binary search, the
set of all ancestors of u in T that are not in T ′, and we sort them by their distance to the root in T . This gives a path of vertices
from u to v that we can append to T ′ and we continue this process until all the vertices are added to T ′.
In adding a new node u to T ′ we spend O(log(n)) queries in finding its deepest ancestor in T ′, and O(k log(n)) queries in

adding u’s k ≥ 0 newly found ancestors to T ′. This costs us an amortized O(log(n)) queries per node, giving an O(n log(n))
algorithm for learning the structure of the tree. We note that the structure is learned using just zero/non-zero information
from the queries.
Finally, to learn the weights of the edges in the tree, because we have a shortest excitation path for each node, the edge

weights can be discovered in n queries by Lemma 2. �

5. Limitations of excitation paths

In this section, we construct a family of social networks in which there exists a node that when fired, activates the output
node with high probability, but where any excitation path experiment for that node has an exponentially small probability
of activating the output. Namely, we will prove the following theorem.

Theorem 6. There exists a family of social networks S for which there exists a node v ∈ S and an experiment e where only v is
fired, such that for any excitation path experiment eπ for v,

S(e) = 2Ω(
√
n)S(eπ)

Proof. Let {v1, . . . , vn} be a set of nodes in this network, with v1 the output node. For all 1 < i < n − 1, let p(i,i+1) = 1;
we call these back edges. For all i, j > 0 such that i + j ≤ n, create a new node wij and let p(wij,vi) = 1 and forward edges
p(vi+j,wij) = 2

−j/
√
n. This is illustrated in Fig. 3.

Let e1 be an excitation path experiment for vn, where vn is fired. Let S(e1) be the probability that all edges along the path
fire. If e1 uses k forward edges that decrease the distance to the output by f1, . . . , fk, respectively (we note that

∑
fi ≥ n− 1),

then

S(e1) =
k∏
i=1

2−fi/
√
n

= 2
−

∑
fi√
n

= 2−Ω(
√
n).

2738 D. Angluin et al. / Theoretical Computer Science 411 (2010) 2729–2740

Let e2 be the experiment where vn is fired and the remaining agents are set free. We will show there exists a constant
c > 0 such that S(e2) ≥ c.
We consider e2. The probability that vn does not fire any other nodes is

∏n−1
i=1

(
1− 2−i/

√
n
)
. Now, we can bound the

probability of the root firing. Let T (i) be the probability that the root becomes activated given vi has fired. We set up a
recurrence

T (1) = 1

T (n) ≥

(
1−

n−1∏
i=1

(
1−

1
2

i/
√
n
))
T (n− 1)

where we have an inequality above because if vn activates any other node, then vn−1 becomes activated due to the back
edges.
Thus, T (n) ≥

(
1− 1

2

√
n
)
T (n−1) because the first

√
n terms of the product above are≤ 1/2. Unraveling the recurrence,

we get

T (n) ≥
n∏
i=1

(
1−

1
2

√
i
)
.

We know that limn→∞ T (n) > 0 if
∑
∞

i=1
1
2

√
i
converges. By the Cauchy Condensation Test,

∑
∞

i=1
1
2

√
i
converges if and only

if
∑
∞

i=1 2
n 1
2

√
2n
converges [15]. The ratio test readily tells us that

∑
∞

i=1 2
n 1
2

√
2n
converges. Therefore, there exists a constant

c > 0 such that ∀n T (n) ≥ c. �

This example shows that many paths, each of which has an exponentially small effect on the output, can add up to have a
detectable effect on the output.When using non-exact value injection queries, the goal is to learn a circuit for approximating
behavioral equivalence. Yet this example shows us that if the learner has access only to non-exact value injection queries,
then to learn this circuit by only path based methods like our algorithms do, one would need an exponential number of
experiments to detect the effect on the output. This implies that for non-exact value injection queries, either the circuits
would need a depth limitation, or non-path-based algorithms would need to be developed.

6. Finding small influential sets of nodes

We now examine a seemingly easier problem. Instead of learning the entire social network, we consider the task of
finding a small set of influential nodes. More formally, let I ⊂ V such that vn /∈ I , and let eI be the experiment where all
nodes in I are fired and the rest are left free. I has influence p if S(eI) ≥ p; we call such a set influential. We first show that
it is NP-hard to find the smallest set of certain influence, even if the structure of the network is known.

Theorem 7. Given a social network S of size n and a threshold probability p, it is NP-hard to approximate the size of the smallest
set of nodes having influence p within o(log(n)).

Proof. We reduce from Set Cover. Take an instance of Set Cover with points {x1, . . . , xk} and sets {X1, . . . , Xl}. In the social
network S, we create a nodes {v1, . . . , vk} for the points and {w1, . . . , wl} for the sets in the original Set Cover instance. If
point xi belongs to set Xj, we make an edge from wj to vi with associated probability of 1. We set the influence threshold
parameter p to 12 . We run edges from all nodes vi to the output, all with associated probability= 1−

1
2
1/k
. Activating a node

wi corresponds to choosing the set Xi and activating a node vi corresponds to choosing an arbitrary set Xj that contains xi.
The output will fire with probability≥ 12 only if all of the vi’s fire. This completes the reduction. Because Set Cover is NP-hard
to approximate to within o(log n) [14], so is approximating the size of the smallest influential set. �

Theorem 8. Let S be a social network of size n and let I be the smallest set of nodes having influence p, where m = |I|. We can
find a set of nodes of size m log(p/ε) of influence (p− ε) using O(nm log(p/ε)) exact value injection queries.

Proof. Consider Algorithm 5.
Assume that the optimal solution X , where S(eX) ≥ p, has size m. We claim that at any stage of the algorithm, if

S(eI) < p− ε, greedily adding one more nodew to I makes

S(eI∪{w}) ≥ S(eI)+
p− S(eI)
m

.

We can see this by noting that there exists a set of at mostm nodes, namely X , that will get the probability all the way to p.
By Lemma 9, some node will get us at least 1m th of the way there.
Let k be the number of rounds for which this algorithm is run. We look at the difference between p and S(eI) after k

rounds. By the observation above, we can compute the number of rounds to get the difference to within ε. For

D. Angluin et al. / Theoretical Computer Science 411 (2010) 2729–2740 2739

Algorithm 5 An Algorithm for Finding a Set of Influential Nodes
Let S be the target social network.
Let p be the threshold probability.
Let ε be the error tolerance.
Let I = ∅.
Let eI be the experiment where all nodes in I are fired, and the rest are left free.
while S(eI) < p− ε do
Let v = argmaxvj∈V S(eI |vj=1)
I = I ∪ {v}

end while
Return I

p
(
1−

1
m

)k
< ε

it suffices that

e−
k
m <

ε

p
or

k > m log
(p
ε

)
.

Therefore, afterm log(p
ε
) rounds, S(eI) is within ε of p. We check O(n) nodes each round, making O(nm log(

p
ε
)) queries. �

We now reconcile the algorithm and the hardness of approximation result. Given a social network created by the Set
Cover reduction from Theorem 7, we can try to learn the influential nodes using Algorithm 5. If we set

ε =
1
2

1
n
−
1
2

1
n−1

=

(
1+

ln(1/2)
n
+
1
2

(
ln(1/2)
n

)2
+ · · ·

)
−

(
1+

ln(1/2)
n− 1

+
1
2

(
ln(1/2)
n− 1

)2
+ · · ·

)

= (1− 1)+
(
ln(1/2)
n
−
ln(1/2)
n− 1

)
+
1
6

((
ln(1/2)
n

)2
−

(
ln(1/2)
n− 1

)2)
+ · · ·

= Θ

(
1
n2

)
,

this makes ε small enough to force the algorithm to cover all of the vi’s. It would find a set of

(m log(pn2)) = O(m log(n))

nodes having influence p, which gives an O(log(n)) approximation andmatches the lower bound. It is worth noting that the
greedy algorithm for Set Cover also matches its hardness of approximation lower bound [16].
We will use Lemma 9, a version of which is derived in [11]. A function f is submodular if f (A ∪ {x}) − f (A) ≥

f (B ∪ {x})− f (B)whenever A ⊆ B.

Lemma 9. S(eI) is a positive monotone, submodular function of I. [11]

Corollary 10. If p is the maximum influence of any k node set in the network, then Algorithm 5, with a threshold of 1, terminated
after k steps, produces a set with influence≥(1− 1

e)p.

Proof. Nemhauser et al. [13] show that greedily maximizing a non-negative, monotone, submodular function on sets gives
a (1− 1

e) approximation to the function on k-element sets. Hence, this follows from Lemma 9. �

7. Open problems

We leave open a number of interesting and challenging problems. Our results rely on exact value injection queries.
While these queries are theoretically elegant, in real world applications learners would normally have access only to non-
exact value injection queries, and for such queries our algorithms would need to be modified, mainly because we look for
shortest paths, not necessarily the paths least diluted by the multiplication of probabilities. The Angluin et al. [2] results on
probabilistic networks adapt an exact value injection query algorithm to work in a non-exact setting, yet we see no clear
way of similarly modifying our algorithms. Furthermore, in moving to the non-exact setting, because of the results from

2740 D. Angluin et al. / Theoretical Computer Science 411 (2010) 2729–2740

Section 5, either target network depth would need to be limited, or algorithms would have to be invented that do not rely
on excitation paths.
Another interesting question to explore is that of what other classes of cyclic networks can be learned using similar

algorithms. Our algorithms rely on the independence assumption in the independent cascade social network model.
However, there are other more general models of social networks, like the decreasing cascade model [11]. It would be
worthwhile to explore their learnability as well.
In the real world, one also rarely has the ability to activate or suppress so many nodes at once. It is an open question

under what restrictions on query size social networks are learnable. Another option to explore is making the learner pay a
higher cost for using larger queries.
Finally, it is often the case that graph algorithms run faster on sparse graphs. Itwould be interesting to design an algorithm

for learning social networks whose query complexity was a function of the size of the edge set in the target graph.

Acknowledgements

The second author was supported in part by NSF grant CNS-0435201. This material is based upon work supported under
a National Science Foundation Graduate Research Fellowship.

References

[1] T. Akutsu, S. Kuhara, O. Maruyama, S. Miyano, Identification of genetic networks by strategic gene disruptions and gene overexpressions under a
boolean model, Theoret. Comput. Sci. 1 (298) (2003) 235–251.

[2] D. Angluin, J. Aspnes, J. Chen, D. Eisenstat, L. Reyzin, Learning acyclic probabilistic circuits using test paths, in: COLT ’08: 21st Annual Conference on
Learning Theory, 2008, pp. 169–180.

[3] D. Angluin, J. Aspnes, J. Chen, L. Reyzin, Learning large-alphabet and analog circuitswith value injection queries,Mach. Learn. 72 (1–2) (2008) 113–138.
[4] D. Angluin, J. Aspnes, J. Chen, Y. Wu, Learning a circuit by injecting values, J. Comput. System Sci. 75 (1) (2009) 60–77.
[5] D. Angluin, J. Aspnes, L. Reyzin, Optimally learning social networks with activations and suppressions, in: ALT ’08: 19th International Conference on
Algorithmic Learning Theory, 2008, pp. 272–286.

[6] D. Angluin, M. Kharitonov, When won’t membership queries help? J. Comput. System Sci. 50 (2) (1995) 336–355.
[7] J. Goldenberg, B. Libai, E. Muller, Using complex systems analysis to advance marketing theory development: Modeling heterogeneity effects on new
product growth through stochastic cellular automata, AMS Review (2001).

[8] T. Ideker, V. Thorsson, R. Karp, Discovery of regulatory interactions through perturbation: Inference and experimental design, in: Pacific Symposium
on Biocomputing vol. 5, 2000, pp. 302–313.

[9] M. Kearns, L. Valiant, Cryptographic limitations on learning boolean formulae and finite automata, J. ACM 41 (1) (1994) 67–95.
[10] D. Kempe, J. Kleinberg, Éva Tardos, Maximizing the spread of influence through a social network, in: Proceedings of the Ninth ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, ACM, New York, NY, USA, 2003, pp. 137–146.
[11] D. Kempe, J.M. Kleinberg, É Tardos, Influential nodes in a diffusion model for social networks, in: ICALP ’05: 32nd International Colloquium on

Automata, Languages and Programming, 2005, pp. 1127–1138.
[12] M. Kharitonov, Cryptographic hardness of distribution-specific learning, in: STOC’93: Proceedings of the Twenty-fifth Annual ACM Symposium on

Theory of Computing, ACM Press, New York, NY, USA, 1993, pp. 372–381.
[13] G. Nemhauser, L. Wolsey, M. Fisher, An analysis of the approximations for maximizing submodular set functions, Math. Program. 14 (1978) 265–294.
[14] R. Raz, S. Safra, A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP, in: STOC’97:

Proceedings of the Twenty-ninth Annual ACM Symposium on Theory of Computing, ACM, New York, NY, USA, 1997, pp. 475–484.
[15] W. Rudin, Principles of Mathematical Analysis, in: International Series in Pure and Applied Mathematics, McGraw-Hill, 1976.
[16] P. Slavík, A tight analysis of the greedy algorithm for set cover, in: STOC’96: Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of

Computing, ACM, New York, NY, USA, 1996, pp. 435–441.

	Optimally learning social networks with activations and suppressions
	Introduction
	The model
	Social networks
	Graphs of social networks
	Experiments
	Example: S1
	Behavior and equivalence
	Queries
	The learning problem
	A note on the generality of this model

	General social networks
	No probability 1 edges
	Arbitrary social networks
	A matching Ω (n2) lower bound

	Trees
	Limitations of excitation paths
	Finding small influential sets of nodes
	Open problems
	Acknowledgements
	References

