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Pool-Based Active Learning

* A pool based active learning algorithm [Lewis-
Gale '94] sequentially chooses data-point
labels to solicit from a pool of examples.

— Usually constructs estimate of conditional label
distribution P(y|x) from labeled dataset.

— Uses own estimate to select next datapoint label.

(this talk will focus on minimizing logloss, but
ideas are more general)



Uncertainty Sampling

 Many active learning strategies employ
uncertainty sampling — selecting examples about

which the algorithm is least certain.

e Other strategies assess how a label:
— is expected to change the prediction model [Settles-
Craven '08]

— reduces an upper bound on the generalization error in
expectation [Mackay "92]

— represents the input patterns of remaining unlabeled
data [Settles "12]



A Problem

Current active learning algorithms often perform
poorly in practice [Attenberg-Provost "11].

Why?

* |[n order to be take advantage of active
earning, a biased label solicitation strategy
should be used.

* Most current active learning strategies are
overconfident, given this bias.




Typical Behavior of an Active Learner




Desired Behavior




Some Attempts to Fix This

e Seeding the active learner with a small random set
[Dligach-Palmer "11].

e Restricting the active learner to a small set of
examples [Schein-Ungar "07].

* Etc.

However, these modifications treat the symptoms of
optimistic modeling and biased sampling and restrict
the active learner, undermining its purported
benefit.



Biased Label Solicitation

When a non-uniform label-solicitation strategy is used,
sample selection bias exists. In this case, it is known as
covariate shift -- P(Y|X) is shared in source and target
distributions.

Tackling covariate shift is difficult. For logistic regression,
a common approach is importance re-weighting of source
samples x according to P(x)/P(x) and minimizing a
reweighted version of the target loss [Shimodaria "00].

Unfortunately this converges slowly [Cortes-Mansour-Mohri "10]
and the variance of estimates is too high to be useful.



Logloss

Logistic Regression Models
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Approach

 We use the recently developed RBA (robust
bias-aware prediction) framework for tackling
covariate shift [Liu-Ziebart "14].

* RBA solves a game against a constrained
adversary that chooses an evaluation
distribution:

logarithmic loss

N

N\

min max KEp \biule [,—logf?(Y|X)]
P(y|z) P(y|z)€E Pp (z) P(y|z)

The set = constrains the adversary



Robust Prediction Strategy

The RBA predictor can be obtained by solving the
dual of a conditional max entropy estimation
problem [Liu-Ziebart "14].

Can be shown to upper bound the the generalization
loss, under some assumptions. [Grunwald-Dawid "04]

P...(X) needs to be estimated — we use kernel density
estimation with Gaussian kernels for P (x).

The RBA predictor turns out to less certain where the
labeled data underrepresents the full data
distribution.



Sampling Strategies

active robust — select point with largest value
conditioned entropy

active random — select point at random

active density — select point with highest
density ratio of P;(x)/P(x)
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Standard Logistic Regression Models
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1.5

Logloss

Our Results (logloss)
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Our Results (classification error)
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Predictions

16



Discussion

Active learning inherently introduces covariate
shift.

Many active learners do not compensate for this
properly or use unprincipled strategies.

Recently developed techniques allow us to do
robust active learning for logloss and beat many
existing methods.

— Even here, room for improvement.
Other loss functions also can be tackled directly.

More learning problems can be viewed from this
framework.



