Learning Graphs with Queries

Lev Reyzin
Clique talk
Fall 2006
Some Papers

- Angluin, Chen. **Learning a Hidden Graph Using $O(\log n)$ Queries Per Edge.** (COLT ’04)

- Bouvel, Grebinski, Kucherov. **Combinatorial Search on Graphs Motivated by Bioinformatics Applications: A Brief Survey** (WG ’05)

- Reyzin, Srivastava. **A Survey of Graph Learning with Queries** (Manuscript ’06)

- Hein. **An Optimal Algorithm to Reconstruct Trees from Additive Distance Data.** (Journal of Math Bio ’89)
Hidden Graphs

Oracle at Delphi
Queries

Edge
query pair of vertices in graph to detect presence of edge (social networks)

Edge Detection
query set of vertices in graph for presence of edges (chemical reactions)

Edge Counting
query set of vertices in graph for number of edges (DNA sequencing)

Connectedness
query pair of vertices in graph to discover if they’re in same component (electrical networks)

Shortest Path
query two vertices in graph for shortest path length between them (evolutionary trees)
Edge Queries

Edge Query: query pair of vertices in graph to detect presence of edge
Edge Detection Queries

Edge Detection Query: query a set of vertices in graph for presence of an edge
Edge Counting Queries

Edge Counting Query: query a set of vertices in a graph for number of edges in subgraph induced by the vertices
Shortest Path Queries

Shortest Path: query two vertices in graph for shortest path length between them
Connectedness Queries: query pair of vertices in graph to discover if they’re in same component
Relative Power of Queries

$E \leq ED \leq EC$

$E \leq SP$

$C \leq SP$
Target Classes of Graphs

- general graphs
- trees
- partitions
Results Summary

\(n = \) number of nodes, \(|E| = \) number of edges,
\(k = \) number of connected components, \(d = \) maximum degree

<table>
<thead>
<tr>
<th>Query</th>
<th>partition</th>
<th>graph</th>
<th>tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>(\Theta(n^2))</td>
<td>(\Theta(n^2))</td>
<td>(\Theta(n^2))</td>
</tr>
<tr>
<td>ED</td>
<td>(\Theta(n^2))</td>
<td>(\Theta(</td>
<td>E</td>
</tr>
<tr>
<td>EC</td>
<td>(O(n \lg n)) (\Omega(n))</td>
<td>(O(</td>
<td>E</td>
</tr>
<tr>
<td>SP</td>
<td>(\Theta(nk))</td>
<td>(\Theta(n^2))</td>
<td>(\Theta(n^2), \Theta(dn \lg n))</td>
</tr>
<tr>
<td>C</td>
<td>(\Theta(nk))</td>
<td>not possible</td>
<td>not possible</td>
</tr>
</tbody>
</table>

\(E = \) Edge Query, \(ED = \) Edge Detection Query, \(EC = \) Edge Counting Query,
\(SP = \) Shortest Path Query, \(C = \) Connectedness Query

references omitted
Learning Partitions with ED

- **Upper bound**: $O(n^2)$ – trivial. query all pairs of vertices.
- **Lower bound**: $\Omega(n^2)$

requires $\Omega(n^2)$ by adversarial argument
Results Summary

\(n = \) number of nodes, \(|E| = \) number of edges,
\(k = \) number of connected components, \(d = \) maximum degree

<table>
<thead>
<tr>
<th>Query</th>
<th>partition</th>
<th>graph</th>
<th>tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>(\Theta(n^2))</td>
<td>(\Theta(n^2))</td>
<td>(\Theta(n^2))</td>
</tr>
<tr>
<td>ED</td>
<td>(\Theta(n^2))</td>
<td>(\Theta(</td>
<td>E</td>
</tr>
</tbody>
</table>
| EC | \(O(n \log n) \) \\
| | \(\Omega(n) \) | \(O(|E| \log n), O(\frac{n^2}{\log n}), O(dn) \) | \(\Theta(n) \) |
| SP | \(\Theta(nk) \) | \(\Theta(n^2) \) | \(\Theta(n^2), \Theta(dn \log n) \) |
| C | \(\Theta(nk) \) | not possible | not possible |

\(E = \) Edge Query, \(ED = \) Edge Detection Query, \(EC = \) Edge Counting Query,
\(SP = \) Shortest Path Query, \(C = \) Connectedness Query

references omitted
Learning Partitions with C

- **Upper bound:** $O(nk)$ algorithm
 - Step 1: Place v_1 in its own component
 - Step $i > 1$: Query $C(v_i, v_w)$ for items v_w from each existing component; if a "yes" is encountered, place v_i in the corresponding component and continue to step $i+1$. Otherwise place v_i in its own component.
An Example
Learning Partitions with C

- **Upper bound**: $O(nk)$
 - **correctness**: trivial
 - **running time**: For complexity, note that there are at most k components at any step (since there are at most k components at phase n and components are never destroyed); hence n vertices take at most nk queries.
Back to Our Table

\(n = \) number of nodes, \(|E| = \) number of edges, \\
\(k = \) number of connected components, \(d = \) maximum degree

<table>
<thead>
<tr>
<th>Query</th>
<th>partition</th>
<th>graph</th>
<th>tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E)</td>
<td>(\Theta(n^2))</td>
<td>(\Theta(n^2))</td>
<td>(\Theta(n^2))</td>
</tr>
<tr>
<td>(ED)</td>
<td>(\Theta(n^2))</td>
<td>(\Theta(</td>
<td>E</td>
</tr>
<tr>
<td>(EC)</td>
<td>(O(n \lg n)) (\Omega(n))</td>
<td>(O(</td>
<td>E</td>
</tr>
<tr>
<td>(SP)</td>
<td>(\Theta(nk))</td>
<td>(\Theta(n^2))</td>
<td>(\Theta(n^2), \Theta(dn \lg n))</td>
</tr>
<tr>
<td>(C)</td>
<td>(\Theta(nk))</td>
<td>not possible</td>
<td>not possible</td>
</tr>
</tbody>
</table>

\(E \) = Edge Query, \(ED \) = Edge Detection Query, \(EC \) = Edge Counting Query, \\
\(SP \) = Shortest Path Query, \(C \) = Connectedness Query

references omitted
Learning Partitions with EC

- **Lower bound**: $\Omega(n)$

 information theoretic argument:
 - The number of partitions of an element set is given by the Bell number B_n.
 - $\lg(B_n) = n \lg n$ (de Bruijn ’81)
 - each EC query gives $\lg(C(n,2)) = \lg n$ bits.
 - we need $\Omega((n \lg n) / (\lg n)) = \Omega(n)$
An Algorithm for the Upper Bound

- **Upper bound:** $O(n \log n)$
 - Phase 1: set $C = \{c_1\}$ with $c_1=1$
 - Phase i: let $v = (v_{i+1})$ query $EC(C+v)$
 - if $EC(C+v)=EC(C)$ add a new component $c=v$ to C
 - else split C into roughly equal halves C_1 and C_2 and query $EC(C_1+v),EC(C_2+v)$. Recurse until $EC(\{c_j\}+v) > EC(c_j)$ for a single component c_j. Call c_j a live component. Repeat recursively on C/c_j until all live components are found. Merge them and v into 1 component in C.

An Example

partitions

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8
Proof Sketch

• **Correctness** of the algorithm is simple by induction on the phase. C contains the components of G[1 . . . i] at end of phase i

• **Running time** is bounded by $O(n \lg n)$ because we do $O(\lg n)$ queries to find each live component. But each time we find a live component, the number of components in our set decreases by 1. Since we can have at most n partitions, the total running time is bounded by $O(n \lg n)$
Back to Our Table

$n =$ number of nodes, $|E| =$ number of edges,
$k =$ number of connected components, $d =$ maximum degree

<table>
<thead>
<tr>
<th>Query</th>
<th>partition</th>
<th>graph</th>
<th>tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^2)$</td>
</tr>
<tr>
<td>ED</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(</td>
<td>E</td>
</tr>
<tr>
<td>EC</td>
<td>$O(n\lg n)$, $\Omega(n)$</td>
<td>$O(</td>
<td>E</td>
</tr>
<tr>
<td>SP</td>
<td>$\Theta(nk)$</td>
<td>$\Theta(n^2)$</td>
<td>$\Theta(n^2), \Theta(dn\lg n)$</td>
</tr>
<tr>
<td>C</td>
<td>$\Theta(nk)$</td>
<td>not possible</td>
<td>not possible</td>
</tr>
</tbody>
</table>

$E =$ Edge Query, $ED =$ Edge Detection Query, $EC =$ Edge Counting Query,
$SP =$ Shortest Path Query, $C =$ Connectedness Query

references omitted
Learning Graphs with ED
(Angluin, Chen COLT ’04)

- Upper bound: $O(|E| \log n)$

- Lemma 1: if S_1 and S_2 are two non-empty independent sets of vertices in G. We can find s edges between S_1 and S_2 in $O(s \log n)$
Learning Graphs w/ ED - continued
(Angluin, Chen COLT ’04)

- Upper bound: $O(|E| \log n)$

 - **Fact**: A graph with m edges can be $O(m)^{1/2}$ colored
 - we can collapse pairs of vertices not joined by an edge, until we get a clique of m edges. It can be $O(t)$-colored and has $O(t^2)$ vertices.

- **Lemma 2**: if S_1 and S_2 ($|S_1| < |S_2|$ are two non-empty sets of vertices in G (w/ s_1 and s_2 edges respectively). We can find s edges between S_1 and S_2 in $O(s \times \log|S_2| + s_1 + s_2)$
 - we color both S_1 and S_2 with $(s_1)^{1/2}$ and $(s_2)^{1/2}$ colors
 - for each pair of color classes in S_1 and S_2, we query the union
 - recurse
Learning Graphs w/ ED - continued
(Angluin, Chen COLT ’04)

• **Upper bound:** $O(|E| \log n)$

– The Algorithm:
 • 1) If $|V| = 2$, mark pair of vertices as edge and return
 • 2) Divide V into halves S_1 and S_2. Ask $ED(S_1)$ and $ED(S_1)$
 • 3) Recursively solve the problem for S_i if $ED(S_i) = 1$
 • 4) Using lemma 2, find edges between S_1 and S_2
Back to Our Table

\(n = \) number of nodes, \(|E| = \) number of edges, \\
\(k = \) number of connected components, \(d = \) maximum degree

<table>
<thead>
<tr>
<th>Query</th>
<th>partition</th>
<th>graph</th>
<th>tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>(\Theta(n^2))</td>
<td>(\Theta(n^2))</td>
<td>(\Theta(n^2))</td>
</tr>
<tr>
<td>ED</td>
<td>(\Theta(n^2))</td>
<td>(\Theta(</td>
<td>E</td>
</tr>
<tr>
<td>EC</td>
<td>(O(n \lg n)) (\Omega(n))</td>
<td>(O(</td>
<td>E</td>
</tr>
<tr>
<td>SP</td>
<td>(\Theta(nk))</td>
<td>(\Theta(n^2))</td>
<td>(\Theta(n^2), \Theta(dn \lg n))</td>
</tr>
<tr>
<td>C</td>
<td>(\Theta(nk))</td>
<td>not possible</td>
<td>not possible</td>
</tr>
</tbody>
</table>

\(E \) = Edge Query, \(ED \) = Edge Detection Query, \(EC \) = Edge Counting Query, \\
\(SP \) = Shortest Path Query, \(C \) = Connectedness Query

references omitted
Learning Trees with SP Queries
(Hein, ’89)

- **Upper bound:** $O(d \cdot n \log n)$
 - **Proof intuition:**

![Diagram of a tree structure]
Open Problems and Future Work

Close the gap for partition with EC queries

Consider other queries: traceroute queries, beacon queries,…

Graph Verification. Given a result from a certain class, how hard is it to verify. Very interesting: verifying general graphs with EC queries.
Beacon and Traceroute Queries

- **Beacon**
 - Nodes labeled 1, 2, 3, and \(\infty \)

- **Traceroute**
 - Route from source to target

- **Target**
 - Complex network with multiple nodes and connections
Verification
Thank You

Questions?