Pessimistic Active Learning Using Robust Bias-Aware Prediction

Anqi Liu, Lev Reyzin, Brian Ziebart

UIC
Pool-Based Active Learning

• A pool based active learning algorithm [Lewis-Gale ’94] sequentially chooses data-point labels to solicit from a pool of examples.
 – Usually constructs estimate of conditional label distribution $P(y|x)$ from labeled dataset.
 – Uses own estimate to select next datapoint label.

(this talk will focus on minimizing logloss, but ideas are more general)
Uncertainty Sampling

• Many active learning strategies employ **uncertainty sampling** – selecting examples about which the algorithm is least certain.

• Other strategies assess how a label:
 – is expected to change the prediction model [Settles-Craven ’08]
 – reduces an upper bound on the generalization error in expectation [Mackay ’92]
 – represents the input patterns of remaining unlabeled data [Settles ’12]
A Problem

Current active learning algorithms often perform poorly in practice [Attenberg-Provost ’11].

Why?

• In order to be take advantage of active learning, a biased label solicitation strategy should be used.

• Most current active learning strategies are overconfident, given this bias.
Typical Behavior of an Active Learner
Desired Behavior
Some Attempts to Fix This

• Seeding the active learner with a small random set [Dligach-Palmer ’11].
• Restricting the active learner to a small set of examples [Schein-Ungar ’07].
• Etc.

However, these modifications treat the symptoms of optimistic modeling and biased sampling and restrict the active learner, undermining its purported benefit.
Biased Label Solicitation

When a non-uniform label-solicitation strategy is used, sample selection bias exists. In this case, it is known as covariate shift -- $P(Y|X)$ is shared in source and target distributions.

Tackling covariate shift is difficult. For logistic regression, a common approach is importance re-weighting of source samples x according to $P_{\text{trg}}(x)/P_{\text{src}}(x)$ and minimizing a reweighted version of the target loss [Shimodaria ’00].

Unfortunately this converges slowly [Cortes-Mansour-Mohri ’10] and the variance of estimates is too high to be useful.
Logistic Regression Models

(a) Iris

(b) Seed

(c) Banknote

(d) E. coli
Approach

• We use the recently developed RBA (robust bias-aware prediction) framework for tackling covariate shift [Liu-Ziebart ’14].

• RBA solves a game against a constrained adversary that chooses an evaluation distribution:

$$\min_{\hat{P}(y|x)} \max_{\bar{P}(y|x) \in \tilde{\Xi}} \mathbb{E}_{P_D(x)} \bar{P}(y|x) \left[- \log \hat{P}(Y|X) \right]$$

The set $\tilde{\Xi}$ constrains the adversary
Robust Prediction Strategy

• The RBA predictor can be obtained by solving the dual of a conditional max entropy estimation problem [Liu-Ziebart ’14].

• Can be shown to upper bound the generalization loss, under some assumptions. [Grunwald-Dawid ’04]

• $P_{src}(x)$ needs to be estimated – we use kernel density estimation with Gaussian kernels for $P_{src}(x)$.

• The RBA predictor turns out to less certain where the labeled data underrepresents the full data distribution.
Sampling Strategies

• active robust – select point with largest value conditioned entropy

• active random – select point at random

• active density – select point with highest density ratio of $P_D(x)/P_L(x)$
Standard Logistic Regression Models

(a) Iris

(b) Seed

(c) Banknote

(d) E. coli
Our Results (logloss)

(a) Iris

(b) Seed

(c) Banknote

(d) E. coli
Our Results (classification error)
Predictions
Discussion

• Active learning inherently introduces covariate shift.
• Many active learners do not compensate for this properly or use unprincipled strategies.
• Recently developed techniques allow us to do robust active learning for logloss and beat many existing methods.
 – Even here, room for improvement.
• Other loss functions also can be tackled directly.
• More learning problems can be viewed from this framework.