
Learning Finite Automata Using Label Queries

Dana Angluin1, Leonor Becerra-Bonache1,2?, Adrian Horia Dediu2,3, and
Lev Reyzin1??

1 Department of Computer Science, Yale University
51 Prospect Street, New Haven, CT, USA

{dana.angluin,leonor.becerra-bonache,lev.reyzin}@yale.edu
2 Research Group on Mathematical Linguistics, Rovira i Virgili University

Avinguda Catalunya, 35, 43002, Tarragona, Spain
3 “Politehnica” University of Bucharest

Splaiul Independentei 313, 060042, Bucharest, Romania
adrianhoriadediu@yahoo.com

Abstract. We consider the problem of learning a finite automaton M
of n states with input alphabet X and output alphabet Y when a teacher
has helpfully or randomly labeled the states of M using labels from a
set L. The learner has access to label queries; a label query with input
string w returns both the output and the label of the state reached by
w. Because different automata may have the same output behavior, we
consider the case in which the teacher may “unfold” M to an output
equivalent machine M ′ and label the states of M ′ for the learner. We
give lower and upper bounds on the number of label queries to learn
the output behavior of M in these different scenarios. We also briefly
consider the case of randomly labeled automata with randomly chosen
transition functions.

1 Introduction

The problem of learning the behavior of a finite automaton has been considered
in several domains, including language learning and environment learning by
robots. Many interesting questions remain about the kinds of information that
permit efficient learning of finite automata.

One basic result is that finite automata are not learnable using a polynomial
number of membership queries. Consider a “password machine”, that is, an
acceptor with (n + 2) states that accepts exactly one binary string of length n;
the learner may query (2n−1) strings before finding the one that is accepted. In
this case, the learner gets no partial information from the unsuccessful queries.

However, Freund et al. [5] show that regardless of the topology of the un-
derlying automaton, if its states are randomly labeled with 0 or 1, then a robot

? Supported by a Marie Curie International Fellowship within the 6th European Com-
munity Framework Programme.

?? This material is based upon work supported under a National Science Foundation
Graduate Research Fellowship.

taking a random walk on the automaton can learn to predict the labels while
making only a polynomial number of errors of prediction. Random labels on
the states provide a rich source of information that can be used to distinguish
otherwise difficult-to-distinguish pairs of states.

In a different setting, Becerra-Bonache, Dediu and T̂ırnăucă [3] introduced
correction queries to model a kind of correction provided by a teacher to
a learner when the learner’s utterance is not grammatically correct. In their
model, a correction query with a string w gives the learner not only member-
ship information about w, but also, if w is not accepted, either the minimum
continuation of w that is accepted, or the information that no continuation of
w is accepted. In certain cases, corrections may provide a substantial amount
of partial information for the learner. For example, for a password machine, a
prefix of the password will be answered with the rest of the password. We may
think of correction queries as labeling each state q of the automaton with the
string rq that is the response to any correction query w that arrives at q.

In both of these cases, labels on states may facilitate the learning of finite
automata: randomly chosen labels in the work of Freund et al. and meaningfully
chosen labels in the work of Becerra-Bonache, Dediu and T̂ırnăucă. In this paper
we explore the general idea of adding labels to the states of an automaton to
make it easier to learn. That is, we allow a teacher to prepare an automaton M
for learning by adding labels to its states (either carefully or randomly chosen).
When the learner queries a string, the learner receives not only the original
output of M for that string, but also the label attached to that state by the
teacher. In an extension of this idea, we also allow the teacher to “unfold” the
machine M to produce copies of a state that may then be given different labels.
These ideas are also relevant to automata testing [7] – labeling and unfolding
automata can make their structure easier to verify.

Depending on how labels are assigned, learning may or may not become
easier. If each state is assigned a unique label, the learning task becomes easy
because the learner knows which state the machine reaches on any given query.
However, if the labels are all the same, they give no additional information
and learning may require an exponential number of queries (as in the case of
membership queries.)

Hence we focus on questions of the following sort. Given an automaton, how
can a teacher use a limited set of labels to make the learning problem easier?
If random labels are sprinkled on the states of an automaton, how much does
that help the learner? How few labels can we use and still make the learning
problem tractable? Other questions concern the structure of the automaton itself.
For example, we may consider changing the structure of the automaton before
labeling it. We also consider the problem of learning randomly labeled automata
with random structure.

2 Preliminaries

We consider finite automata with output, defined as follows. A finite automaton
M has a finite set Q of states, an initial state q0 ∈ Q, a finite alphabet X of input
symbols, a finite alphabet Y of output symbols, an output function γ mapping
Q to Y and a transition function τ mapping Q × X to Q. We extend τ to map
Q × X∗ to Q in the usual way. A finite acceptor is a finite automaton with
output alphabet Y = {0, 1}; if γ(q) = 1 then q is an accepting state, otherwise,
q is a rejecting state. In this paper we assume that there are at least two input
symbols and at least two output symbols, that is, |X| ≥ 2 and |Y | ≥ 2.

For any string w ∈ X∗, we define M(w) to be γ(τ(q0, w)), that is, the output
of the state reached from q0 on input w. Two finite automata M1 and M2

are output-equivalent if they have the same input alphabet X and the same
output alphabet Y and for every string w ∈ X∗, M1(w) = M2(w).

If M is a finite automaton with output, then an output query with string
w ∈ X∗ returns the symbol M(w). This generalizes the concept of a membership
query for an acceptor. That is, if M is an acceptor, an output query with w
returns 1 if w is accepted by M and 0 if w is rejected by M . We note that
Angluin’s polynomial time algorithm to learn finite acceptors using membership
queries and equivalence queries generalizes in a straightforward way to learn
finite automata with output using output queries and equivalence queries [2].

If q1 and q2 are states of a finite automaton with output, then q1 and q2 are
distinguishable if there exists a distinguishing string for them, namely, a
string w such that γ(τ(q1, w)) 6= γ(τ(q2, w)), that is, w leads from q1 and q2 to
two states with different output symbols. If M is minimized, every pair of its
states are distinguishable, and M has at most one sink state.

If d is a nonnegative integer, the d-signature tree of a state q is the finite
function mapping each input string z of length at most d to the output symbol
γ(τ(q, z)). We picture the d-signature tree of a state as a rooted tree of depth
d in which each internal node has |X| children labeled with the elements of X,
and each node is labeled with the symbol from Y that is the output of the state
reached from q on the input string z that leads from the root to this node. The
d-signature tree of a state gives the output behavior in a local neighborhood of
the automaton reachable from that state.

For any finite automaton M with output, we may consider its transition
graph, which is a finite directed graph (possibly with multiple edges and self-
loops) defined as follows. The vertices are the states of M and there is an edge
from q to q′ for each transition τ(q, a) = q′. Properties of the transition graph
are applied to M ; that is, M is strongly connected if its transition graph
is strongly connected. Similarly, the out-degree of M is |X| for every node,
and the in-degree of M is the maximum number of edges entering any node
of its transition graph. For a positive integer k, we define an automaton M to
be k-concentrating if there is some set Q′ of at most k states of M such that
every state of M can reach at least one state in Q′. Every strongly connected
automaton is 1-concentrating.

2.1 Labelings

If M is a finite automaton with output, then a labeling of M is a function `
mapping Q to a set L of labels, the label alphabet. We use M to construct
a new automaton M ` by changing the output function to γ′(q) = (γ(q), `(q)).
That is, the new output for a state is a pair incorporating the output symbol
for the state and the label attached to the state. For the scenario of learning
with labels, we assume that the learner has access to output queries for M ` for
some labeling ` of the hidden automaton M . For the scenario of learning with
unfolding and labels, we assume that the learner has access to output queries
for M `

1 for some labeling ` of some automaton M1 that is output-equivalent
to M . In these two scenarios, the queries will be referred to as label queries.
The goal of the learner in either scenario is to use label queries to find a finite
automaton M ′ output-equivalent to M . Thus, the learner must discover the
output behavior of the hidden automaton, but not necessarily its topology or
labeling. We assume the learner is given both X and |Q|.

3 Learning with Labels

First, we show a lower bound on the number of label queries required to learn a
hidden automaton M with n states and an arbitrary labeling `.

Proposition 1. Let L be a finite label alphabet. Learning a hidden automaton
with n states and a labeling ` using symbols from L requires

Ω

(
|X|n log(n)
1 + log(|L|))

)
label queries in the worst case.

Proof. Recall that we have assumed that |X| and |Y | are both at least 2; we
consider |Y | = 2. Domaratzki, Kisman and Shallit [4] have shown that there are
at least

(|X| − o(1))n2n−1n(|X|−1)n

distinct languages accepted by acceptors with n states. Because each label query
returns one of at most 2 · |L| values, an information theoretic argument gives the
claimed lower bound on the number of label queries. As a corollary, when |X|
and |L| are constants, we have a lower bound of Ω(n log(n)) label queries. �

3.1 Labels Carefully Chosen

In this section, we examine the case where the teacher is given a limit on the
number of different labels he may use, and he is able to label the states after
examining the automaton. Moreover, the learning algorithm may take advantage
of knowing the labeling strategy of the teacher. In this setting the problem takes
on an aspect of coding, and indicates the maximum extent to which labeling
may facilitate efficient learning. We begin with a simple proposition.

Proposition 2. An automaton with n states, helpfully labeled using n different
labels, can be learned using |X|n label queries.

Proof. The teacher assigns a unique integer label between 1 and n to each state.
The learner asks a label query with the empty string to determine the output
and label of the start state, and then explores the transitions from the start state
by querying each a ∈ X. After querying an input string w, the label indicates
whether this state has been visited before. If the state is new, the learner explores
all the transitions from it by querying wa for each a ∈ X. Thus, after querying
at most |X|n strings, the learner knows the structure and outputs of the entire
automaton. The lower bound shows that this is asymptotically optimal if the
label set L has n elements. �

We next consider limiting the teacher to a constant number of different labels:
a polynomial number of label queries suffices in this case.

Theorem 1. For each automaton with n states, there is a helpful labeling using
2|X| different labels such that the automaton can be learned using O(|X|n2) label
queries.

Proof. Given an automaton M of n states, the teacher chooses an outward-
directed spanning tree T rooted at q0 of the transition graph of the automaton,
and labels the states of M to communicate T to the learner as follows. The label
of state q is the subset of X corresponding to the edges of T from q to other
nodes. The label of q directs the learner to q’s children. Using at most n label
queries and the structure of T , the learner can create a set S of n input strings
such that for each state q of M , there is one string w ∈ S such that τ(q0, w) = q.

In [1], Angluin gives an algorithm for learning a regular language using mem-
bership queries given a live complete sample for the language. A live complete
sample for a language L is a set of strings P , that for every state q (other than
the dead state) of the minimal acceptor for L, contains a string that leads from
the start state to q. Given a live complete sample P , a learner can find the
regular language using O(k|P |n) membership queries, where k is the size of the
input alphabet. A straightforward generalization of this algorithm to automata
with output shows that the set S and O(|X|n2) output queries can be used to
find an automaton output equivalent to M . �

However, the number of queries, O(n2), does not meet the Ω(n log n) lower
bound, and the number of different labels is large. For a restricted class of au-
tomata, there is a helpful labeling with fewer labels that permits learning with
an asymptotically optimal O(n log n) label queries. To appreciate the generality
of Theorem 2, we note once more that every strongly connected automaton is
1-concentrating, and as we will see in Lemma 1, automata with a small input
alphabet can be unfolded to have small in-degree.

Theorem 2. Let k and c be positive integers. Any automaton in the class of
c-concentrating automata with in-degree at most k can be helpfully labeled with
at most (3k|X| + c) labels so that it can be learned using O(|X|n log(n)) label
queries.

Proof. We give the construction for 1-concentrating automata and indicate how
to generalize it at the end of the proof. Given a 1-concentrating automaton M
the teacher chooses as the root a node reachable from all other nodes in the
transition graph of M . The depth of a node is the length of the shortest path
from that node to the root. The teacher then chooses a spanning tree T directed
inward to the root by choosing a parent for each non-root node. (One way to do
this is to let the parent of a node q be the first node reached along a shortest
path from q to the root.) The teacher assigns, as part of the label for each node
q, an element a ∈ X such that τ(q, a) is the parent of q.

The teacher now adds more information to the labels of the nodes, which we
call color, using the colors yellow, red, green, and blue. The root is the unique
node colored yellow. Let t = dlog ne; t bits are enough to give a unique identifier
for every node of the graph. Each node at depth a multiple of (t + 1) is colored
red. For each red node v we choose a unique identifier of t bits (c1, c2, . . . , ct)
encoded as green and blue labels. Now consider the maximal subtree rooted at
v containing no red nodes. For each level i from 1 to the depth of the subtree,
all the nodes at level i of the subtree are colored with ci (which is either blue
or green.) The teacher has (so far) used 3|X|+ 1 labels – a direction and one of
three colors per non-root node, and a unique identifier for the root.

Given this labeling, the learner can start from any state and reach a local-
ization state whose identifier is known, as follows. The learner uses the parent
component of the labels to go up the tree until it passes one red node and arrives
at a second red node, or arrives at the root (whichever comes first), keeping track
of the labels seen. If the learner reaches the root, it knows where it is. Other-
wise, the learner interprets the labels seen between the first and second red node
encountered as an identifier for the node v reached. This involves observing at
most (2t+2) labels. Thus, even if the in-degree is not bounded, a 1-concentrating
automaton can be labeled so that with O(log(n)) label queries the learner can
reach a uniquely identified localizing state.

If each node of the tree T also has in-degree bounded by k, another component
of the label for each non-root node identifies which of the k possible predecessors
of its parent it is (numbered arbitrarily from 1 to at most k.) If the learner
collects these values on the path from u to its localization node v, then we
have an identifier for u with respect to v. Thus it takes O(log(n)) label queries
to learn any node’s identifier. If the node has not been encountered before, its
|X| transitions must be explored, as in Proposition 2. This gives us a learning
algorithm using O(|X|n log(n)) label queries. The labeling uses at most 3k|X|+1
different labels.

If the automaton is c-concentrating for some c > 1, then the teacher selects
a set of at most c nodes such that every node can reach at least one of them
and constructs a forest of at most c inward directed disjoint spanning trees, and
proceeds as above. This increases the number of unique identifiers for the roots
from 1 to c. �

An open question is whether an arbitrary finite automaton with n states can
be helpfully labeled with O(1) labels in such a way that it can be learned using
O(|X|n log n) label queries.

3.2 Labels Randomly Chosen

In this section we turn from labels carefully chosen by the teacher to an indepen-
dent uniform random choice of labels for states from a label alphabet L. With
nonzero probability the labeling may be completely uninformative, so results in
this scenario incorporate a confidence parameter δ > 0 that is an input to the
learner. The goal of the learner is to learn an automaton that is output equiv-
alent to the hidden automaton M with probability at least (1 − δ), where this
probability is taken over the labelings of M . Results on random labelings can be
used in the careful labeling scenario: the teacher generates a number of random
labelings until one is found that has the desired properties.

We first review the learning scenario considered by Freund et al. [5]. There
is a finite automaton over the input alphabet X = {0, 1} and output alpha-
bet {+,−}, where the transition function and start state of the automaton are
arbitrary, but the output symbol for each state is chosen independently and uni-
formly from {+,−}. The learner moves from state to state in the target automa-
ton according to a random walk (the next input symbol is chosen independently
and uniformly from {0, 1}) and, after learning what the next input symbol will
be, attempts to predict the output (+ or −) of the next state. After the pre-
diction, the learner is told the correct output and the process repeats with the
next input symbol in the random walk. If the learner’s prediction was incorrect,
this counts as a prediction mistake. In the first scenario they consider, the
learner may reset the machine to the initial state by predicting ? instead of + or
−; this counts as a default mistake. In this model, the learner is completely
passive, dependent upon the random walk process to disclose useful information
about the behavior of the underlying automaton. For this setting they prove the
following.

Theorem 3 (Freund et al. [5]). There exists a learning algorithm that takes
n and δ as input, runs in time polynomial in n and 1/δ and with probability at
least (1 − δ) makes no prediction mistakes and an expected O((n5/δ2) log(n/δ))
default mistakes.

The main idea is to use the d-signature tree of a state as the identifier for the
state, where d ≥ 2 log(n2/δ). For this setting, there are at least n4/δ2 strings in a
signature tree of depth d. The following theorem of Trakhtenbrot and Barzdin’ [8]
establishes that signature trees of this depth are sufficient.

Theorem 4 (Trakhtenbrot and Barzdin’ [8]). For any natural number d
and for any finite automaton with n states and randomly chosen outputs from
Y , the probability that for some pair of distinguishable states the shortest distin-
guishing string is of length greater than d is less than

n2(1/|Y |)d/2.

We may apply these ideas to prove the following.

Theorem 5. For any positive integer s, any finite automaton with n states, over
the input alphabet X and output alphabet Y , with its states randomly labeled with
labels from a label alphabet L with |L| = |X|s can be learned using

O

(
|X|n

1+4/s

δ2/s

)
label queries, with probability at least (1− δ) (with respect to the choice of label-
ing.)

Proof. Assume that the learning algorithm is given n, a bound on the number of
states of the hidden automaton, and the confidence parameter δ > 0. It calculates
a bound d = d(n, δ) (described below) and proceeds as follows, starting with
the empty input string. To explore the input string w, the learning algorithm
calculates the d signature tree (in the labeled automaton) of the state reached
by w by making label queries on wz for all input strings z of length at most d.
This requires O(|X|d) queries. If this signature tree has not been encountered
before, then the algorithm explores the transitions wa for all a ∈ X. Assuming
that the labeling is “good”, that is, that all distinguishable pairs of states have
a distinguishing string in the labeled automaton of length at most d, then this
correctly learns the output behavior of the hidden automaton using O(|X|d+1n)
label queries.

To apply Theorem 4, we assume that the hidden automaton M is an arbitrary
finite automaton with output with at most n states, input alphabet X and output
alphabet Y . The labels randomly chosen from L then play the role of the random
outputs in Theorem 4. There is a somewhat subtle issue: states distinguishable
in M by their outputs may not be distinguishable in the labeled automaton by
their labels alone. Fortunately, Freund et al. [5] have shown us how to address
this point. In the first case, if two states of M are distinguishable by their outputs
in M by a string of length at most d, then their d signature trees (in the labeled
automaton) will differ. Otherwise, if the shortest distinguishing string for the
two states (using just outputs) is of length at least d + 1, then generalizing the
argument for Theorem 2 in [5] from |Y | = 2 to arbitrary |Y |, the probability
that this pair of states is not distinguished by the random labeling by a string
of length at most d is bounded above by (1/|Y |)(d+1)/2. Summing over all pairs
of states gives the required bound.

Thus, choosing

d ≥ 2
log |L|

log
(

n2

δ

)
,

suffices to ensure that the labeling is “good” with probability at least (1− δ). If
we use more labels, the signature trees need not be so deep and the algorithm
does not need to make as many queries to determine them. In particular, if
|L| = |X|s, then the bound of O(|X|d+1n) on the number of label queries used
by the algorithm becomes

O

(
|X|n

1+4/s

δ2/s

)
,

completing the proof. �

Corollary 1. Any finite automaton with n states can be learned using O(|X|n1+ε)
label queries with probability at least 1/2, when it is randomly labeled with |L| =
f(|X|, ε) labels.

Proof. With δ = 1/2 a choice of |L| ≥ |X|4/ε suffices. �

We remark that this implies that there exists a careful labeling with O(|X|4)
labels that achieves learnability with O(|X|n2) label queries, substantially im-
proving on the size of the label set used in Theorem 1. An open question is
whether a random labeling with O(1) labels enables efficient learning of an ar-
bitrary n state automaton with O(n log n) queries with high probability.

4 Unfolding Finite Automata

We now consider giving more power to the teacher. Because many automata
have the same output behavior, we ask what happens if a teacher can change
the underlying machine (without changing its output behavior) before placing
labels on it. In Sections 3.1 and 3.2, the teacher had to label the machine given to
him. Now we will examine what happens when a teacher can unfold an automa-
ton before putting labels on it. That is, given M , the teacher chooses another
automaton M ′ with the same output behavior as M and labels the states of M ′

for the learner.

4.1 Unfolding and then Labeling

We first remark that unfolding an automaton M from n to O(n log n) states
allows a careful labeling with just 2 labels to encode a description of the machine.

Proposition 3. Any finite automaton with n states can be unfolded to have
N = O(|X|n log(n) + n log(|Y |)) states and carefully labeled with 2 labels, in
such a way that it can be learned using N label queries. �

Proof. The total number of automata with output having n states, input alpha-
bet X and output alphabet Y is at most

n|X|n+1|Y |n.

Thus, N = O(|X|n log(n) + n log(|Y |)) bits suffice to specify any one of these
machines.

The teacher chooses a ∈ X and unfolds the target automaton M as follows.
The strings ai for i = 0, 1, . . . , N − 1 each send the learner to a newly created
state, which act (with respect to transitions on other input symbols and output
behavior) just as their counterparts in the original machine. The remaining states
are unchanged. The unfolded automaton is output equivalent to M . The teacher
then specifies M using by labeling these N new states with the bits of the
specification of M . The learner simply asks a sequence of N queries on strings
of the form ai to receive the encoding of the hidden machine. �

This method does not work if we restrict the unfolding to O(|X|n) states,
but we show that this much unfolding is sufficient to reduce the in-degree of the
automaton to O(|X|).

Lemma 1. Let M be an arbitrary automaton of n states. There is an automaton
M ′ with the same output behavior as M , with at most (|X| + 1)n states whose
in-degree is bounded by 2|X|+ 1.

Proof. Given M , we repeat the following process until it terminates. While there
is some state q with in-degree greater than 2|X| + 1, split q into two copies,
dividing the incoming edges as evenly as possible between the two copies, and
duplicating all |X| outgoing edges for the second copy of q.

It is clear that each step of this process preserves the output behavior of M .
To see that it terminates, for each node q let f(q) be the maximum of 0 and
din(q) − (|X| + 1), where din(q) is the in-degree of q. Consider the potential
function Φ that is the sum of f(q) for all nodes q in the transition graph. Φ
is initially at most |X|n − (|X| + 1), and each step reduces it by at least 1 =
(|X| + 1) − |X|. Thus, the process terminates after no more than |X|n steps
producing an output-equivalent automaton M ′ with no more than (|X| + 1)n
states and in-degree at most 2|X|+ 1. �

In particular, an automaton with a sink state of high in-degree will be un-
folded by this process to have multiple copies of the sink state. Using this idea
for degree reduction, the teacher may use linear unfolding and helpful labeling
to enable a strongly connected automaton to be learned with O(n log n) label
queries.

Corollary 2. For any strongly connected automaton M of n states, there is
an unfolding M ′ of M with at most (|X| + 1)n states and a careful labeling
of M ′ using O(|X|2) labels that allows the behavior of M to be learned using
O(|X|2n log n) label queries.

Proof. Given a strongly connected automaton M with n states, the teacher uses
the method of Lemma 1 to produce an output equivalent machine M ′ with at
most (|X|+ 1)n states and in-degree bounded by 2|X|+ 1. This unfolding may
not preserve the property of being strongly connected, but there is at least one
state q that has at most (|X| + 1) copies in the unfolded machine M ′. Because
M is strongly connected, every state of M ′ must be able to reach at least one
of the copies of q, so M ′ is (|X| + 1)-concentrating. Applying the method of
Theorem 2, the teacher can use 3(2|X|+ 1)|X|+ (|X|+ 1) labels to label M ′ so
that it can be learned with O(|X|2n log n) label queries. �

We now consider uniform random labelings of the states when the teacher is
allowed to choose the unfolding of the machine.

Theorem 6. Any automaton with n states can be unfolded to have O(n log(n/δ))
states and randomly labeled with 2 labels, such that with probability at least (1−δ),
it can be learned using O(|X|n(log(n/δ))2) queries.

Proof. Given n and δ, let t = dlog(n2/δ)e. The teacher chooses a ∈ X and
unfolds the target machine M to construct the machine M ′ as follows. M ′ has
nt states (q, i) where q is a state of M and 0 ≤ i ≤ (t − 1). The start state is
(q0, 0), where q0 is the start state of M . The output symbol for (q, i) is γ(q, ai),
where γ is the output function of M . For 0 < i < (t − 1), the a transition
from (q, i) is to (q, (i + 1)). The a transition from (q, t − 1) is to (q′, 0), where
q′ = τ(q, at) and τ is the transition function of M . For all other input symbols
b with b 6= a, the b transition from (q, i) is to (q′, 0), where q′ = τ(q, aib).

To see that M ′ is an unfolding of M , that is, M ′ is output equivalent to M ,
we show that each state (q, i) of M ′ is output equivalent to state τ(q, ai) of M .
By construction, these two states have the same output. If i < (t − 1) then the
a transition from (q, i) is to (q, i + 1), which has the same output symbol as
τ(q, ai+1). The a transition from (q, t−1) is to (q′, 0), where q′ = τ(q, at), which
has the same output symbol as τ(τ(q, at−1), a). If b 6= a is an input symbol, then
the b transition from (q, i) is to (q′, 0) where q′ = τ(q, aib), which has the same
output symbol as τ(τ(q, ai), b).

Suppose M ′ is randomly labeled with two labels. For each state q of M ,
define its label identifier in M ′ to be the sequence of labels of (q, i) for i =
0, 1, . . . , (t − 1). For two distinct states q1 and q2 of M , the probability that
their label identifiers in M ′ are equal is (1/2)t, which is at most δ/n2. Thus, the
probability that there exist two distinct states q1 and q2 with the same label
identifier in M ′ is at most δ.

Given n and δ, the learning algorithm takes advantage of the known unfolding
strategy to construct states (j, i) for 0 ≤ j ≤ n − 1 and 0 ≤ i ≤ (t − 1) with
a transitions from (j, i) to (j, i + 1) for i < (t − 1). It starts with the empty
input string and uses the following exploration strategy. Given an input string
w that is known to arrive at some (q, 0) in M ′, the learning algorithm makes
label queries on wai for i = 0, 1, . . . , (t− 1) to determine the label identifier of q
in M ′. If this label identifier has not been seen before, the learner uses the next
unused (j, 0) to represent q and records the outputs and labels for the states
(j, i) for i = 0, 1, . . . , (t − 1). It must also explore all unknown transitions from
the states (j, i). If distinct states of M receive distinct label identifiers in M ′,
the learner learns a finite automaton output equivalent to M using O(|X|nt2)
label queries. �

5 Automata with Random Structure

We may also ask whether randomly labeled finite automata are hard to learn “on
average”. We consider automata with randomly chosen transition functions and
random labels. The model of random structure that we consider is as follows. Let
the states be qi for i = 0, 1, . . . , (n−1), where q0 is the start state. For each state
qi and input symbol a ∈ X, choose j uniformly at random from 0, 1, . . . , (n− 1)
and let τ(qi, a) = qj .

Theorem 7. A finite automaton with n states, a random transition function
and a random labeling can be learned using O(n log(n)) label queries, with high
probability. The probability is over the choice of transition function and labeling.

Proof. This was first proved by Korshunov in [6]; here we give a simpler proof.
Korshunov showed that the signature trees only need to be of depth asymptoti-
cally equal to log|X|(log|L|(n)) for the nodes to have unique signatures with high
probability. We use a method similar to signature trees, but simpler to analyze.
Instead of comparing signature trees for two states to tell whether or not they
are distinct, we compare the labels along at most four sets of transitions, which
we call signature paths – like a signature tree consisting only of four paths.

Lemmas 2 and 3 show that given X and n there are at most four signature
paths, each of length 3 log(n), such that for a random finite automaton of n
states with input alphabet X and for any pair s1 and s2 of different states, the
probability is O

(
log6(n)

n3

)
that s1 and s2 are distinguishable but not distinguished

by any of the strings in the four signature paths. By the union bound, the
probability that there exist two distinguishable states that are not distinguished
by at least one of the strings in the four signature paths is at most(

n

2

) (
O

(
log6(n)

n3

))
= o(1).

Hence, by running at most four signature paths, each of length 3 log(n), per newly
reached state, we get unique labels on the states. Then for each of the n states,
we can find their |X| transitions, and learn the machine, as in Proposition 2. �

We now turn to the two lemmas used in the proof of Theorem 7. We first
consider the case |X| > 2. If a, b, c ∈ X and ` is a nonnegative integer, let
D`(a, b, c) denote the set of all strings ai, bi, and ci such that 0 ≤ i ≤ `.

Lemma 2. Let s1 and s2 be two different states in a random automaton with
|X| > 2. Let a, b, c ∈ X and ` = 3 log(n). The probability that s1 and s2 are
distinguishable, but not by any string in D`(a, b, c) is O

(
log6(n)

n3

)
.

Proof. We analyze the three (attempted) paths from two states s1 and s2, which
we will call π1

s1
, π2

s1
, π3

s1
and π1

s2
, π2

s2
, π3

s2
, respectively. Each path will have length

3 log(n). We define each of the πi as a set of nodes reached by its respective set
of transitions.

We first look at the probability that the following event does not happen:
that both |π1

s1
| > 3 log(n) and |π1

s2
| > 3 log(n), and that π1

s1
∩ π1

s2
= ∅, that is

the probability that both of these strings succeed in reaching 3 log(n) different
states, and that they share no states in common. We call the event that two
sets of states π1 and π2 have no states in common, and both have size at least

l, S(π1, π2, l) (success) and the failure event F (π1, π2, l) = S(π1, π2, l). So,

P (F (π1
s1

, π1
s2

, 3 log(n))) ≤
3 log(n)∑

i=1

(
i + |π1

s1
|

n

)
+

3 log(n)∑
i=1

(
i + |π1

s2
|

n

)

≤ 2
3 log(n)∑

i=1

(
i + 3 log(n)

n

)
= O

(
log2(n)

n

)
.

Now we look at the probability that F (π2
s1

, π2
s2

, 3 log(n)) given that we failed on
the first paths, or F (π1

s1
, π1

s2
, 3 log(n)), with l = 3 log(n),

P
(
F (π2

s1
, π2

s2
, l)|F (π1

s1
, π1

s2
, l)

)
≤

3 log(n)∑
i=1

(
i + |π2

s1
|+ |π1

s1
|+ |π1

s2
|

n

)

+
3 log(n)∑

i=1

(
i + |π2

s2
|+ |π1

s1
|+ |π1

s2
|

n

)

≤ 2
3 log(n)∑

i=1

(
i + 9 log(n)

n

)
= O

(
log2(n)

n

)
.

Now, we will compute the probability that F (π3
s1

, π3
s2

, 3 log(n)) given failures on
the previous two pairs of states. Let l = 3 log(n),

P
(
F (π3

s1
, π3

s2
, l)|F (π1

s1
, π1

s2
, l), F (π2

s1
, π2

s2
, l)

)
≤ 2

3 log(n)∑
i=1

(
i + 25 log(n)

n

)
= O

(
log2(n)

n

)
.

Last, we compute the probability none of these pairs of paths made it to l =
3 log(n), or P (failure) = P

(
F (π1

s1
, π1

s2
, l), F (π2

s1
, π2

s2
, l), F (π3

s1
, π3

s2
, l)

)
P (failure) = P (F (π1

s1
, π1

s2
, l)) · P

(
F (π2

s1
, π2

s2
, l)|F (π1

s1
, π1

s2
, l)

)
·

P
(
F (π3

s1
, π3

s2
, l)|F (π1

s1
, π1

s2
, l), F (π2

s1
, π2

s2
, 1)

)
= O

(
log2(n)

n

)
O

(
log2(n)

n

)
O

(
log2(n)

n

)
= O

(
log6(n)

n3

)
.

Thus, given two distinct states with corresponding nonoverlapping signature
paths of length 3 log(n), the probability that all of the randomly chosen labels

along the paths will be the same is 23 lg(n) = 1
n3 = O

(
log6(n)

n3

)
, which is the

probability that no string in D`(a, b, c) distinguishes s1 from s2. �

When |X| = 2, we do not have enough alphabet symbols to construct three
completely independent paths as in the proof of Lemma 2, but four paths suffice.
If a, b ∈ X and ` is a nonnegative integer, let D`(a, b) denote the set of all strings
ai, bi, abi and bai such that 0 ≤ i ≤ `.

Lemma 3. Let s1 and s2 be two different states in a random automaton with
|X| = 2. Let a, b ∈ X and ` = 3 log(n). The probability that s1 and s2 are
distinguishable, but not by any string in D`(a, b) is O

(
log6(n)

n3

)
.

The proof of Lemma 3 is a case analysis using reasoning similar to that of
Lemma 2; we include an outline. If s1 and s2 are assigned different labels, then
they are distinguished by the empty string, so assume that they are assigned the
same label. If we consider τ(s1, a) and τ(s2, a), there are four cases, as follows.
(1) We have τ(s1, a) 6= τ(s2, a) and neither one is s1 or s2. In this case, an
argument analogous to that in Lemma 2 shows that the probability that the
paths ai, abi and bi fail to produce a distinguishing string for s1 and s2 is
bounded by O(log6(n)/n3). (2) Exactly one of τ(s1, a) and τ(s2, a) is in the set
{s1, s2}. This happens with probability O(1/n), and in this case we can show
that the probability that the paths ai and bi do not produce a distinguishing
string for s1 and s2 is bounded by O(log4(n)/n2), for a total failure probability
of O(log4(n)/n3) for this case. (3) Both of τ(s1, a) and τ(s2, a) are in the set
{s1, s2}. This happens with probability O(1/n2), and in this case we can show
that the probability that the path bi does not produce a distinguishing string
for s1 and s2 is bounded by O(log2(n)/n), for a total failure probability of
O(log2(n)/n3) for this case. (4) Neither of τ(s1, a) and τ(s2, a) is in the set
{s1, s2}, but τ(s1, a) = τ(s2, a). This happens with probability O(1/n), and we
proceed to analyze four parallel subcases for τ(s1, b) and τ(s2, b).

(4a) We have τ(s1, b) 6= τ(s2, b) and neither of them is in the set {s1, s2}.
We can show that the probability that the paths bi and bai do not produce a
distinguishing string for s1 and s2 is bounded by O(log4(n)/n2), for a failure
probability of O(log4(n)/n3) in this subcase, because the probability of case (4)
is O(1/n). (4b) Exactly one of τ(s1, b) and τ(s2, b) is in the set {s1, s2}. In this
subcase, we can show that the probability that the path bi fails to produce a
distinguishing string for s1 and s2 is bounded by O(log2(n)/n), for a total failure
probability in this subcase of O(log2(n)/n3), because the probability of case (4)
is O(1/n) and the probability that one of τ(s1, b) and τ(s2, b) is in {s1, s2} is
O(1/n). (4c) Both of τ(s1, b) and τ(s2, b) are in {s1, s2}. The probability of this
happening is O(1/n2), for a total probability of this subcase of O(1/n3), because
the probability of case (4) is O(1/n). (4d) We have τ(s1, b) = τ(s2, b). Then
because we are in case (4), τ(s1, a) = τ(s2, a) and the labels assigned s1 and s2

are equal, so the states s1 and s2 are equivalent and therefore indistinguishable.

Acknowledgments

We would like to thank the anonymous referees for helpful comments.

References

1. Angluin, D. A note on the number of queries needed to identify regular languages.
Information and Control 51, 1 (1981), 76–87.

2. Angluin, D. Queries and concept learning. Machine Learning 2, 4 (1987), 319–342.
3. Becerra-Bonache, L., Dediu, A. H., and T̂ırnăucă, C. Learning DFA from

correction and equivalence queries. In ICGI (2006), pp. 281–292.
4. Domaratzki, M., Kisman, D., and Shallit, J. On the number of distinct lan-

guages accepted by finite automata with n states. Journal of Automata, Languages
and Combinatorics 7, 4 (2002).

5. Freund, Y., Kearns, M. J., Ron, D., Rubinfeld, R., Schapire, R. E., and
Sellie, L. Efficient learning of typical finite automata from random walks. Infor-
mation and Computation 138, 1 (1997), 23–48.

6. Korshunov, A. The degree of distinguishability of automata. Diskret. Analiz. 10,
36 (1967), 39–59.

7. Lee, D., and Yannakakis, M. Testing finite-state machines: State identification
and verification. IEEE Trans. Computers 43, 3 (1994), 306–320.

8. Trakhtenbrot, B. A., and Barzdin’, Y. M. Finite Automata: Behavior and
Synthesis. North Holland, Amsterdam, 1973.

