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Abstract—We study a two-player interactive game where the
players search for a target vertex in a connected undirected
graph via multiple rounds of query and feedback. This two-
player search game is an adaptation of the single-agent interactive
learning problem [1]. Here, we analyze the game for trees under
different costs: under zero-sum cost we present the one-step Nash
equilibrium strategy, and show that the competition hinders both
players’ search progress as compared to binary search; under
non-zero-sum costs, however, we present a cooperative strategy
which benefits both players.

I. INTRODUCTION

In this paper we study the problem of two players searching
for a target vertex in a tree under a game-theoretic setting. Our
search game is an adaption of the generalized binary search
in undirected weighted graph model studied by Emamjomeh-
Zadeh et al [2], which gave an algorithm for one learner/player
to identify a target vertex interactively via O(log n) rounds of
query and feedback, where n is the number of vertices in the
graph. Specifically, in each round the player queries a vertex
and receives a feedback, which either informs the player that
the query vertex is the target, or reveals a neighbor of the
query vertex that is on a shortest path to the target. Later
Deligkas et al [3] studied the game in three new directions: 1,
the response is on an approximate shortest path to target; 2,
the query vertex is near optimal; 3, there are multiple targets
to search for.

In this paper we extend the well-studied single-player
search game to a two-player game. We are interested in how
the interaction between the two players affects their query
strategies, in terms of which vertices to query, and the query
complexity (number of queries needed to identify the target by
either player). In a competitive zero-sum game, we give the
Nash equilibrium strategy and find that the query complexity
is worse than that of one-player binary search. In an non-zero-
sum game, we give a cooperative strategy that achieves better
query complexity than one-player binary search.

This work continues several lines of research of learning
target structures over graphs. One important line of previous
work involves query learning, where target hypotheses are
queried to an oracle, and the oracle replies with some form of
feedback to the learner. This model dates back to equivalence
queries [4], but also includes more modern frameworks such
as correction queries [5], as well as other query types [6].
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Another perspective is from the point of view of “games on
graphs” [7], where multiple players take turns making moves
on a graph. Variants include coloring games [8] in which each
player controls the color of a vertex, mathematical games like
slither [9], or even the basic “nightclub pricing” pricing game
on a path [10]. In these cases, the object is to find the Nash
equilibria and to understand how changes to payoff structures
impact the resulting strategies.

A. Results summary

We summarize the players’ one-step Nash equilibrium
strategies in terms of positions to query and corresponding
probabilities in a mixed strategy, and compare progress with
binary search in the table below. We only show the strategies
from player x’s perspective since this is a symmetric game.
Refer to Section III (and IV) for the definitions of regions
L,M,R on a path (and in a tree), as well as the median and
quantile positions. Roughly speaking, wlog if x is to the left
of y on a path, the region to the left of x is L, the region to
the right of y is R, and the remaining reguin in between is
M . Here we assume the middle region M is sufficiently large
(M > R).

TABLE I: A summary of our results for 2-player interactive
search on a path.

feedback ←
(away from y)

feedback →
(towards y)

better than
binary search?

competitive
(continuous
0-sum costs)

median of L
median of M w.p. M

M+R

median of R w.p. R
M+R

no

competitive
(discrete

0-sum-costs)
median of L

median of M w.p. M+R
M+3R

median of R w.p. 2R
M+3R

no 1

cooperative
(equal costs) median of L 1

4
-quantile of M yes

binary search
(comparator

strategy)
median of L median of M ∪R N/A

1When M > R, as this table assumes, competitive search with 0-sum costs
is indeed less efficient than binary search. When M < R, it is possible for
competitive search with the discrete 0-sum cost to outperform binary search.



Our results show that a mutual non-zero-sum-cost encour-
ages the players to make progress as a team, and their joint
actions are more efficient than one-player binary search. How-
ever, under a zero-sum-cost, each player is only incentivized
to outperform the other player, and even the player with better
progress is slower than one-player binary search.

II. MODEL OF THE SEARCH GAME

Now we describe an extensive-form game where two players
x and y search for a target vertex in a graph. As pointed
out by Emamjomeh-Zadeh et al. [2], binary search on a path
has a natural generalization to trees, and further to weighted
undirected graphs with the property that the shortest path
between each pair of vertices is unique, which ensures the
feedback to each query is deterministic conditioned on a target
location. We first consider the simplest case that the graph is a
path, then generalize to trees, and discuss possible directions
for arbitrary graphs.

Given an undirected graph G = (V,E), we assume that
first a target vertex t is chosen uniformly at random by the
nature/environment, and the players’ action in each round is
choosing a vertex to query. Each player receives a feedback
after his query, which either informs him that the query vertex
is the target, or reveals a neighbor of the query vertex that is on
a shortest path to the target. We assume players choose their
query vertices individually and query them simultaneously.
The players get imperfect information, in that the feedback
is private to each player, but players can observe each other’s
actions hence deduce information about the other player’s
previous feedback, and adaptively choose next vertex to query
based on their own feedback and observation. We assume each
player begins by querying a random vertex.

Similar to the algorithm in [2] and [1], each player can
define and keeps track of the weight for each vertex, which
can be treated as the likelihood or probability mass of each
vertex, and can be used to calculate the next vertex to
query. Intuitively speaking, for a vertex v, its weight w(v) ∼
P[v is the target]. Initially, each player defines the weight for
each vertex uniformly: ∀v ∈ V,w(v) = 1

n , where n = |V |.
For a pair of query q and feedback z, denote N(q, z) as the
set of vertices inconsistent with the query-feedback pair, ie.,
the vertices that are eliminated from the candidate vertices
for the target based on this query-feedback pair. Formally,
N(q, z) = {v | z is not on a shortest path from q to v}.

At each round, the players update their weights for the
vertices in the following way: suppose at the rth round,
player x queries vertex xr and receives feedback z. He
also can deduce the other player’s previous feedback z′ by
observing the action yr (relative to yr−1). The player updates
the weights by reducing the weights of the vertices that are
inconsistent with his feedback and observation to 0, under the
assumption that z lies on a shortest path from xr to t, and
z′ lies on a shortest from yr−1 to t. Formally, player x sets
w(v) = 0 ∀v ∈ N(xr, z) ∪N(yr−1, z′), and re-normalize the
remaining vertices whose weights are positive, so that total
weights in the graph sum up to 1.

x1 y1

RML

Fig. 1: Players query positions divide the path into regions L,
M and R.

In a game theoretic setting, each player also incurs an im-
plicit cost to each query (incomplete information). Naturally,
the cost should reflect how far off the query vertex is from
the target based on some distance measure. We will define two
types of zero-sum costs which lead to different Nash equilibria
in competitive games, and a non-zero-sum cost which lead to
cooperative behaviors between the players. For the entirety of
this paper, we are concerned with one-step Nash equilibria,
where players are only optimizing their immediate reward.

III. INTERACTIVE SEARCH ON A PATH

We begin by examining the path, as its simplicity allows
us to develop intuition behind the players’ strategies, yet it
has straightforward generalization to more complex structures
such as trees.

We use the notation illustrated below. The two players’
query vertices at round r are represented by variables xr and
yr, and we will drop the subscript when discussing an arbitrary
round. Without loss of generality, we will state our results in
terms of the current round being r = 1 and the next round
as r = 2, and we assume that at the current round x1 is to
the “left” of y1. These positions partition the path into regions
{L,M,R}, which stand for “left,” “middle,” and “right” as
shown in Figure 1.

For brevity we will sometimes abuse notation and use L
(for example) to denote the total probability mass of region L
as well, ie.,

∑
v∈L w(v). The feedback for each player either

points toward the left or the right on a path, and we denote
the event that player x receives a left feedback after querying
position x1 as x1 ←.

In the following analysis, we abstract the path to a contin-
uous line segment for simplicity, since every point on the line
lies between two unique vertices, and we can “discretize” a
position on a line to the nearest vertex. Naturally we will use
a probability density function f(·) in place of the probability
mass function w(v). Without loss of generality we normalize
the total length of the path at the beginning of the first round
to 1 with 0 starting from the left end, so that under a uniform
prior of the target location, the total probability mass of a
region corresponds to its (fractional) length, so L (for example)
may represent the length of region L as well.

We define the implicit cost of querying vertex q based on
the squared Euclidean distance between q and the target vertex
t: d(q, t) := (q − t)2. We first study the game where the two
players compete against each other, and we show different
Nash Equilibria under two different zero-sum costs. Then we
study the game where the two players cooperate under a non-
zero-sum cost.



x1
←

y1
←

M Rt ∈ L

Fig. 2: t ∈ L. x has remaining region L, and y has remaining
regions L and M .

A. Competition under continuous cost

1) Continuous cost: In this section we define a continuous
zero-sum cost based on the difference between each player’s
distance to the target. Specifically, from player x’s perspective
using the squared Euclidean distance, the cost is:

C(x | y, t) = d(x, t)− d(y, t) = (x− t)2 − (y − t)2

= (x+ y − 2t)(x− y) (1)

We call this an implicit cost because even though both play-
ers’ positions are public information, the cost value depends
on target location which is unknown to both players. Each
player’s objective is to find the optimal vertex to query for
the next round that minimizes the expected cost conditioned
on the opponent’s query position, over the randomness of the
target location:

x2 = argmin
x

max
y

Et[C(x | y, t)]

2) Game tree: We can construct a game tree for the
extensive form game based on the cost defined in the previous
section. Consider an arbitrary case that the target is in region
L and both players received feedback to the left in the current
round. Regions M and R are eliminated for x, and region R
is eliminated for y. Each player sets the probability density to
0 in the eliminated regions and re-normalizes the remaining
regions (Figure 2). Suppose the regions have probability mass
L and M respectively, then the posterior probability density
(after query and feedback) of target location for player x is
f(t) = 1

L for t ∈ L, and we have:

Et[C(x | y, t)] =
∫
L

(x+ y − 2t)(x− y) · 1
L
dt

= (x− y)(x+ y − L) (2)

Notice that the expected cost has a saddle point at ( 12L,
1
2L),

which corresponds to the safety strategy (x, y) = ( 12L,
1
2L):

x =
1

2
L : Et[C(x | y, t)] = (

1

2
L− y)(y − 1

2
L) ≤ 0 ∀y

y =
1

2
L : Et[−C(x | y, t)] = −(x− 1

2
L)(x− 1

2
L) ≤ 0 ∀x

In this example we chose region L arbitrarily, which suggests
in general whichever region the players query next, they
would query the mid point (weighted median or 1

2 -quantile
in general) in that region. This greatly reduces the players’
actions (positions to query) to just the mid points in each of
the regions. Specifically the possible query positions are 1

2L,
L+ 1

2M and L+M + 1
2R.

Nature

xx x

y y y y y

0

(4)

− (L+M)2

4

(3)

− (L+M)2

4

(2)

0

(1)

(L+2M+R)(R−L)
4

(5)

(M+R)2

4

(6)

(M+R)2

4

(7)

0

(8)

t ∈ L,
x1 ←, y1 ←

t ∈M ,
x1 →, y1 ←

t ∈ R,
x1 →, y1 →

x2 ∈ L x2 ∈M x2 ∈ R x2 ∈M x2 ∈ R

y2 ∈ L y2 ∈M y2 ∈ L y2 ∈M y2 ∈ L y2 ∈M y2 ∈ R y2 ∈ R

Fig. 3: The game tree of the extensive form game with zero-
sum cost. Leaves represent player x’s costs.

Plug in these query positions into Equation (2), we can
construct the game tree representing the current and next round
of the game (Figure 3).

For each player, the nodes following a specific feedback are
in the same information set (linked by thick line), because the
latest feedback is private to each player and their actions occur
simultaneously, so the player cannot distinguish between these
states and has to choose the same action at all nodes in the
same information set.

3) Equilibrium strategy: We present a mixed strategy for
both players and show that this strategy is in Nash equilibrium.
Strategy for x (strategy for y is symmetric to x interchanging
L and R):

If x1 ← (away from y), query median of L;
If x1 → (towards y), query median of M with probability

M
M+R , query median of R with probability R

M+R .

Theorem 1. Both players following the above strategy in the
search game under the continuous zero-sum cost defined in
(1) is a Nash equilibrium.

Proof. We analyze the game from x’s perspective.
Case 1, x1 ←:
This implies nature places target t ∈ L, and we have y1 ←
as well. Based on our strategy, x2 = 1

2L; y2 = 1
2L with

probability L
L+M , and y2 = L+ 1

2M with probability M
L+M .

We show that x2 has no incentive to deviate from 1
2L:

Et∈L[C(x | y, t)] = Ey[(x− y)(x+ y − L)]

=(x− L

2
)(x− L

2
) · L

L+M
+ (x− L− M

2
)(x+

M

2
) · M

L+M

Set
d

dx
= 0 ⇐⇒ 1

L+M
[2Lx− L2 + 2Mx− LM ] = 0

=⇒ x∗2 =
L

2
minimizes the expected cost for next round.

Case 2, x1 →:
In this case x eliminates region L and considers t ∈ M ∪
R. Let pL, pM , pR represent the posterior probability that the
target is in regions L,M,R respectively. Given x1 → and the
assumption that nature places target uniformly at random, we
have pL = 0, pM

pR
= M

R .
We have the following game matrix based on the game tree:



y2 ∈ L y2 ∈M y2 ∈ R
x2 ∈ L pL × (1) pL × (2) N/A

= 0 = 0
x2 ∈M pM × (3) = pM × (4) pR × (7) =

w.p. m −pM ·(L+M)2

4 = 0 pR(M+R)2

4

x2 ∈ R pM × (5) = pM × (6) = pR × (8)

w.p. r pM (L+2M+R)(R−L)
4

pM (M+R)2

4 = 0

Notice that row L and column L are dominated and can be
ignored (greyed out in the matrix). Solve for the equilibrium
strategy for x: suppose x chooses row M (query the median of
M ) with probability m and R (query the median of R) with
probability r, based on the equalization principle, y should
be indifferent between column M and column R in Nash
equilibrium:

m · 0 + r · pM ·
(M +R)2

4
= m · pR ·

(M +R)2

4
+ r · 0

=⇒ m

r
=

M

R

After normalization, this gives us the mixed strategy as
claimed.

Notice that in case 1 when x1 ← eliminates the candidate set
of vertices to a single region L without the other player, x’s
next action is the same as one-player binary search in region L.
We argue that whenever a player’s query-feedback eliminates
the candidate vertices to a region that the other player is not
in, the optimal next action is to do binary search in that region.
Because x gained more information from his query-feedback
pair in the current round and has a smaller candidate set of
vertices to consider, we call him the “lead player” in this
region, and binary search is information-theoretically optimal
for one-player search.

B. Competition under discrete cost

1) Discrete cost: In this section we define a discrete zero-
sum cost. A player incurs a cost of 1 if he is further to the
target than his opponent, −1 if he is closer to the target, and 0
otherwise. Specifically, from player x’s perspective using the
squared Euclidean distance, the cost is:

C(x | y, t) = sign[(x− t)2 − (y − t)2]

= sign[(x− y)(x+ y − 2t)] (3)

Each player’s objective is still to find the optimal vertex to
query for the next round that minimizes the expected cost.

2) Game tree: We will construct a game tree similar to that
of the continuous cost game. Consider an arbitrary case that
the target is in region L, and both players received feedback to
the left in the current round, which eliminates region M and R
for x, and R for y. Suppose the regions have probability mass
L and M respectively, then the posterior probability density

(after query and feedback) of target location for player x is
f(t) = 1

L for t ∈ L, and we have:

Et[C(x | y, t)] =
∫
L

sign[(x− t)2 − (y − t)2] · 1
L

= sign[(x− y)]
1

L

∫
L

sign

[
x+ y

2
− t

]
dt

=

{
− 1

L · (x+ y − L) if x+ y ≤ 2L

−1 if x+ y > 2L

= max

(
− 1

L
· (x+ y − L),−1

)
(4)

Based on current player positions and feedback, y cannot
eliminate region M yet thus has no incentive to move to the
left of x, which means sign[(x2−y2)] ≤ 0, we again have the
safety strategy (x, y) = (12L,

1
2L):

x =
1

2
L : Et[C(x | y, t)] = max

(
− 1

L
· (y − 1

2
L),−1

)
≤ 0 ∀y

y =
1

2
L : Et[−C(x | y, t)] = min

(
1

L
· (x− 1

2
L), 1

)
≤ 0 ∀x

The possible query positions are still 1
2L, L + 1

2M and L +
M + 1

2R. Plug in these query positions into Equation (4), we
can construct the game tree representing the current and next
round of the game (Figure 4).

Nature

xx x

y y y y y

0

(4)

−L+M
2M

(3)

−L+M
2L

(2)

0

(1)

R−L
2M

(5)

M+R
2M

(6)

M+R
2R

(7)

0

(8)

t ∈ L,
x1 ←, y1 ←

t ∈M ,
x1 →, y1 ←

t ∈ R,
x1 →, y1 →

x2 ∈ L x2 ∈M x2 ∈ R x2 ∈M x2 ∈ R

y2 ∈ L y2 ∈M y2 ∈ L y2 ∈M y2 ∈ L y2 ∈M y2 ∈ R y2 ∈ R

Fig. 4: The game tree of the extensive form game with zero-
sum cost (discrete). Leaves represent x’s costs, and all values
are clipped within absolute value 1.

3) Equilibrium strategy: We present a mixed strategy for
both players and claim that this strategy is in Nash equilibrium.
Strategy for x (strategy for y is symmetric to x interchanging
L and R):

If x1 ← (away from y), query median of L;
If x1 → (towards y):

If R ≥M : If R < M :

x2 =

{
L+M + 1

2R w.p. M+R
3M+R

L+ 1
2M w.p. 2M

3M+R

x2 =

{
L+M + 1

2R w.p. 2R
M+3R

L+ 1
2M w.p. M+R

M+3R

Theorem 2. Both players following the above strategy in the
search game under the discrete zero-sum cost defined in (3)
is a Nash equilibrium.

Proof. We analyze the game from x’s perspective.
Case 1, x1 ←:
Similar to the zero-sum game under continuous cost, in this
case x2 has no incentive to deviate from 1

2L.



Case 2, x1 →:
In this case x eliminates region L and considers t ∈ M ∪
R. Let pL, pM , pR represent the posterior probability that the
target is in regions L,M,R respectively. Given x1 → and the
assumption that nature places target uniformly at random, we
have pL = 0, pM

pR
= M

R .
We have the following game matrix based on the game tree
(all values are clipped within absolute value 1):

y2 ∈ L y2 ∈M y2 ∈ R
x2 ∈ L pL × (1) = 0 pL × (2) = 0 N/A
x2 ∈M pM × (3) pM × (4) pR × (7)
w.p. m = −pM · L+M

2M = 0 = pR · M+R
2R

x2 ∈ R pM × (5) pM × (6) pR × (8)
w.p. r = pM · R−L2M = pM · M+R

2M = 0

Again, row L and column L are dominated and can be
ignored (greyed out in the matrix). Solve for the equilibrium
strategy for x: suppose x chooses row M (query median of
M ) with probability m and R (query median of R) with
probability r, based on the equalization principle, y should
be indifferent between column M and column R in Nash
equilibrium:

m · 0 + r · pM ·min

(
M +R

2M
, 1

)
=m · pR ·min

(
M +R

2R
, 1

)
+ r · 0

=⇒ r

m
=

{
M+R
2M R ≥M
2R

M+R R < M

After normalization, this gives us the mixed strategy as
claimed.

Qualitatively speaking, the equilibrium strategies under the
continuous cost and the discrete cost would both query the
region that has a larger posterior probability mass with higher
probability in a mixed strategy, but quantitatively speaking,
the strategy under continuous cost is more “aggressive” or
extreme, as it queries the larger probability region with higher
probability compared to the strategy under discrete cost, and
queries the smaller probability region with lower probability
compared to the strategy under discrete cost.

C. Cooperation

1) Mutual cost: In this section we define a non-zero-sum
cost based on the minimum distance between the players to
the target, and the cost is mutual to both players. Specifically,
using the squared Euclidean distance, the cost is:

C(x, y | t) = min{d(x, t), d(y, t)}
= min{(x− t)2, (y − t)2} (5)

Given players’ positions, they have the same cost value, and
again this cost is implicit. The players have the same objective
to find the optimal vertex to query for the next round that

minimizes the expected cost conditioned on the other player’s
query position, over the randomness of the target location:

x2 = argmin
x

min
y

Et[C(x, y | t)]

2) Cooperative strategy: We present a cooperative strategy
for both players and show that it is better than one-player
binary search.
Strategy for x (strategy for y is symmetric to x interchanging
L and R, and replace 1

4 -quantile with 3
4 -quantile):

If x1 ← (away from y), query the 1
2 -quantile of L as the

lead player in L;
If x1 → (towards y), cooperate with y in region M at
the 1

4 -quantile.
Here the p−quantile in a region M is the position s ∈ M
such that Pt∈M [t ≤ s] = p.

Theorem 3. In the search game under the mutual cost defined
in (5), the above strategy is optimal for both players, and has
lower cost than one-player binary search.

Proof. Consider the three possibilities of target locations:
Case 1, target t ∈ L (Figure 5):

x1
←

y1
←x2 y2

M Rt ∈ L

Fig. 5: Case 1, t ∈ L.

This implies x1 ← and y1 ←. Player x can eliminate regions
M and R, but y can only eliminate R since the players cannot
communicate their current feedback. We argue that y has no
incentive to query inside region L, thus his next query position
should be in M : given a left feedback it’s possible that t ∈M ,
then y should query in M ; otherwise t ∈ L, we would have
x1 ← and y can trust x to act optimally as the lead player
in L. In this case y’s query position in M does not affect the
cost for the next round, and will be determined later in Case
3. Similar to the competitive game, x doing binary search in
L as a single player is optimal, and the expected cost for the
next round depends on lead player x only:

Et∈L[C(x2, y2 | t)] =
∫
L

(
1

2
L− t

)2
1

L
dt =

1

12
L2

Case 2, target t ∈ R:
This implies x1 → and y1 →, and this case is symmetric to
Case 1: y will act as the lead player in R by querying the 1

2 -
quantile of R, and x’s next query will be in M . The expected
cost for the next round depends on lead player y only:

Et∈R[C(x2, y2 | t)] =
∫
R

(
1

2
R− t

)2
1

R
dt =

1

12
R2

Case 3, target t ∈M (Figure 6):
This implies x1 → and y1 ←, and both players’ next query



x1
→

y1
←x2 y2

t ∈M RL

Fig. 6: Case 3, t ∈M .

positions will be in M . To simplify calculations, we shift the
position of 0 to the left end of M instead of the left end of L.
Let mid = min{max

(
x+y
2 , 0

)
,M}, which is the mid point

between x and y clipped within [0,M ]. The expected cost
depends on both players:

Et∈M [C(x, y)] =

∫
t closer to x

d(x, t)f(t)dt

+

∫
t closer to y

d(y, t)f(t)dt

=

∫ mid

0

(x− t)2
1

M
dt+

∫ M

mid

(y − t)2
1

M
dt

=
1

2
x2 − M

4
x+

1

2
y2 − 3M

4
y +

M2

3
Minimum attained at:

(x, y) =

(
1

4
M,

3

4
M

)
=⇒ Et∈M [C(x2, y2)] =

1

48
M2

Compare with:

(x, y) =

(
1

2
M,

1

2
M

)
=⇒ Et∈M [C(x, y)] =

1

12
M2

Combining the three cases gives us the cooperative strategy
as claimed. Neither of the players has an incentive to deviate
from this strategy, because in Case 1 and Case 2, there is
always a lead player doing binary search for the next round,
in a region with the smallest set of candidate vertices. The
other player, even though at a disadvantageous position, shares
the same low cost as the leader. In Case 3, even if both
players were told that the target is in M and they perform
binary search in M for the next round, the cooperative strategy
achieves a lower expected cost than binary search in M
individually.

D. Comparison of search efficiency

We are interested in comparing the competitive strategy and
the cooperative strategy with binary search under the same
mutual cost defined in the previous section. We chose this
mutual cost because it represents the best progress from both
players for the next round, which we denote as d∗, and if
we consider our game in the interactive learning framework
where the two players are learners and a user/teacher is giving
feedback, a lower cost in the search game corresponds to lower
query complexity in interactive learning.

Again we consider the case where t ∈ M , since otherwise
the lead player will be doing binary search for the next round,

and this is the only case that all the strategies have distinct
behaviors. Formally, we compare:

Et∈M [d∗] :=Et∈M
[
min{(x− t)2, (y − t)2}

]
=

∫ M

0

min{(x− t)2, (y − t)2} · 1

M
dt

=
1

M

[∫ mid

0

(x− t)2dt+

∫ M

mid

(y − t)2dt

]

Recall mid = min{max
(
x+y
2 , 0

)
,M}, the mid point between

x and y clipped inside [0,M ]. In the following sections we
also assume R = L.

1) Cooperation:: x = 1
4M, y = 3

4M, mid = 1
2M .

Et∈M [d∗] =
1

M

[∫ M/2

0

(
M

4
− t

)2

dt+

∫ M

M/2

(
3M

4
− t

)2

dt

]

=
M2

48

2) Binary search:: x = M+R
2 , y = −L+M

2 , mid = 1
2M.

Et∈M [d∗] =
1

M

[∫ mid

0

(M − L

2
− t
)2
dt+

∫ M

mid

(M +R

2
− t
)2
dt

]

=
M2 + 3R2 − 3MR

12

3) Competition:: Here we consider the competitive strategy
based on the continuous zero-sum game, and compute the
weighted average of the 4 possible outcomes of the players’
mixed strategy:
Case 1, x ∈ M , y ∈ M w.p. M

M+R · M
L+M = M2

(M+R)2 :
x = M

2 , y = M
2 , mid = M

2 .

Et∈M [d∗] =
∫ M

0

(
M

2
− t

)2

· 1

M
dt =

M2

12

Case 2, x ∈ R, y ∈ L w.p. R
M+R · L

L+M = R2

(M+R)2 : x =

M + R
2 , y = −L

2 , mid = M
2 .

Et∈M [d∗] =
1

M

[∫ mid

0

(−L
2
− t
)2
dt+

∫ M

mid

(2M +R

2
− t
)2
dt

]

=
M2 + 3R2 + 3MR

12

Case 3, x ∈ M and y ∈ L with probability M
M+R · L

L+M =
MR

(M+R)2 :

x =
M

2
, y = −L

2
, mid =

{
M−L

4 M > L

0 M ≤ L
.

Et∈M [d∗] =
1

M

[∫ mid

0

(−L
2
− t

)2

dt+

∫ M

mid

(
M

2
− t

)2

dt

]

=

{
M2

12 − L+M
2 · (M−L)2

16M M > L
M2

12 M ≤ L



Fig. 7: Comparison between strategies.

Case 4, x ∈ R and y ∈ M with probability R
M+R · M

L+M =
MR

(M+R)2 :

x = M +
R

2
, y =

M

2
, mid =

{
3M+R

4 M > R

M M ≤ R
.

Et∈M [d∗]

=
1

M

[∫ mid

0

(
M

2
− t

)2

dt+

∫ M

mid

(
2M +R

2
− t

)2

dt

]

=

{
M2

12 − R+M
2 · (M−R)2

16M M > R
M2

12 M ≤ R

The overall expected cost of the mixed strategy is the sum of
the 4 cases weighted by their corresponding probabilities.

4) Comparison of all three: To simplify notations suppose
R = L = rM and M = 1.

Cooperation: Et∈M
[
min (x− t)2, (y − t)2

]
=

1

48

Binary search: Et∈M
[
min (x− t)2, (y − t)2

]
=

1 + 3r2 − 3r

12
Competition: Et∈M

[
min (x− t)2, (y − t)2

]
=


1+3r2+3r

12 · r2

(r+1)2 + 1
12 ·

(
1− r2

(r+1)2

)
r ≥ 1

1+3r2+3r
12 · r2

(r+1)2 + 1
12 · 1

(r+1)2

+ 8−3(r+1)(r−1)2
96 · 2r

(r+1)2 r < 1

In summary, in terms of the distance from the closest player
to the target, as we can see from Figure 7 over various values
of r = R

M , the cooperative strategy is better than binary search,
and binary search is better than the competitive strategy.

IV. INTERACTIVE SEARCH ON TREES

A. Reduction from trees to a path

In the case that the graph is a tree, we can reduce the game
on a tree to the game on a path naturally, since there is a
unique shortest path between any pair of vertices in a tree.
The regions are well-defined: L is the subtree rooted at x
excluding the branch containing y, R is the subtree rooted at
y excluding the branch containing x, and the rest of the graph
is M .

In a subtree T , the weighted median is defined as the vertex
with minimum weighted distance to all the other vertices: q :=

a

b
h′(a),W (a)′

...

c ... i

h(c),W (c)
...

h(i),W (i)
...

d(a, b)

d(b, c) d(b, i)

Fig. 8: Generalization to tree.

argminv∈T
∑

u∈T d(v, u) · w(u), which corresponds to the 1
2 -

quantile if the weights of vertices represent probability masses.
A path is a special case of a tree, and the players’ strategies
on a path generalize naturally to a tree: to query the median
of region L or R, each player would query the median in the
respective subtree. In the region M , we can reduce the entire
region to the shortest path between x and y, and each vertex
v on the path would represent the subtree rooted at v, ie.,
“condense” the total probability mass of the subtree rooted at
v to the vertex v on the path. The median or 1

4 ,
3
4 -quantile

positions can be found by recursively expanding condensed
vertex into a subtree.

B. Finding the median in a subtree

Now we discuss the details on finding the median (or
quantile) vertex in a subtree. Recall that w(v) is the weight
(probability mass) of vertex v. Let T (a) denote the subtree
rooted at a, and let W (a) be the total probability mass of
vertices in T (a), ie. W (a) :=

∑
v∈T (a) w(v). Let the height

h(a) be the average distance from a to vertices in T (a):

h(a) : = Ev∈T (a)[d(a, v)] = E[d(a, v)|v ∈ T (a)]

=
∑

v∈T (a)

d(a, v) · w(v)
W (a)

Since the distance from a to a node c ∈ T (b) where b is a
child node of a is d(a, c) = d(a, b)+d(b, c) (Figure 8), we can
also express the height h(a) recursively based on the heights
of vertex a’s child nodes (Children(a)):

h(a) =
1

W (a)

 ∑
b∈Children(a)

[h(b) + d(b, a)] ·W (b)


The median in subtree T can be found recursively:
Consider subtree T = T (a) with total weight W = W (a),
and a chain of vertices a, b, c where b ∈ Children(a) and c ∈
Children(b). Let h′(a) and W ′(a) represent the height and
weight of subtree rooted at a ignoring the subtree T (b). See



Figure 8. We compare h(b) and h(c):

E[d(b, t)|t ∈ T ]

=
( ∑

i∈Children(b)

[h(i) + d(i, b)]
W (i)

W

)
+ d(b, b)

w(b)

W
+ [h′(a) + d(a, b)]

W ′(a)
W

= [h(c) + d(c, b)]
W (c)

W

+
( ∑

i∈Children(b)\c
[h(i) + d(i, b)]

W (i)

W

)
+ [h′(a) + d(a, b)]

W ′(a)
W

E[d(c, t)|t ∈ T ]

=h(c)
W (c)

W
+
( ∑

i∈Children(b)\c
[h(i) + d(i, b) + d(b, c)]

W (i)

W

)
+ d(b, c)

w(b)

W
+ [h′(a) + d(a, b) + d(b, c)]

W ′(a)
W

=E[d(b, t)|t ∈ T ]− d(b, c)
W (c)

W

+
( ∑

i∈Children(b)\c
d(b, c)

W (i)

W

)
+ d(b, c)

w(b)

W
+ d(b, c)

W ′(a)
W

=E[d(b, t)|t ∈ T ]− d(b, c)
(2W (c)

W
− 1
)

If W (c) ≥ 1
2W , h(c) = E[d(c, t)|t ∈ T ] ≤ E[d(b, t)|t ∈ T ] =

h(b), which means node c is a better candidate for the median
node than b. Note that the median only depends on the weights
of vertices, not the lengths of edges.

To recursively find the weighted median in T (a), start with
root b = a, if there exists c ∈ Children(b) st. W (c) ≥ 1

2W (a),
set b = c and continue with recursion down the subtree.
Otherwise return b as the weighted median, which is the lowest
vertex with W (b) ≥ 1

2W (a) (the lowest vertex whose weight
below it is heavier than 1

2 of T ).
Using a similar idea, to find the 1

4 -quantile vertex in M
from player x’s perspective, start with root of subtree x and
set b = x, if there exists c ∈ Children(b) st. W (c) ≥ 3

4M ,
set b = c and continue with recursion. Otherwise return b
as the 1

4 -quantile of M , which is the lowest vertex b with
W (b) ≥ 3

4M .

V. FUTURE DIRECTIONS

A. General graph

In this paper we studied trees. In general graphs, the regions
L, M and R might be ambiguous or have overlap due to the
existence of cycles. One idea is to construct a probabilistic
tree in the following way:
• For a query-feedback pair (q, z), let S(q, z) be the set of

vertices consistent with the query-feedback pair:

S(q, z) = V \N(q, z) = {v | z is on a shortest path from q to v}

.

• Let L̃ = ∪
(x,v)∈E:y/∈S(x,v)

S(x, v), which are the vertices

consistent with a feedback pointing away from y from x’s
perspective. Similarly let R̃ = ∪

(y,u)∈E:x/∈S(y,u)
S(y, u).

Let M̃ = L̃ ∩ R̃, the “ambiguous” region.

• For each neighbor v of x, let m =
w
(
S(x,v)∩M̃

)
w(S(x,v)) (the

fractional weight of S(x, v) in M̃ ), and place S(x, v) as
a subtree rooted at v in region L with weight multiplied
by 1 −m, and place S(x, v) as a subtree rooted at v in
region M with weight multiplied by m.

• If some vertex u appears in S(x, vj) for multiple neigh-
bors vj of x, split the weight of u evenly among all
S(x, vj) containing it.

To analyze the correctness and how the strategies generalize
to general graphs based on this idea remains future work.

B. Noisy feedback

We studied the interaction between two players under the
assumption that the feedback is truthful. Previous works [1],
[2], [11] considered feedback which is correct with probability
p > 1

2 and adversarially incorrect with probability 1 − p. To
generalize our work to the noisy setting, players can update the
weights of vertices in the following way: multiply the weights
of vertices inconsistent with the feedback by (1 − p) instead
of setting them to 0, and multiply the weights of the vertices
consistent with the feedback by p instead of keeping them the
same. Finally re-normalize the weights. A complete analysis
of the generalized strategies under the noisy setting remains
future work.
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